# Optimization of joint operation of fast and slow storage

**Danilo Laban** 

Industrial PhD at Uppsala University

2024-04-24



#### Frequency incident 2018-12-27





# Prequalified frequency reserve capacity in Sweden



UPPSALA

UNIVERSITET

\* includes both "up" and "down" reserves source: Svenska kraftnät, data from 2024-04-01

![](_page_3_Picture_0.jpeg)

# Prequalified frequency reserve capacity in Sweden

![](_page_3_Figure_2.jpeg)

- New technical requirements entered into force in September 2023
- Hydropower currently responsible for 80% of FCR capacity
  - New speed requirements are an issue
- New technologies entering the markets
  - Continuous and more energy intense provision is creating difficulties

![](_page_3_Picture_8.jpeg)

#### FCR-N

Unit: Kaplan turbine Nominal power: 24 MW Nominal head: 23 m FCR-N prequalification: 2,4 MW FCR hours: 1 200 per year\* Projected income: 1 200 h x 56 €/MW\*\* x 2,4 MW = **161 280 € / year** 

 New FCR-N requirement test is failed – no ability to continue to sell FCR-N

![](_page_4_Figure_4.jpeg)

![](_page_4_Picture_5.jpeg)

UPPSALA UNIVERSITET

#### FCR-N

- Case 0: Do nothing
- Case 1: Upgrade hydropower unit
- Case 2: Install a stand-alone energy storage system
- **Case 3:** Install a hybrid system with energy storage

![](_page_5_Picture_6.jpeg)

![](_page_5_Picture_7.jpeg)

#### Case 0

- No investment is taken and the FCR-N provision is lost
- Cost: 0 €/year
- Cashflow: 0 €/year

# Case 1

Upgrade hydropower unit

- The necessary performance upgrades for the hydropower unit are implemented
- Wide variety of scenarios depending on the improvement, some unit cannot achieve required performance
- Cost: ranging from several 10k up to several million €
- Cashflow:???

![](_page_6_Picture_11.jpeg)

![](_page_6_Picture_12.jpeg)

#### Case 2

Stand-alone storage system

- Installation of a stand-alone battery energy storage system with the same FCR-N capacity
- Required size\*:  $P_s = 1,34 \times 2,4 = 3,2 \text{ MW}$  $E_s = 2 \times 2,4 = 4,8 \text{ MWh}$
- Expected lifetime<sup>[1]</sup>: 10 years
- Life-cycle cost<sup>[2]</sup>: 341 680 €/year
- Cashflow:
  - -180 400 €/year

$$C = (c_p P_s + c_e E_s) \frac{i(1+i)^L}{(1+i)^L - 1} + c_f P_s$$

Table 3: Cost and lifetime parameters of storage technologies, taken from [13].

| D         | Description                     | DECC | TW       | ad j          |
|-----------|---------------------------------|------|----------|---------------|
| Parameter | Description                     | BE22 | FW       | SC            |
| $c_p$     | Capital cost per unit of power  | 257  | 624      | 315           |
| -         | [€/kW]                          |      |          |               |
| $c_e$     | Capital cost per unit of energy | 275  | $6\ 186$ | $29\ 250$     |
|           | [€/kWh]                         |      |          |               |
| $c_f$     | Fixed maintenance cost          | 7    | 5        | 1             |
| -         | [€/kW-year]                     |      |          |               |
| $\mu$     | Round-trip efficiency [pu]      | 0.86 | 0.86     | 0.92          |
| DoD       | Depth of discharge [pu]         | 0.8  | 0.8      | 0.8           |
| $N_c$     | Number of full cycles           | 3500 | 200  000 | $1\ 000\ 000$ |
| $L_c$     | Calendar lifetime [years]       | 10   | 20       | 16            |

![](_page_7_Picture_12.jpeg)

[1] Mongird et al.: An evaluation of energy storage cost and performance characteristics, Energies, 13, 2020

<sup>\*</sup> interpretation of new FCR requirements, source: Svenska kraftnät

<sup>[2]</sup> Diaz-Gonzalez et al.: Energy storage in Power Systems, John Wiley & Sons, 2016

Case 3

Hybrid system with energy storage

- Enhancement of the hydropower FCR-N response with an energy storage system
- The method for the storage system control design and required size published in [3]
- Required size:  $P_s = 0,47 \text{ MW}$  $E_s = 0,01 \text{ MWh}$
- Expected lifetime: 1 year
- Life-cycle cost: 134 600 €/year
- Cashflow: 26 680 €/year

![](_page_8_Figure_9.jpeg)

![](_page_8_Picture_11.jpeg)

#### Case 3.1

- Optimized hybrid system with energy storage
- The storage size is an optimization variable together with control parameters from [3]
- Consider: BESS, flywheels, supercapacitors
- Optimal size of supercapacitor:  $P_s = 0,28 \text{ MW}$  $E_s = 0,001 \text{ MWh}$
- Expected lifetime: 7 years
- Life-cycle cost: 8 400 €/year
- Cashflow: 152 800 €/year

![](_page_9_Figure_9.jpeg)

[3] Laban, Norrlund, Lundin: Storage system design for improved primary frequency control from hydropower units, IEEE Transactions on Energy Conversion, 38, 2023

# Conclusion

- The developed hybrid system design and optimization methods provide a costeffective alternative to improve hydropower FCR response
- The hydropower + storage combinations plays to the strengths of both individual technologies
- Expanding the benefits: modifying the hydropower response to reduce mechanical wear and tear and stacking other services from the hybrid system

| Case 0 | Case 1  | Case 2 | Case 3 | Case 3.1 |  |
|--------|---------|--------|--------|----------|--|
|        |         | ?      | +27 k€ | +153 k€  |  |
| 0 k€   | -180 k€ |        |        |          |  |

![](_page_10_Picture_5.jpeg)

![](_page_10_Picture_6.jpeg)

![](_page_11_Picture_0.jpeg)

# Thank you!

Danilo Laban

danilo.laban@angstrom.uu.se danilo.laban@fortum.com

![](_page_11_Picture_4.jpeg)