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FÖRORD 
Inom en relativt snar framtid kommer det bli krav på att fjärrvärme och fjärrkyla ska 
debiteras efter faktisk användning. Det ställer i sin tur krav på att energileverantör-
erna kan säkerställa att det som debiteras bygger på korrekta värden. För att detta inte 
ska bli en onödigt stor administrativ börda för företagen är det viktigt att själva 
valideringen av mätdata kan ske automatiskt. 

Denna rapport beskriver olika statistiska metoder för automatisk detektering av 
potentiella mätfel. Den information som används är vanligtvis tillgänglig i moderna 
fjärrvärmecentraler. För att ta fram och utvärdera metoderna har projektet använt 
historiska mätdata från närmare tusen fjärrvärmecentraler. 

Arbetet har utförts av Fredrik Sandin, Jonas Gustafsson och Jerker Delsing på 
Eislab, Luleå tekniska universitet. Till projektet har en referensgrupp varit knuten. 
Referensgruppen har bestått av Jan Berglund Mälarenergi, Per Malmberg Process-
vision, Anders Ricknell Processvision, Roland Lundberg One Nordic, Lars-Ove 
Ivarsson Vattenfall, Robert Eklund Södertörns Fjärrvärme, Torsten Olsson Göteborg 
Energi, Lars Lindström Powel och Martin Brage Jönköping Energi. 

I projektet har också ingått att utveckla metoder för att kommersialisera 
forskningsresultat, vilket Jonas Gustafsson redovisat i en separat rapport. Jerker 
Delsing har deltagit som svensk representant i det internationella standardiserings-
arbetet kring energimätare vilket redovisats separat.  

Projektet ingår i forskningsprogrammet Fjärrsyn som finansieras gemensamt av 
Energimyndigheten och fjärrvärmebranschen. Fjärrsyn ska stärka möjligheterna för 
fjärrvärme och fjärrkyla genom ökad kunskap om fjärrvärmens roll i klimatarbetet 
och för det hållbara samhället till exempel genom att bana väg för affärsmässiga 
lösningar och framtidens teknik. 
 
Bo Johansson 
Ordförande i Svensk Fjärrvärmes teknikråd 

 
 

 
 

Rapporten redovisar projektets resultat och slutsatser. Publicering innebär inte att 
Fjärrsyns styrelse eller Svensk Fjärrvärme har tagit ställning till innehållet.  
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SAMMANFATTNING 

Validering av mätdata 
Det här projektet har genomförts eftersom fjärrvärmeföretagen anser att det är svårt 
och kostsamt att detektera fel i stora energisystem. Fel som förblir oupptäckta kan 
vara kostsamma och branschen förlorar trovärdighet när kunder upptäcker fel och  
får felaktiga räkningar. Fel är vanliga eftersom systemen innehåller ett stort antal 
instrumenterade centraler för fjärrvärme och fjärrkyla. Dessutom är den konven-
tionella instrumenteringen konstruerad för fakturering och låg inköpskostnad, inte för 
automatiserad detektering av fel. Stora variationer i byggnaders dynamik och del-
system, mänskligt beteende och utomhusklimat gör det svårt att modellera och 
analysera systemen. Konventionella metoder för detektering av fel används därför 
inte, men enkla gränsvärdesmetoder är vanligt förekommande och kan resultera  
i ett stort antal falsklarm som är kostsamma att analysera och hantera. Det finns ett 
växande intresse inom branschen för att utveckla tjänster och funktioner som är 
baserade på energimätdata med hög tidsupplösning. Regler för energimätning 
förväntas också bli mer krävande i framtiden, vilket driver den tekniska standarden 
mot högre tidsupplösning i energimätdata. Denna trend leder till stora dataströmmar 
på systemnivå, vilket är utmanande när man skall förvissa sig om att data är korrekt. 
Därför behövs nya effektiva metoder för detektering av fel. 

Den här projektrapporten beskriver en rad probabilistiska metoder för automa-
tiserad detektering av avvikelser som är användbara för att kunna identifiera poten-
tiella fel i storskaliga fjärrvärmesystem. Metoderna är förenliga med den information 
som finns tillgänglig i moderna insamlingssystem för energimätdata. Vi fokuserar på 
metoder som kan tillämpas automatiskt, med ett minimum av mänsklig assistans för 
att möjliggöra kostnadseffektiv analys av data. Med hjälp av dessa metoder behöver 
operatörerna inte spendera tid på ad-hoc tester eller visuell inspektion av grafer för att 
upptäcka avvikelser i data. Istället kan operatörerna fokusera på att analysera de 
centraler som identifieras som mest avvikande. Dygns- och veckocykler i effekten 
modelleras genom att automatiskt gruppera veckans timmar beroende på om 
effektbehovet är högt eller lågt. Alternativt så kan endast veckocykler modelleras 
genom att gruppera veckodagar med liknande effektbehov. Robust regression 
används för att modellera variabelsamband med historiska data. En robust metod för 
detektering av uteliggare används för att bestämma om variabler avviker från de 
väntevärden som definieras av regressionsmodellerna. Robusta statistiska metoder 
används för att bestämma hur mycket uteliggare avviker från de förväntade värdena, 
så att onormalt avvikande mätvärden kan identifieras och rangordnas automatiskt. 
Regressionsmodellerna kan också användas för skattning av saknade energimätdata, 
vilket är ett vanligt problem som inte alltid hanteras på ett noggrant sätt. Vi presen-
terar också metoder för detektering av drivande signaler, vilket är en typ av fel som 
kan vara kostsam och i annat fall svår att upptäcka, samt för detektering av bristande 
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precision i mätdata, vilket till exempel kan vara ett resultat av överdimensionerade 
flödesventiler, felaktig konfiguration och brus. Förutom att upptäcka fel så kan de 
föreslagna metoderna även vara användbara för underhållsplanering, eftersom 
centraler som beter sig på ett förväntat sätt kan ges lägre prioritet jämfört med 
centraler med onormalt beteende. 

Vi studerar metoderna med timvärden från en population om cirka ett tusen 
fjärrvärmecentraler. Exempel-kod för viktiga metodfunktioner tillhandahålls. Med 
metodernas hjälp hittar vi onormala data för ungefär 5% av centralerna och bland 
dessa identifieras dokumenterade fel, okända fel och onormala egenskaper. Saknaden 
av ett väldefinierat datamängd gör utveckling och utvärdering av metoder för detekt-
ering av fel utmanande, och det faktum att historiska energimätdata kan innehålla 
felaktiga data ignoreras ofta i litteraturen. De föreslagna metoderna måste implement-
eras i ett fullskaligt fjärrvärmesystem under överinseende av erfarna operatörer innan 
möjligheterna att detektera fel på ett kostnadseffektivt sätt kan utvärderas. Vi är dock 
övertygade om att de föreslagna metoderna kan implementeras i nuvarande system 
för insamling och analys av energimätdata och att de ger väsentliga fördelar jämfört 
med de metoder som vanligtvis används idag. 
 



 

 

 

7 

F A U L T D E TE C T I O N  W IT H  H O U R L Y 
D IS T R IC T  E N E R G Y D A TA  

SUMMARY 
This project is motivated by the difficulties experienced by district energy utilities to 
detect faults in large-scale district energy systems. Faults that remain undetected can 
be costly and the industry loose credibility when customers detect faults and receive 
incorrect bills. Faults are common in district energy systems due to the high number 
of substations and instrumentation components. Also, the standard energy-metering 
instrumentation is designed for low cost and billing, not for automated fault detection. 
Large variations in building dynamics, building subsystems, human behaviour and the 
environment make the system complex to model and analyse. Therefore, conventional 
methods for fault detection are not applicable and the use of ad hoc methods for fault 
detection often result in numerous false alarms that are costly to analyse and manage. 
There is a growing interest among the utilities to develop services and functions that 
are based on data with high temporal resolution. Energy metering regulations are also 
expected to become more demanding in the future, which drives technology standards 
towards high-resolution data. This trend results in high rates of streaming data at the 
management level, which is more challenging to validate. Therefore, more efficient 
methods for fault detection are needed. 

