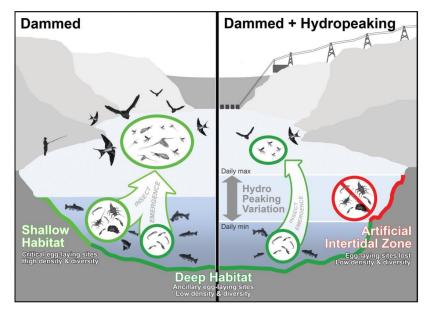
Hydropower production and riverine ecosystems in a future climate – introduction

Roland Jansson

Mitigating against and adapting to climate change – the dual challenge

- Increased demand for renewable electricity
- Increased need for rehabilitation of ecosystems in and around regulated rivers

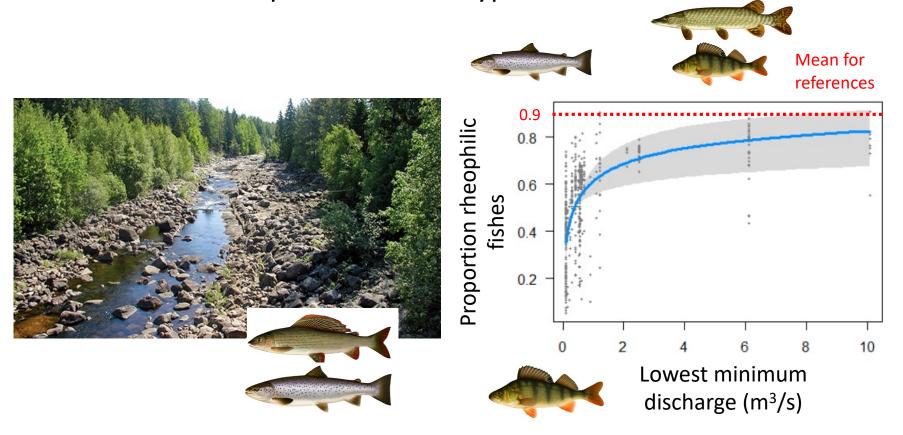

Hydropower production in the future

- Increased demand for electricity
- Higher annual hydropower production
- Increased need for flexibility and frequency regulation
- Dam security and infrastructure

Increased need for rehabilitation of ecosystems in and around regulated rivers

- Enhance resilience against more intense hydropower production
- Climate change adaptation

Kennedy et al. (2016) Bioscience



Climate change adaptation

- Increase resilience against stress and disturbance from climate change
- Need to facilitate geographic range shifts
- Provide habitat reduced in area or quality as a result of climate change

Minimum discharge release enhances communities of rheophilic fishes in bypassed reaches

Effects of changed climate	Action to mitigate or adapt
High water temperatures	Riparian trees offering shading, higher discharge

Effects of changed climate	Action to mitigate or adapt
High water temperatures	Riparian trees offering shading, higher discharge
High run-off	Open side channels, backwaters, reconnect floodplains

Effects of changed climate	Action to mitigate or adapt
High water temperatures	Riparian trees offering shading, higher discharge
High run-off	Open side channels, backwaters, reconnect floodplains
Low flows	Enhance water retention, concentrate flow in thalweg, increase discharge

Effects of changed climate	Action to mitigate or adapt
High water temperatures	Riparian trees offering shading, higher discharge
High run-off	Open side channels, backwaters, reconnect floodplains
Low flows	Enhance water retention, concentrate flow in thalweg, increase discharge
Expansion of warm-adapted species	Enhance connectivity

Effects of changed climate	Action to mitigate or adapt
High water temperatures	Riparian trees offering shading, higher discharge
High run-off	Open side channels, backwaters, reconnect floodplains
Low flows	Enhance water retention, concentrate flow in thalweg, increase discharge
Expansion of warm-adapted species	Enhance connectivity
Loss of cold-adapted species	Cold-water refugia (shading)

Effects of changed climate	Action to mitigate or adapt
High water temperatures	Riparian trees offering shading, higher discharge
High run-off	Open side channels, backwaters, reconnect floodplains
Low flows	Enhance water retention, concentrate flow in thalweg, increase discharge
Expansion of warm-adapted species	Enhance connectivity
Loss of cold-adapted species	Cold-water refugia (shading)
Spread of invasive species	Enhance establishment of native species (more natural processes)

Effects of changed climate	Action to mitigate or adapt
High water temperatures	Riparian trees offering shading, higher discharge
High run-off	Open side channels, backwaters, reconnect floodplains
Low flows	Enhance water retention, concentrate flow in thalweg, increase discharge
Expansion of warm-adapted species	Enhance connectivity
Loss of cold-adapted species	Cold-water refugia (shading)
Spread of invasive species	Enhance establishment of native species (more natural processes)
Loss of spring flooded communities	Flood pulses

How much rehabilitation is needed to adapt ecosystems to climate change and make them resilient?

Status of regulated river systems in Sweden

Biodiversity

- Species richness of most taxa reduced
- Lake species replace running water species

Ecosystems:

- Riparian vegetation: 12 % remaining
- Rapids and water falls: 1% remaining

Ecosystem functions

- Connectivity of fish, aquatic insects and plants impaired
- Land/water interactions lost
- Yield from populations of native fish fish species reduced

How much rehabilitation is needed to adapt ecosystems to climate change and make them resilient?

- Provision of renewable electricity
- Conservation of biodiversity