This project deals with probabilistic methods for automated anomaly detection 
that are useful for the identification of faults in large-scale district energy systems. 
These methods are compatible with the information that is available in modern energy 
meter data management systems. We focus on methods and heuristics that can be 
applied automatically with a minimum of human assistance to enable cost-efficient 
analysis of data. With these methods, operators do not have to rely on ad hoc tests or 
manual inspection of graphs to detect anomalies in the data. Instead, operators can 
focus on the analysis of a subset of substations that are identified as abnormal. 
Intraday and intraweek variations in the thermal load are accounted for by 
automatically grouping hours of the week with similar thermal load characteristics. 
Alternatively, intraweek cycles can be accounted for by grouping days of the week 
with similar characteristics. Robust regression is used to model variable relationships 
with historical data. A robust outlier detection method is used to determine if 
variables deviate from the expectation defined by a regression model. Robust 
statistical methods are used to score outliers, so that outstanding substations can be 
identified automatically with a ranking procedure. The regression models can also be 
used for imputation of missing energy metering data, which is a common problem 
that is not always solved in an accurate way. We also present methods for the 
detection of long-term drift, which can be costly and otherwise difficult to detect, and 
the detection of poor precision in measurement data, which for example can result 
from oversized flow valves, misconfiguration and noise. In addition to fault detection, 
the proposed methods can be useful also for maintenance scheduling because 
substations that behave in a way that is consistent with the historical record can be 
given a lower maintenance priority compared to substations with abnormal behaviour. 
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The proposed methods are studied using hourly data from a population of about one 
thousand district heating substations. Sample code of key functions is provided. We 
find that substations with documented faults, unknown faults and abnormal 
characteristics can be identified in about 5% of the substations. The lack of a well-
defined dataset makes the development and evaluation of methods for fault detection 
challenging, and the fact that historical energy metering data includes abnormal data 
is often ignored in the literature. The proposed methods need to be implemented in a 
full-scale district energy management system under the supervision of experienced 
operators before the effects on the fault detection rate and cost efficiency can be 
properly evaluated. However, we are convinced that the proposed algorithms can be 
implemented in present data management systems and that they offer significant 
advantages over the methods that are commonly used today. 
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NOMENCLATURE 
 
Common functions and variables 
Symbol Description 

 Time. 

 Primary supply temperature. 

 Primary return temperature. 

 Primary temperature difference, , the traditional “delta-T”. 
 Difference of primary supply temperatures of two different substations, 

which are matched by time-series correlation analysis. 

 Mass flow, flow. Derived from the volume calculated by the energy meter. 

 Thermal power. Derived from the energy calculated by the energy meter. 

 Outdoor temperature, typically estimated from meteorological data. 

  Mean value, expectation value. 

 Standard deviation, square root of variance, . 

 Skewness, . 

 Kurtosis, . 

 Bimodality coefficient,  (heuristic). 

 Maximum cumulative sum, max . 

 
 
Terms and abbreviations 
Term Description 

Bimodal (PDF) A probability density function with two distinct maxima. 

De-trending Method to reduce the significance of a trend in time series data. 
The trend is a gradual change of some property of the time series 
over the whole interval under investigation, such as an annual 
cycle in the outdoor temperature. 

Diagnosis Identification of the nature and cause of something, for example 
outliers in a dataset. 

GESD Generalized Extreme Studentized Deviate (test for outliers). 

Heuristic Experience-based technique for problem solving (rule of thumb, 
educated guess, intuitive judgment, common sense). 

K-means A cluster analysis method that partitions observations into clusters 
in which each observation belongs to the cluster with the nearest 
centre point. 

Modified Z score An outlier score that is robust (less sensitive to outliers in the data). 

Multimodal (PDF) A PDF with more than one local maximum (see also bimodal). 

Outlier An observation that appears to deviate markedly from other 
members of the sample in which it occurs. 

PDF Probability density function (of a random variable). 

Power Thermal power. The finite difference (derivative) of the 
accumulative energy calculated by an energy meter. 

Robust A statistic or estimator capable of coping with outliers (for example, 
the median is robust but the mean is not robust). 
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Statistic A measure of some attribute of a sample, which is calculated by 
applying a function or statistical algorithm to the values of the items 
in the sample (for example, mean and standard deviation). 

Z score A statistical score that indicates by how many standard deviations 
an observation is above or below the expectation value. 
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1 INTRODUCTION 
District heating systems are commonly used in several countries world wide for 
space- and water heating in residential and commercial buildings, and for industrial 
heating purposes. For example, about 90% of the apartment buildings and more than 
50% of the buildings in Sweden are heated in that way (Svensk Fjärrvärme, 2013). 
Similarly, district cooling is used for space cooling and industrial cooling purposes, 
but it is less common than district heating. Carbon emissions, pollution and the 
consumption of primary resources can be reduced with the use of district heating 
plants compared to local, decentralized heat production. In particular the use of 
surplus heat from industries, waste incineration and combined heat and power 
production are examples of strategies to minimize the environmental effects and use 
of primary resources. For a general introduction to district heating, see Frederiksen & 
Werner (2001). 

A district energy system can include tens of thousands of buildings, which 
comprise the instrumentation needed for energy metering and billing. District energy 
utilities can be overwhelmed with the quantity of energy metering data, in particular 
when modern energy meters and data management systems with a temporal 
resolution of days or hours are used. The standard instrumentation is designed for 
local control, billing and low cost, not for automated fault detection and diagnosis. 
Therefore, it is difficult to detect faults in the instrumentation and installation. In 
addition, some components needed in the energy meter instrumentation can be error-
prone, such as mechanical flow meters and temperature sensors. 

Instrumentation faults leading to an offset or outliers in the hourly or daily thermal 
power consumption are not uncommon. We have identified faults resulting in outliers 
in the hourly average power that deviates by several orders of magnitude from the 
expectation, and offsets of 100% or more. Such faults lead to incorrect billing if they 
are not detected, which has consequences for customer relations, trust and costs. It 
also efficiently hinders the development of information services and business based 
on energy metering data because of the risks associated with exposing incorrect 
information. Other faults, in particular affecting the flow meter or amplifiers / voltage 
references can cause long-term drift of signals and the thermal power. The long time-
scale associated with such faults can lead to substantial economic loss. Long-term 
drift can remain undetected for several years and becomes apparent only when the 
instrumentation is replaced or serviced, resulting in a sudden change of the power. 
There are documented cases when the thermal power has increased by 100% after 
service of the instrumentation, which means that the cost of such faults can be 
substantial. Also, the slow and gradual change associated with long-term drift makes 
these faults difficult to detect if simplistic methods are used. 

In general, district energy utilities find it difficult to detect faults because of the 
system size, the deluge of data and insufficient fault-detection functionality in the 
instrumentation and data management systems. Alarm and warning systems that 
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implement basic fault-detection tests are commonly used and often result in a deluge 
of false alarms that are difficult and expensive to manage (Reference group). The 
commonly used methods are simplistic and depend on the expertise of the operators. 
The problem to detect potential faults is important for several reasons; Faults that 
affect billing and customer information services need to be avoided; Energy market 
regulations tend to become more demanding with time in terms of accuracy, system 
efficiency and environmental effects; There is an increasing interest among the 
utilities to exploit the energy metering data for system optimization and development 
of new information services, in order to stay competitive on the energy market and 
develop good customer relations. These are key factors that motivate the project that 
is summarized in this report, which deals with probabilistic methods for automated 
detection and ranking of anomalies / faults in district energy data. Before describing 
these methods we introduce central concepts related to district-heating substations, 
hourly energy metering data, common faults, related work and the aims and scope of 
the project. 

1.1 District heating substations  
A district energy system can include tens of thousands of district heating substations, 
which transfer the heat from the distribution network to a building (or any other 
process that requires heat), see Figure 1.1.  

 
Figure 1.1. Schematic illustration of a building with a district-heating substation. Indicated 
in the figure are the primary water supply (1); primary return water (2); tap water supply 
(3); district heating substation including heat exchangers, electronic energy meter and 
control system with related sensors (4); heating system (5); and tap water (6). 

A district-heating substation comprises an electronic energy meter, which calculates 
the thermal power received from the distribution network. The energy meter includes 
a flow meter and two temperature sensors, one for the primary supply temperature 
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and one for the primary return temperature. The thermal energy is calculated from the 
flow and primary temperature difference 

 , (1) 

where  is the specific heat of the liquid in the distribution network (typically water), 
 is the mass flow,  is the primary supply temperature and  is the primary 

return temperature. The substation also includes heat exchangers and a control system 
with related sensors and actuators. 

The standard instrumentation in a district-energy substation is designed so that 
there is a clear distinction between the energy meter on the supply side of the heat 
exchanger(s), which is the property of the energy utility, and the control system of the 
substation, which belongs to the building. This setup is not ideal for fault detection 
because the control system has access to valuable information that is not accessible 
via the energy meter, such as the local outdoor temperature and control set points. 
The variables that are commonly available in modern energy meter data management 
systems are the accumulated energy and power, the primary supply and return 
temperature, and the primary accumulated volume and flow. The temporal resolution 
ranges from minutes to months, with daily averages being the norm and hourly values 
becoming increasingly common. The local outdoor temperature, which plays a major 
role for space heating, is unknown to the energy meter and data management system. 
Therefore, the outdoor temperature is estimated from meteorological data or 
proprietary temperature sensors that are deployed within the geographical area of the 
network. 

A district-heating substation is a challenging process for fault detection and 
diagnosis because it depends on environmental conditions, user behaviour (there are 
humans in the loop) and the function of other building subsystems like the ventilation 
system and complementary heat sources. For example, the thermal power can 
increase by 100% during working hours in an office building compared to the heat 
consumption at night and weekends. The lack of a holistic monitoring system and 
resulting limited knowledge about substation variables and parameters, and low 
temporal resolution further complicates the problem to identify faults in these systems 
with conventional methods. The internal workings of a substation are unknown and 
the system is a “black box” from a modelling perspective (Isermann, 2006), which 
renders a district heating system as a system of thousands of black boxes. Therefore, 
we propose that a combination of domain-specific knowledge about the physics of 
district heating systems and probabilistic modelling and data analysis is to be used for 
automated fault detection. This is the approach taken in this work. See Yliniemi 
(2005) and Pakanen et al. (1996) for additional discussions about the difficulties 
involved when developing fault-detection methods for regular district-heating 
substations. 
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1.2 Hourly district energy data  
The rate at which the average temperature of a building can change is limited by the 
high heat capacity of a building. However, other phenomena can affect the thermal 
power used by a district-heating substation at much shorter timescales. For example, 
the use of heated tap water can change rapidly, and control algorithms in automated 
ventilation systems and complementary heating systems can change set points 
instantly. This implies that there can be significant intraday cycles in the thermal 
power used by district-heating substations. Intraweek cycles are also common, for 
example in commercial and public buildings where the average daily power can be 
significantly lower during weekends compared to working days. 

If the energy data management system is limited to daily average values, only 
intraweek cycles can be identified, while the intraday cycles in the power are 
averaged out. The difference between the hourly minimum and maximum average 
power of an intraday cycle can be of order 100%, for example in the form of a 
doubled heating power in public or commercial buildings during working hours 
compared to evenings and nights. Therefore, the monitoring and analysis of intraday 
cycles is valuable for the development of information services, for prediction and 
control of peak loads, for system optimization and for detection of faults. These are 
some of the reasons why some district energy utilities have upgraded their energy 
data management systems from monthly or daily values to hourly values. Another 
motivation is that energy market regulations are expected to become more demanding 
in the future and utilities prepare for that event when anyway upgrading their data 
management systems. A still higher sampling rate is motivated if dynamic models are 
to be implemented, and for estimating the power used for space heating and heating 
of tap water with a single energy meter (Yliniemi, 2005), but that is presently only 
feasible in a local or decentralized system due to bottlenecks in the communication 
systems that are commonly used today. 

The methods that are presented in this report are designed for hourly district 
energy metering data but can be applied also to daily average values, except for the 
cluster-analysis of intraday load-cycles that is presented in Section 3.1. Cluster 
analysis methods for daily average values are described in the literature, see Seem 
(2005), Seem (2007) and Li et al. (2010). Therefore, we focus on hourly values and 
variables that are typically available in data management systems, see Table 1.1. 
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Table 1.1. Variables associated with a district energy substation in a data 
management system. 

Quantity Symbol 
Energy or Power (hourly average)  
Flow (hourly average)  
Primary supply temperature (hourly instantaneous sample)  

Primary return temperature (hourly instantaneous sample)  

Outdoor temperature (hourly estimate, measured elsewhere)  

 
The power is calculated by the data management system from the energy reported by 
the energy meter. The instantaneous flow is available in some data management 
systems, but it is of little use because the flow meter typically uses a pulse-based code 
when communicating with the energy meter and jitter effects can be significant. 
Therefore, the hourly average flow is preferred because it is more representative for 
the hourly average power. The primary supply and return temperatures are more 
problematic because only the instantaneous values are available, which means that a 
peak load at the time when the hourly temperature samples are fetched by the data 
management system can render the hourly return temperature non-representative. A 
similar problem results if the supply temperature varies significantly. 

1.2.1  Real-world dataset considered 
To demonstrate the methods and heuristics proposed in this report we use a real-
world dataset extracted from a district energy management system. The dataset 
contains about one year of hourly data from 996 district heating substations located in 
different buildings and constructions in Stockholm, see Table 1.2 for a summary. 

Table 1.2. Categories of district heating substations included in the dataset used in 
this report. 

Substation type Number 
Apartment buildings 628 
Detached houses 243 
Buildings for offices and shops 36 
Buildings for apartments combined with other premises 19 
Public service 12 
Industry and trading 9 
Buildings for offices including other premises 6 
Special constructions (streets, parking, subway, …) 6 
Other buildings (hotels, sports, churches, …) 37 
Sum 996 
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The mixture of hourly instantaneous and average values in the data, see Table 1.1, 
implies that there should be some discrepancy between the true power calculated by 
an energy meter and the power that we can estimate from the hourly values. How big 
is that discrepancy? That question can be answered by considering the discrepancy / 
error introduced by the hourly values 

  (2) 

   (3) 

Here the flow and primary temperatures with a bar in Equation (3) denote hourly 
values obtained from the data management system, while Equation (2) describes the 
true average power that is calculated from the energy received from the meter. The 
resulting error is illustrated in Figure 1.2 for the whole dataset including one year of 
data from the 996 substations described in Table 1.2. 
 

 

Figure 1.2. Discrepancy between the true power and the power calculated from the 
hourly primary temperatures and average flow (including faulty data). 

 
The level curves in Figure 1.2 indicate the discrepancy between the power calculated 
directly from the energy received from the meter (which mostly is correct) and the 
energy calculated from the hourly primary temperature samples and hourly average 
flow. For example, at 10 kW about 20% of the data has a discrepancy of 25% or 
more, and about 50% of the data has a discrepancy of 10% or more. The dataset 
includes data from a number of documented and suspected faulty substations, which 
are identified and discussed in the subsequent chapters of this report. Some of these 
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faults result in outliers that deviate by several orders of magnitude from the normal 
range, which contributes to the high discrepancies illustrated in Figure 1.2. 

The intraday cycles and variation in the power in combination with the errors that 
are naturally present in hourly district energy data (Figure 1.2) limits the accuracy of 
methods for fault detection. No matter how accurately we model the expected power 
there will be deviations from the model, which results from the inaccuracy of the 
hourly data rather than faults in the system. Therefore, in this work we consider 
probabilistic models and constraints on the expected deviation of the hourly (or daily) 
data from the models. Furthermore, ranking of deviations is a key strategy employed 
because the relatively few large deviations that can be associated with significant 
faults deserve more attention than the bulk of small discrepancies that are naturally 
present in the data. Ranking heuristics enables identification of outstanding anomalies 
with limited labour so that high risks (economic, trust, resources) can be avoided. 

1.3 Common faults and symptoms 
There are a number of components in a district energy substation that can malfunction 
or be incorrectly designed or installed, resulting in faulty substation behaviour and 
incorrect energy meter data. Common components include (Frederiksen & Werner, 
2001): cables, valves, flow meter(s), temperature sensors, pressure sensors, pipes, 
heat exchangers, electronic control system and the electronic energy meter. Incorrect 
energy meter data can result if any of these components malfunction, which can occur 
for a number of different reasons. Common faults and issues include (Pakanen et al., 
1996; Yliniemi, 2005; Reference group): 

● Malfunctioning valves, flow meters and temperature sensors, including faulty 
voltage references and amplifiers. 

● Incorrect installation of substation and associated instrumentation. Such as: 
incorrect cabling causing electromagnetic compatibility (EMC) issues; 
splices on flow-sensor cables causing pulse-bounces; incorrect grounding or 
galvanic isolation; incorrect dimensioning of components, such as valves and 
flow meters; use of sensors and energy meters that are incompatible. 

● Incorrect configuration of meters, sensors and control system. 
● Faults or reset of energy meters, for example during a blackout or lightning 

strike, or drained batteries. Faults in electrical components of energy meters. 
● Faults in the communication with the energy meter or time stamping of data. 
● Faults introduced during maintenance, or intentionally by customers (fraud). 
● Faults introduced during manual recording of energy meter data. 
● Fouling or leakage in heat exchangers and pipes. 
● Energy meters are misidentified in the management system. 

 

Some of these faults are difficult to detect, for example internal leakage in a heat 
exchanger, which can result in contamination of domestic hot water with minimal 
consequences for the hourly energy meter data. This problem can be addressed with 
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more advanced instrumentation (Isermann, 2011), but it is not feasible to detect using 
standard energy meter data. Because of the discrepancies inherent in hourly data (see 
the former section) we focus on the detection of faults that cause significant effects in 
the data that is commonly available in energy data management systems. In 
particular, we consider methods for detection of symptoms like: 

● Abnormal values of quantities. 
● Drift of values over time. 
● Excess noise or fluctuations of quantities. 
● Constant values of quantities. 

 

Abnormal values and long-term drift can result also when buildings are upgraded or 
human behaviour changes. Such events have to be distinguished from instrumentation 
faults manually, but can also be considered as a basis for development of services. 

1.4 Related work 
Fault detection and diagnosis is an active field of research in many application areas 
that has stimulated the development of a broad range of methods and heuristics; see 
Isermann (2005; 2006; 2011) for a general introduction and review, and Katipamula & 
Brambley (2005) for a review focusing on buildings. 

This project and the results that are presented in this report are partially based on 
the experience from several former projects at the Luleå University of Technology 
that focuses on fault detection and diagnosis in district heating substations and related 
instrumentation, see for example Svensson (1996), Carlander (2001), Delsing & 
Svensson (2001), Jomni (2004), Berrebi (2004) and Yliniemi (2005). The work by 
Pakanen et al. (1996) and Bergquist et al. (2004) also concerns fault detection in district 
heating systems and are referenced in this report. The initial developments of the 
methods that are described in this report are summarized in a conference paper 
(Sandin et al, 2012). Seem (2005) and Li et al. (2010) develop cluster-analysis 
methods for the identification of intraweek cycles and weekdays with similar power 
consumption. That work complements the discussion in this report about 
identification of intraday and intraweek cycles with cluster analysis of hourly energy 
meter data. Jota, Silva & Jota (2011) develops an approach for synthesis of daily load 
shapes that is also based on cluster analysis. Seem (2007) introduces a method for 
detection and ranking of outliers in the daily average power, which we adopt here for 
outlier detection and ranking. A novel aspect of the approach taken here is that we 
model the expectation values of hourly quantities with piecewise linear regression 
models that are specifically designed for district energy applications, and we use the 
outlier detection method introduced by Seem (2007) for residual analysis. Piecewise 
linear regression models have been independently developed and used for modeling 
of district heating substations by Master’s thesis students at the Chalmers University 
of Technology (Munoz, 2006; Lindquist, 2010), which we learned at the end of this 
project. A similar piecewise linear regression approach has been developed for 
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windmills (Forsman, 2011). The piecewise linear regression approach used in these 
three theses is similar to the one considered here, but we consider hourly data and 
complement the regression models with probabilistic models for outlier detection and 
ranking, detection of drift and detection of abnormal quantization. 

Other related work include various methods for energy data visualization, see 
Seem (2007) for references; An approach to detect unexpected changes in the energy 
efficiency of buildings using algorithmic exploration of district heating billing data 
(Kiluk, 2012); Analytical models of hourly energy data and fault detection with 
residual and correlation analysis (Johansson, 2005); Thermal response models of 
buildings (Armstrong, 2006) and building components (  & Madsen, 2008), 
which are interesting for further developments of system optimization methods and 
dynamical models of district heating substations for fault detection; Methods for 
short-term forecasting of energy demand (Taylor & McSharry, 2007). 

1.5 Aims and scope 
This project is motivated by the difficulties experienced among district energy 
utilities to identify faults in large-scale district energy systems, and to process the 
numerous false alarms that can result when simplistic methods for fault detection are 
used. The trend towards use of hourly energy metering data and the growing interest 
to develop new services and functionality based on high-resolution energy metering 
data, which enables monitoring and analysis of intraday load cycles, further motivates 
the development and adoption of new methods for fault detection. This project deals 
with probabilistic methods for automated anomaly detection and ranking that can be 
useful for the identification of common faults in existing large-scale district energy 
systems using information that is available in modern data management systems. In 
particular, we focus on hourly energy metering data. We do not consider dynamical 
models and fault detection methods that depend on information that is not commonly 
available in the energy data management systems, or which can be difficult to apply 
automatically in a large-scale system. We have tried to identify simple methods and 
heuristics that can be practically useful in a real-world setup. The proposed methods 
are studied using hourly data from a population of 996 district heating substations. In 
our study we have used a Matlab implementation of the methods that are presented in 
this report, which enables automated analysis of data from several thousand district 
energy substations. Sample code of key functions needed to implement the methods is 
provided in the appendix. This does not imply that the methods that are presented in 
this report are products that are ready to use “as is”, but should rather be considered 
as proof of concept. It remains to learn which methods that will prove useful and cost-
effective in a full-scale implementation. In principle the methods that are discussed in 
this report may be applicable also for district cooling data, but we do not study that 
possibility here because the lower primary temperature difference in district cooling 
applications makes the fault detection problem a more delicate one. Therefore, we 
propose that these methods should first be implemented and tested in district heating 
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systems.  This report is technical in nature and focuses on methods for anomaly/fault 
detection. We assume that readers of this report have technical knowledge of district 
energy substations, energy meters and energy meter data management systems. 
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2 BASIC METHODS FOR FAULT 
DETECTION 

In this chapter we describe a set of basic methods for the detection of abnormal 
energy metering data, which are useful indicators of faults that are straightforward  
to implement. Some of the methods that are described here are already used by the 
industry (limit checking) and one method (outlier detection) has been developed in 
this project and is based on the outlier detection approach developed by Seem (2007). 
This chapter also serves as an introduction to the forthcoming discussion and the 
methods that are described in subsequent chapters of this report.  

2.1 Limit checking 
Limit checking with constant thresholds is a basic method that is commonly used for 
fault detection and diagnosis (FDD); see Isermann (2006) for an introduction. The 
basic idea is to test whether a measured or derived quantity is within the bounds that 
are acceptable from a physical, design or safety perspective, or the bounds set by the 
historical variation of the quantity. An alarm is typically generated when the test fails. 
Limit checking is straightforward to implement in energy data management systems 
and it is useful for the detection of some common faults in district energy substations. 
In particular, the following limit checking tests are recommended and used by some 
companies (Reference group) 

 , the primary supply temperature should not exceed the maximum 

supply temperature to the network. This test can fail if there is a fault in the 
supply temperature sensor, or the related connectors, cabling and electronics. 
In district cooling this inequality is replaced with . 

 , the primary return temperature should not exceed the primary 

supply temperature. This test can fail if there is a fault in any of the two 
temperature sensors, or the related connectors, cabling and electronics. 
In district cooling this inequality is reversed. 

 , the hourly energy calculated by an energy meter should not 
decrease. This test can fail when there is a fault in the power supply of the 
energy meter that results in a reset of the meter. 

 , the power should not exceed the contracted power by more 
than some factor . This test can fail when an instrumentation fault results in 
abnormal power values. (The difference between contracted power and the 
actual power is sometimes used also in the calculation of energy cost.) 

When data from multiple substations violate some of the limit tests it is possible to 
rank the substations according to the magnitude of the maximum deviation from the 
limit. Ranking is commonly used in this work to identify outstanding anomalies. For 
example, if alarms are generated because some substations in a network violate the 
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 test the alarms can be ranked so that substations with high  

are given priority. The rationale of this approach is that abnormal values that are 
further away from the expected value or limit are more unlikely to be correct 
compared to minor deviations (provided that the probability distribution function of 
the variable or residual is unimodal and not too skew). Given that the resources to 
monitor and investigate potential faults are limited in practise, the manual efforts 
should primarily be focused on the most outstanding deviations. Ideally, all potential 
faults should of course be detected and investigated. The point here is that anomalies 
should be addressed in the order of potential significance, and a minimum of time 
should be spent investigating false or insignificant alarms. 

2.1.1  Limit checking with l inear thresholds 
Another test of this type is limit checking with piecewise linear thresholds; see 
Figure 2.1 for an example. This method is implemented in energy data management 
software that is commercially available (cf. Enoro AB) and some district energy 
companies use it for fault detection. 

 

Figure 2.1. Limit checking with linear thresholds of the power. This figure is based on 
one year of data from an apartment building. The linear thresholds that are illustrated 
in this figure are located at three standard deviations (solid lines) and five standard 
deviations (dashed lines) above and below the mean power, respectively. 

An alarm is triggered when a value is detected outside the region in-between the 
lower and upper limits, which typically are set at an empirically determined 
“reasonable” distance from the temperature-dependent mean power. In this example 
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the mean power is determined with a least-squares fit of a piecewise linear function, 
but it can be estimated also with interval-specific averages or median values. 

There is a trade-off between the rate of false alarms and the magnitude of 
variations and potential faults that fall within the acceptable limits. In practice, false 
alarms have to be accepted when this method is used and the alarms should be ranked 
in the order of descending maximum deviations to enable identification of 
outstanding anomalies. 

Some substations have significant time-dependent cycles in the thermal load, 
which for example can result from cycles in the operation of the building ventilation 
system or cycles in the use of heated tap water. Such cycles can be associated with 
branches in the power profile of substations; see Figure 2.2 for an example. 

 

Figure 2.2. Limit checking with linear thresholds of the power for an industrial building 
with two major branches in the power profile. The linear thresholds are located at 
three standard deviations (solid lines) and five standard deviations (dashed lines) 
above and below the mean power, respectively. 

In the case of this industrial building the variation of the thermal power during normal 
operation is substantial and the linear thresholds need to be positioned far away from 
the actual expected power in order to avoid a deluge of false alarms. This situation 
can be improved by considering a daily average of the power, which integrates daily 
cycles, and by using separate linear thresholds for working days and weekends / 
holidays. More generally, automated methods for the identification of weekdays with 
similar energy profiles can be used (Seem, 2005; Li et al., 2010). In the next chapter 
we illustrate how that approach can be extended to hourly data so that substations 
with branches like those in Figure 2.2 can be identified and modelled. 
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2.1.2  Limit checking of standard deviation 
In addition to limit checking of the mean, μ, of some quantity (like the power or a 
primary temperature) it is possible to define limits for the standard deviation, σ, of the 
quantity. The standard deviation holds information about the variation of the quantity. 
Therefore, it can change when the noise level changes or the value of the variable is 
constant, which sometimes result from EMC problems, cabling problems and faulty 
sensors. If the mean and standard deviation before the introduction of the change are 
denoted by μ0 and σ0 and the corresponding values after the change are μ1 and σ1 the 
following cases can be identified 

 The mean changes; μ1 = μ0 + Δμ, σ1 = σ0. 
 The standard deviation changes; σ1 = σ0 + Δσ, μ1 = μ0. 
 Both the mean and the standard deviation change. 

There are standard tools for the detection of changes of this type, see Sections 7.3-7.5 
in Isermann (2006). A basic example is detection of changes in the mean with binary 
thresholds that are set relative to the standard deviation, which is analogous to the 
method based on linear thresholds that is described above. This approach works well 
as long as the change of the mean that is to be detected is large compared to the 
standard deviation. 

Other methods have to be used if the change is less than or similar to the standard 
deviation. For example, a method for detection of small changes in the mean resulting 
from signal drift is presented in Chapter 5. Statistical hypothesis tests are common 
and can be used to detect small changes if the probability distribution of the variable 
is known. For example, a Student’s t-test can be used for detection of changes in the 
mean and an F-test can be used for detection of a change in the variance (Isermann, 
2006). Yliniemi (2005) presents a hypothesis test for detection of changes in the 
variance (squared standard deviation) of high-pass filtered temperature signals in a 
district heating substation using a numerically lightweight algorithm than can operate 
in a microcontroller at 100 Hz sampling frequency. Our experiments indicate that 
hypothesis tests of this type are less useful with hourly data because the probability 
distributions of the residuals are complex and varying, and the detailed long-term 
variation of the mean and standard deviation are difficult to model accurately. 
Therefore, the methods that we propose for hourly data in the subsequent chapters are 
based on other types of statistical tests and heuristics. 

2.2 Basic method for outlier detection 
Methods for statistical outlier detection and scoring have recently been proposed for 
the detection of abnormal energy metering data and potential instrumentation faults 
(Seem, 2007; Li et al., 2010). This approach is a useful complement to the basic limit 
checking tests that are outlined above. Outlier detection is an appealing alternative to 
limit checking with linear thresholds because it does not involve the definition of ad-
hoc thresholds, and it enables rapid detection of abnormal values. As far as we know, 
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outlier detection has not yet been implemented and tested in commercial district 
energy management systems. Therefore, this approach is discussed in some detail in 
this report and the core functions needed to implement outlier detection are included 
in the Appendix. 

In this section we introduce a basic approach to outlier detection (a more accurate 
method is described in Chapter 4). The method presented here is a simplified form of 
the method proposed in Seem (2007), which omits the model of intraweek cycles 
(“day types”) and accounts for seasonal variations with a weekly moving average 
(Seem, 2005). This approach results in a method that is straightforward to implement, 
but which is less sensitive to outliers when there are significant intraweek and 
intraday cycles in the thermal load. This point is further discussed and a solution is 
presented in the following chapters. 

The thermal power varies significantly with the outdoor temperature; see Figure 
2.1 for an example of a typical trend. Therefore, in order to enable identification of 
abnormal power values it is necessary to model the temperature-dependent variation. 
In principle, there may also be effects of seasons, sun, wind and time-varying human 
behaviour on the thermal load. A weekly moving average of the thermal power is a 
basic estimate for the temperature-dependent, seasonal variation of the power (Seem, 
2005); see Figure 2.3 for an example. It is necessary to average over one week 
because intraweek and intraday cycles in the thermal load can otherwise result in 
artificial short-term cycles in the moving average. A weekly moving average, , is 
defined as the mean of the last  hourly power values, 

 , (4) 

or the corresponding average of an equal number of values that are selected from both 
sides of a central value 

 . (5) 

The latter, centralized moving average is preferred when dealing with historical data 
because the former definition results in a time-offset of the estimated value. In both 
cases, the moving average can be calculated iteratively by subtracting the oldest term 
and adding the most recent term, for example 

 . (6) 

The result of this basic seasonal de-trending approach is illustrated in Figure 2.3. 
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Figure 2.3. Seasonal detrending of the power with a weekly moving average (MA). 
The temperature-dependent variation of the power is approximated with a weekly 
moving average, which is invariant to intraweek and intraday cycles in the power. The 
upper panel shows the hourly power values over one year (black line) and the weekly 
moving average (red color). The lower panel shows the de-trended power, after 
subtraction of the weekly moving average. This is the same substation as that 
illustrated in Figure 2.1. 

After subtraction of the moving average, a standard outlier detection test can be 
applied to detect abnormal power values. The generalized extreme studentized 
deviate (GESD) test (Rosner, 1983) is recommended when the number of potential 
outliers is unknown because it works well under a variety of conditions (Iglewicz & 
Hoaglin, 1993) and it has been proposed for the detection of outliers in energy meter 
data (Seem, 2007; Li et al., 2010). The mathematical details of this outlier test are 
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described in Chapter 4 and an implementation of the basic outlier detection method is 
provided in the Appendix; see the functions named basic_test  and gesd. In 
principle, the idea is that the de-trended power values are expected to stay within a 
few standard deviations from zero. The GESD test provides a formal answer to the 
question whether a certain deviation from the average is likely given that the variable 
is approximately normally distributed with some given standard deviation, or whether 
the deviation should be considered as an outlier. Figure 2.4 illustrates some outliers in 
district heating data that were detected with this method. 
 

 

Figure 2.4. Outliers in the thermal power of an apartment building that were detected 
with the basic method. The ten most significant outliers are tagged (crosses) and the 
maximum deviation is 15.7 standard deviations. A deviation of fifteen standard 
deviations is extremely unlikely under normal operation, and the probability of having 
several such outliers in a sequence is practically zero. The outliers are caused by a 
fault in the instrumentation. The energy meter, including primary temperature and 
flow sensors were replaced on the 19th of January. 

This figure was produced with the function named basic_test  in the Appendix. 
By accounting for intraweek (Seem, 2007; Li et al., 2010) and intraday (Sandin et al., 
2011) patterns in the power using the methods described in the following chapters the 
variance of de-trended data (residuals) can be further reduced, which improves the 
sensitivity and reliability of the outlier detection test. 

2.2.1  Ranking of outliers 
Outliers can be ranked depending on how much they deviate from the expected value. 
One way to do that is to score the outliers with the corresponding number of standard 
deviations, , a so-called standard score, or Z score. For example, a Z score of 10 
implies that the outlier deviates from the expected or average value by ten standard 
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deviations. The details and mathematical definition of Z scores are further discussed 
in Chapter 4. Qualitatively, for a normally distributed random variable about 68% of 
the values are within one standard deviation from the average (Z scores less than 1); 
about 95% are within two standard deviations (Z scores less than 2); and about 99.7% 
are within three standard deviations (Z scores less than 3). Therefore, most of the 
observed values of a variable that is approximately normally distributed should be 
within three standard deviations from the average. This is a rule of thumb known as 
the “3-sigma” rule. In practise, the empirical results of the basic outlier detection 
method that are presented in the next subsection shows that Z scores up to 10 are 
common on an annual basis, and scores exceeding 10 are abnormal. 

2.2.2  Test results 
We apply the basic outlier detection method to one year of hourly power values for 
the 996 substations in the test set, see Chapter 1. For each substation we calculate the 
maximum magnitude of the Z scores. The result is presented in Figure 2.5, which 
illustrates how many substations (in %) that have an outlier with a maximum 
magnitude of the Z score of some value. Outliers are detected in the power data of 
most substations with this method, but only a subset of the substations has 
exceptionally high Z scores. The faulty substation with a maximum Z score of 15.6 
that is illustrated in Figure 2.4 is found at position 28 in the top-list, which means that 
there are 27 substations in this data set that have higher maximum Z scores. There are 
50 substations that have no outliers according to the basic method. There are 70 
substations that have a Z score above 10, 30 substations with a Z score above 15, and 
19 substations with a Z score above 20. The six substations with the highest Z scores 
are illustrated in Figure 2.6, and the six substations at positions 10-15 in the top-list 
are illustrated in Figure 2.7. 
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Figure 2.5. Maximum magnitude of Z scores for the 996 substations in the test set. 
This figure is based on one year of hourly data. The substation in Figure 2.4 with a 
maximum Z score of 15.6 is represented by the circle at position 28 from the right-
hand side, which means that there are 27 substations in the test set that have outliers 
with higher Z scores. 
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Figure 2.6. The top-six substations in the test set with the highest Z scores of outliers 
identified with the basic method. Faults are suspected or confirmed in all six cases. 
For example, the substation with a maximum Z score of 61 has been rebuilt due to 
problems with the energy meter and communication. The substation with a maximum 
Z score of 42 had a faulty energy meter that was replaced.  
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Figure 2.7. Substations in the test set with high Z scores of outliers identified with the 
basic method. These six substations are found at positions 10-15 in the top-list of 
substations with high Z scores, see Figure 2.5.  
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3 PROBABILISTIC MODELS  
The moving-average estimate of the thermal power of a district-heating substation 
that is introduced in the former chapter is useful for basic outlier detection, but it is 
not an accurate model of the power when there are significant intraday or intraweek 
cycles in the thermal load. Such cycles naturally appear in some buildings. For 
example, the ventilation system can be switched off at night and during weekends in 
some buildings, which results in intraday and intraweek cycles in the thermal power 
needed for space heating. This is a common phenomenon in industrial buildings, 
office buildings and public buildings like schools. Cycles in the use of heated tap 
water are also common. Another limitation of the moving-average estimate is that it is 
continuously updated to match the actual mean power used by the substation, which 
makes it useless for detection of long-term changes in the thermal load. For example, 
long-term changes can result when buildings are upgraded, when ventilation systems 
or complementary heating systems are modified, and because of faults in the 
instrumentation that lead to signal drift. Therefore, a better model of the thermal 
power is needed. Models of other variables that are commonly available in district 
energy data management systems, in particular the primary temperatures and the flow 
are also useful for fault detection and diagnosis. 

In this chapter we describe how such models can be automatically generated using 
statistical tools. In particular we use piecewise linear regression, bimodality analysis, 
cluster analysis and correlation analysis (Murphy, 2012). The resulting models are 
used as input to the probabilistic outlier detection methods that are described in 
Chapter 4 and the drift detection method that is described in Chapter 5. We use 
probabilistic modelling rather than an approach based on dynamic equations of 
buildings and substations because of the low sampling rate of one sample per hour 
considered here and the few variables that are known. A probabilistic approach is also 
motivated by the need to model large populations of buildings and substations, which 
are affected by human behaviour, weather conditions, and the complex interactions 
with other systems like various types of ventilation systems. Effects like these can be 
modelled approximately with data-driven probabilistic methods, but would be more 
difficult to model automatically with dynamic equations. 

3.1 Thermal power 
A fault in the instrumentation that results in incorrect thermal power directly affects 
the energy cost and billing. Therefore, the power is a key quantity for fault detection. 
It is important that faults resulting in abnormal power values are detected as soon as 
possible. The thermal power, , is defined here as the hourly mean power obtained 
from the time-derivative of hourly samples of the energy, , calculated by an energy 

meter, . The power is more convenient to analyse than the energy because the 
power is proportional to the thermal load, while the energy is a monotonic function. 
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The most important variable affecting the thermal load and power used by a district 
energy substation is the outdoor temperature. In particular, the need of thermal power 
for space heating varies significantly with time in countries with seasons, where the 
outdoor temperature varies from sub-zero temperatures in the winter to indoor 
temperatures or higher in the summer. This effect is evident in the power data that is 
illustrated in Figures 2.1 and 2.3, and it is a consequence of two main principles; the 
hourly thermal power needed for space heating in a building is approximately 
proportional to the difference between the outdoor and indoor temperature; and the 
substation control system uses the local outdoor temperature as reference to calculate 
the control set point for space heating. The control system typically uses a linear 
relationship between the set point and the local outdoor temperature, within some 
upper and lower bounds. Space heating is typically turned off when the outdoor 
temperature is comparable to the indoor temperature; for example at 2–3°C below the 
indoor temperature, which translates to outdoor temperatures of 16–17°C or higher 
(this is the basis for the traditional concept of “degree days”). There is also an upper 
limit to the power because the secondary supply temperature is kept below some 
value for safety reasons, for example 60°C, and the heat exchanger(s) anyway have 
limited capacity. Therefore, the relationship between the average power and the 
outdoor temperature is expected to be a piecewise linear function; see Figure 3.1 for 
an example. 

 
 

Figure 3.1. A piecewise linear model of the hourly average power versus the outdoor 
temperature for an apartment building in Stockholm. The model is fitted with adaptive 
piecewise linear regression using ARESLab (see the Appendix) and four linear 
segments separated by three breakpoints, out of which two breakpoints are clearly 
visible. The regression model is fitted to one year of data but only 10% of the data is 
displayed. There is an evident knee in the trend at about 16°C, which is related to the 
onset of space heating. 
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The functional relationship between the outdoor temperature and power can be more 
complicated than that illustrated in the figure above for several reasons; intraday and 
intraweek cycles in the thermal load can be significant, this point is further discussed 
below; some control systems use a piecewise linear relationship between the set point 
and the outdoor temperature to enable further customization or optimization of space 
heating and energy use; the supply temperature to a district-heating network is 
controlled with weather forecasts and varies with the outdoor temperature, which 
affects the function of the substation. For example, the supply temperature to a 
district heating substation can be about 70°C in the summer and above 100°C in the 
winter. For these reasons, it is motivated to use a piecewise linear model with several 
breakpoints when automatically constructing models for a whole population of 
substations. A piecewise linear model with one breakpoint at the onset of space 
heating (for example at 16–17°C) is a fairly good approximation for some 
substations, but in general the model can be improved by adding a few more 
breakpoints. We return to this point below, after a discussion about modelling of 
intraday and intraweek cycles. 

3.1.1  Schedule of intraday and intraweek cycles 
Intraday and intraweek cycles in the thermal load are common. For example, the 
ventilation system can be re-configured or switched off at night and during weekends 
in some buildings, which results in intraday and intraweek cycles in the thermal 
power needed for space heating. This is a common phenomenon in industrial 
buildings, office buildings and public buildings like schools. Another common cycle 
is related to the varying use of heated tap water in apartment buildings. Cycles of 
these types can cause significant variations in the thermal load; see Figure 3.2 for an 
example. Therefore, the model of the expected hourly power should account for 
eventual cycles in the thermal load. Note that the outdoor temperature in Figure 3.2 
reaches a minimum on Friday evening and that the trends before and after this point 
are visible also in the power. The average thermal power follows the trend of the 
outdoor temperature. Note that the intraday and intraweek cycles in the thermal load 
affects the power of order 100% at the timescale of one hour. Therefore, any model 
that is based on hourly data (whether probabilistic or dynamic) that fails to account 
for these cycles will be incorrect. Figure 3.3 illustrates a one-year power profile of the 
substation that is discussed in the example above. 
  



 

 

 

37 

F A U L T D E TE C T I O N  W IT H  H O U R L Y 
D IS T R IC T  E N E R G Y D A TA  

 
 

 

Figure 3.2. Thermal power and outdoor temperature versus time for an office building 
in Stockholm during one week in January, 2011. There are evident intraday and 
intraweek cycles in the power. The thermal load is higher during office hours, 
between 7:00 and 18:00 from Monday until Friday.  

 

 

Figure 3.3. One year of power data versus the outdoor temperature for the office 
building that is illustrated in Figure 3.2. The difference between high and low thermal 
loads is evident at outdoor temperatures below zero. 
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Former work on outlier detection in energy meter data (Seem 2005; Seem 2007; Li et 
al., 2010) focuses on daily averages, which means that intraday cycles are averaged 
out and that only intraweek cycles remain. In this context methods for automatic 
identification of weekdays with different thermal load (so-called “day types”) have 
been developed. These methods are based on cluster analysis of average and peak 
daily energy use (Seem 2005; Seem 2007) and cluster analysis of average and peak 
daily energy use combined with autoregression coefficients (Li et al., 2010). In this 
work we consider hourly data, which implies that we need to model the intraday 
cycles in addition to the intraweek cycles. For initial steps in that direction see Jota et 
al. (2011), Kiluk (2012) and Sandin et al. (2012). In addition, we are aiming to 
develop a model that can be automatically used with a population of tens of thousands 
of substations. Therefore, the model should be simple, comprehensible and easy to 
modify in the event that the automatically calculated results are unexpected or 
incorrect. For these reasons we propose to model the cycles in terms of a weekly 
schedule of the thermal load, which can be automatically calculated using cluster 
analysis (Sandin et al., 2012); see Figure 3.4 for an example. 

 

Figure 3.4. Schedule of intraweek and intraday cycles in the thermal power of an 
office building. This is the same building as that illustrated in Figures 3.2 - 3.3. 
The high power (triangles, pointing upwards) and low power (triangles, pointing 
downwards) cycles are aligned with the office hours. The third symbol (black 
diamonds) should be interpreted as “either high or low”. 

A schedule of this type is straightforward to understand and modify. It will fail in 
some cases, for example at public holidays, but custom rules can be defined manually 
for such exceptional cases. Schedules of this type are also useful as a diagnostic tool 
that can be used to investigate how cycles change over time. Next we describe how 
schedules of this type are calculated. The code used to create this and other schedules 
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displayed in this report is provided in the Appendix, see the functions named 
std_power , bimodality  and power_schedule . 

3.1.2  Standardized power 
It is tricky to analyse cycles in the time sequence of power values directly because of 
the outdoor temperature dependence, see Figure 3.2 for an example, and because of 
the varying amplitude of the cycles between different substations. Using basic 
methods it is also difficult to fit a piecewise linear function to the power profile 
before we have identified and analysed eventual cycles in the power. Therefore, we 
standardize the power variable using a temperature-specific mean power and standard 
deviation of power (note that the term “standardized power” introduced here is a 
statistical term, which have nothing to do with ISO standards) 

 . (7) 

The temperature-specific mean power, , and standard deviation of power, 
, are calculated by considering power values that are measured within a given 

interval of outdoor temperatures, which should be narrow so that the temperature-
dependence of the power within that interval is negligible. We define the length of 
that interval as °C and divide the power data in intervals of one degree Celsius. For 
example, power values measured at an outdoor temperature between °C and °C 
are combined when calculating the corresponding standardized temperature, , 
according to the equation above. Similarly, power values in the interval [ °C, 

°C) are combined when calculating the corresponding  values, and so on. 
The result of this algorithm is illustrated in Figures 3.5 – 3.6, which displays one 

year of data from the substation that is displayed in Figures 3.2 – 3.4, with the 
constraint that °C (about 12% of the annual data fulfil that constraint). An 
upper limit on the outdoor temperature is used because cycles are less evident at 
outdoor temperatures near and above 0°C. If data for higher outdoor temperatures are 
included the cycles in the standardized power are less evident and may prevent 
identification of the intraday and intraweek cycles. Therefore, the analysis of cycles 
that is discussed here is not applicable if the effect of the cycles is small compared to 
the standard deviation of the power. However, if there are no evident cycles in the 
power it is sufficient to model the outdoor-temperature dependence, so this limitation 
is not an issue. 

Note that there is no evident effect of the outdoor temperature on the standardized 
power because  varies primarily with the weekday and time of day. Also note that 
the cycles that appear in Figure 3.5 correspond to the cycles that are illustrated by the 
schedule in Figure 3.4. Next we describe how cycles like these can be automatically 
identified with bimodality analysis and how a weekly schedule can be generated 
using cluster analysis.  
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Figure 3.5. Average standardized power, , for the office building that is illustrated in 
Figures 3.2 – 3.3. This figure is generated from one year of hourly data with the 
constraint that the outdoor temperature is less than -5°C. Error bars denote standard 
deviations. 

 

Figure 3.6.  Surface plot of the average standardized power for the same office 
building as that illustrated in Figure 3.5. 
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3.1.3  Bimodality coefficient  
The intraday and intraweek cycles in the thermal power that are illustrated in Figures 
3.2 – 3.3 result in a standardized power that changes significantly with weekday and 
time of day according to Figure 3.5. The standardized power can be represented in the 
form of a histogram, which is a discretized form of the probability density function of 
the standardized power variable, ; see Figure 3.7. The histogram shows that the 
distribution function is bimodal, which means that the probability density function 
has two distinct peaks (local maxima). In general, a probability density function that 
has more than one local maximum is said to be multimodal. In contrast, a unimodal 
probability density function has only one maximum. Bimodal distributions often arise 
as a mixture of two different unimodal distributions, which is a natural way to think 
about the problem considered here. 

 

Figure 3.7. Histogram with 20 bins of standardized power for an office building with 
intraday and intraweek cycles in the thermal power. This result can be compared with 
Figure 3.5, which is generated with data from the same building. 

A bi- or multimodal probability density function of the standardized power indicates 
that there are systematic cycles in the power. We want to estimate whether assuming 
that there are cycles in the power is more appropriate than assuming no cycles. 
Therefore, we introduce a statistic that indicates whether a distribution is multimodal 
or unimodal. This is a general problem that is studied in several different fields. For 
example, a bimodal distribution can indicate that there are novel or particularly 
interesting aspects in the data that are not accounted for by a model (this is for 
example the case in the context of gene expression analysis). Summary statistics like 
the mean, median and standard deviation can be misleading for bi- and multimodal 
distributions, which is another motivation for the use of bimodality analysis. 

There are several different techniques for the detection of bimodal and multimodal 
distributions, but no universal method that is suitable for all problem domains. Some 
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tests are based on the outcome of a cluster analysis algorithm, while other statistics 
are functions of the data. For example, the kurtosis of the probability distribution 
function is a useful statistic that is used in several methods for bimodality analysis. 
We propose that a combination of the kurtosis and skewness known as the bimodality 
coefficient (BC) is used because it is simple to calculate, it varies between zero and 
one forming a comprehensible statistic, and our empirical results indicate that it 
efficiently separates substations with evident cycles in the load (high BC) from 
substations with no evident cycles (low BC). The bimodality coefficient is defined as 

 , (8) 

where  is the standardized power,  is the skewness and  is the kurtosis (not the 
excess kurtosis). The BC of the standardized power illustrated in Figure 3.7 is 0.94, 
which is a high value, in agreement with the evident cycles in the power. Our 
empirical results suggest that a BC below ~0.6-0.65 indicates that there are no 
significant cycles in the power, while higher values motivates further analysis (cluster 
analysis) of eventual cycles in the standardized power. The BC for the population of 
996 substations in the test set is displayed in Figure 3.8.  

 

Figure 3.8. Bimodality coefficients for the population of 996 substations in the test 
set. In practice we find that substations with bimodality coefficients above 0.6-0.65 
have significant intraday and/or intraweek cycles in the power. 

 
We find that there are 12 substations in the test set with a BC exceeding 0.9, 44 
substations with a BC > 0.8, 87 substations with a BC > 0.7 and 156 substations with 
a BC > 0.6. This implies that there are evident cycles in the power in about 10-15% of 
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the substations, which needs to be further analysed with cluster analysis. The 
remaining 85-90% of substations can be modelled with one regression model. Power 
profiles of six different substations with varying BC are displayed in Figure 3.9. 
 

 

Figure 3.9. Six power profiles of substations with different BC. The qualitative trend is 
that substations with a high BC have evident cycles in the power, while substations 
with a low BC have not. The number indicated in the parenthesis of the label in each 
paned denotes the substation number in Figure 3.8. 

We have not found a throughout analysis and discussion of the bimodality coefficient 
in the peer-reviewed literature. Negative excess kurtosis is commonly used as an 
indicator of bimodal distributions, but it has some limitations. For example, a skewed 
bimodal distribution can have high excess kurtosis, which intuitively motivates the 
definition of the bimodality coefficient in terms of the kurtosis and the skewness. The 
story is that Warren Sarle suggested the formula and that it originates from ideas 
taught in a statistics class at the University of Florida, but there is no publication 
record to confirm that information that we are aware of. The BC is 1 for a Bernoulli 
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distribution (maximum bimodality), 1/3 for a normal distribution, and near zero for 
distributions with heavy tails. The BC is related to a formula suggested in 1894 by 
Karl Pearson, who was the first to propose a procedure for testing whether a 
distribution can be decomposed into two normal distributions. This anecdotal 
discussion is included here as a historical reference. The motivation for proposing the 
bimodality coefficient for this particular application comes from our empirical 
experiments, which demonstrate that substations with a high BC of the standardized 
power have evident cycles in the power, while the large majority of substations with 
low BC do not. Empirically we find that cycles are barely visible at a BC of about 
0.6, sometimes visible at a BC of about 0.65 and can exceed 0.9 for substations with 
major cycles like those illustrated in Figure 3.3 and Figure 3.5. Next we describe how 
cluster analysis can be used to identify the intraday and intraweek cycles for 
substations with a high BC, and how to calculate the weekly schedule describing the 
cycles in the power. 

3.1.4  Cluster analysis  
Cluster analysis is a natural approach to analyse eventual time-dependent cycles in 
the power. Former work has mainly focused on the daily average power (Seem 2005; 
Seem 2007; Li et al., 2010), which means that intraday cycles are averaged out and 
that only intraweek cycles remain. In that context methods for identification of 
weekdays with different thermal load have been developed. These methods are based 
on cluster analysis of average and peak daily energy use (Seem 2005; Seem 2007) 
and cluster analysis of average and peak daily energy use combined with auto-
regression coefficients (Li et al., 2010). Initial developments in the direction of 
modelling also the intraday cycles can be found in Jota et al. (2011), Kiluk (2012) and 
Sandin et al. (2012). 

Empirically we find that most substations with evident intraday and intraweek 
cycles can be classified with three clusters, corresponding to high power, low power 
and mixed power. The latter category represents weekdays and time of day when the 
power can be either high or low, or something in-between high and low, which 
sometimes is the case near transitions between high and low power levels. Data 
belonging to the mixed class is more common for substations with less evident cycles 
and low BC statistics, while substations with high BC and evident cycles in the power 
typically have relatively few occurrences of the mixed category. A cluster analysis 
approach can be used to test whether dividing the data in three categories (high, 
mixed and low power); two categories (high and low power); or one category is most 
appropriate. This approach works well for the majority of the 996 substations that are 
included in the test set used in this study, but there are exceptions to this pattern. For 
example, one substation that heats a public building with an outdoor swimming pool 
needs exceptionally high thermal power in the summer when the pool is heated, while 
the power profile otherwise resembles that of an ordinary building.  
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A straightforward method to assign categories to the different levels of thermal load 
represented in the cycles of standardized power is to use the well-known k-means 
algorithm. In general this algorithm operates in the following way. Let  be a 
set of observations (the average standardized power versus the  hours 
of one week). Given  initial centre points of the potential clusters the k-means 
algorithm partitions the data into  clusters by minimizing the sum of squared 
distances to the cluster center points. Formally, the problem is to minimize 

 , (9) 

where  are clusters with centers 

 . (10) 

The k-means algorithm operates iteratively by alternating between assigning data 
points to clusters based on their distances to cluster centres, and updating the centres 
based on the cluster assignments. For further details, see Section 11.4.2 and 
Algorithm 11.1 in Murphy (2012), and the implementation in the Appendix of this 
report named power_schedule . The k-means algorithm is sensitive to the initially 
selected cluster centres. One general approach to define the initial centres is to select 
k data points at random from the data set, and to select the subsequent centres from 
the remaining points with a probability that is proportional to the squared distance to 
the closest cluster centre point. This approach is known as k-means++, see Section 
11.4.2.7 in Murphy (2012) for further information. 

Here the problem to select initial centre points is simple because the data is 
univariate and we are explicitly searching for clusters of high- and low standardized 
power. Therefore, we select the initial cluster centres as the 10th and 90th percentiles of 
the standardized power. If the result of the k-means algorithm is that all data points 
belong to one cluster the algorithm exits and it is concluded that there are no cycles in 
the power, which implies that no weekly schedule is generated and that only one 
regression model is fitted to the power profile. If two clusters are identified, a third 
centre point is defined as the mean of the corresponding two cluster centre points and 
the cluster analysis is repeated with the resulting three initial centre points. The 
purpose of this second cluster-analysis step is to determine whether there are data 
points in-between the high- and low power clusters that should be categorized as 
intermediate values (the “mixed” class introduced above). Optionally, adjacent hours 
during a week that correspond to a transition from high to low power, or vice versa, 
can be re-classified as mixed power to avoid misclassification, for example because 
of jitter in the time stamps of hourly metering data. This third re-classification step is 
used when calculating the weekly schedule illustrated in Figure 3.4. The cluster 
analysis procedure provides a category label (high-, mixed-, or low power) for each 
of the  hours of the week. These categories can be displayed in the form of a 
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weekly schedule with three possible categories for each weekday and time of day, see 
Figures 3.10 – 3.11. 
 

 

Figure 3.10. Weekly schedules of three substations with high BC (substations #1-4 in 
Figure 3.8). These schedules were automatically generated using the function 
power_schedule that is included in the Appendix. The corresponding power profiles 
are displayed in Figure 3.11. 
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Figure 3.11. Power profiles of four substations with high BC (substations #1-4 in 
Figure 3.8). Symbols indicate the clusters defined by the weekly schedules illustrated 
in Figure 3.10 and denote high power (triangles, pointing upwards), low power 
(triangles, pointing downwards) and mixed power (diamonds). 

The separation of different power clusters can be further improved by considering 
additional features and using linear discriminant analysis to transform the features 
into a new basis where eventual clusters are maximally separated, see Li et al. (2010) 
for an example based on daily average power and canonical discriminant analysis. 
However, the aim here is to detect major cycles in the power, which motivates 
automated calculation of a weekly schedule and multiple regression models of 
different branches in the power profile. Therefore, detection of minor cycles and level 
differences in the standardized power is not desirable here, and a simple approach 
based on the standardized power and k-means analysis is used. 

There will be exceptions to a weekly schedule of this type, in particular at public 
holidays and in the event that the thermal load pattern changes. This will result in a 
higher variance of the regression model residuals, and outliers that may be 
automatically identified as anomalies if the change is sufficiently large. Therefore, 
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data at public holidays needs to be handled separately. Li et al. (2010) handles all 
public holidays like Sundays. Seem (2005; 2007) categorizes holidays in the same 
way as other days using the average and peak daily power, which automatically leads 
to a proper categorization of holidays. The weekly schedule is a trade-off between 
well-defined system behaviour and flexibility, which enables an operator to interpret 
the result and re-define or re-calculate schedules when needed. 

Next we describe how a regression model can be fitted to the power profile, once 
the eventual cycles in the power have been identified and quantified in terms of a 
weekly schedule as described above. In this report we use piecewise linear regression 
to model the relationship between the power and the outdoor temperature, but also 
other relationships between quantities. Therefore, the discussion of linear regression 
is factored out to a separate section of this chapter. Note that power data that belongs 
to the mixed class is not modelled explicitly because it should comply either with the 
low-power model, or the high-power model.   

3.2 Piecewise l inear regression 
Linear regression is a probabilistic approach to modelling the relationship between a 
dependent variable, , and an explanatory variable (or vector), , which has many 
practical uses. It is extensively used in practical applications because models that 
depend linearly on the parameters are easy to fit and the properties of the resulting 
estimators are easier to determine compared to models that are non-linear in the 
parameters. Multivariate or multiple linear regressions are used when the explanatory 
variable is vector valued. Linear regression is a standard tool in statistics and machine 
learning, which is used both for modelling relationships between variables and for 
classification. See Murphy (2012), Chapter 7 for a formal introduction to linear 
regression. Here the goal is to predict the expectation value of the dependent variable 
(for example the power) given an explanatory variable (for example the outdoor 
temperature) using a piecewise linear regression model, which is motivated by the 
discussion in the beginning of this chapter concerning the relationship between the 
power used for space heating and the outdoor temperature. 

3.2.1  Breakpoints 
Piecewise linear regression can be used to fit multiple linear models to data for 
different ranges of the independent variable, ; see Figure 3.1 for an example. The 
values of the independent variable where the slope of the linear function changes are 
called breakpoints. The optimal positions of breakpoints are problem-specific and 
may or may not be known in advance. If the number and positions of breakpoints are 
unknown they can be estimated with a data-driven optimization process or heuristics. 
The piecewise regression function can be made continuous at the breakpoints, which 
is the natural choice here because we expect that the average power should vary 
continuously with the outdoor temperature. In order to illustrate the approach we 
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consider an example with only one breakpoint located at . A piecewise linear 
model can then be written on the form 

   for  , (11) 

   for  . (12) 

Continuity at the breakpoint, , requires that 

  (13) 

Therefore, the continuous piecewise linear model can be written on the form 

   for  , (14) 

   for  . (15) 

This approach can be generalized to an arbitrary number of breakpoints. If the 
positions of the breakpoints are known the resulting system of equations can be 
solved directly in a least-squares sense, otherwise an optimization procedure / non-
linear least squares must be used, which is called adaptive linear regression. There are 
several methods for adaptive linear regression, which are based on different 
assumptions about the optimal way to select the number and positions of breakpoints. 
We list some examples of software packages that can be used for adaptive and non-
adaptive linear regression in the Appendix. Optimization of breakpoints is typically 
done in two steps, first by adding breakpoints to reduce the variance, then by pruning 
the breakpoints with a penalty function so that a reasonable trade-off between 
accurate fit and model complexity is achieved. The purpose of that procedure is to 
avoid over-/under-fitting, but it is tricky to implement in a reliable way for automated 
generation of models. Our experiments suggest that tuning of the adaptation 
parameters and assumptions are needed in order to avoid over fitting with adaptive 
methods. This is not problematic when using adaptive regression in a manual fashion, 
but it is challenging in an automated setup where regression models are calculated 
automatically for thousands of substations without human assistance. Therefore, we 
do not use optimization procedures, but a fixed number of pre-defined breakpoints. 

3.2.2  Robust regression 
More important than adaptation of breakpoints is that the linear regression method is 
robust to outliers, otherwise faults in the historical record can bias or invalidate the 
regression models that are used as reference models for fault detection. Robust linear 
regression is supported by several software packages that are listed in the Appendix. 
See Murphy (2012), Section 7.4-7.5 and Table 8.1 for an introduction to robust 
regression. The basic idea is to assume a heavy-tailed probability density function for 
the data when fitting the regression model, which implies that the effect of a small 
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subset of outliers on the expectation value is negligible. Another principle used to 
reduce the impact of outliers, in particular when fitting polynomials of higher order 
(like cubic splines) with linear regression is to introduce a penalty function that 
favours polynomials with small coefficients. Note that linear regression is not limited 
to linear functions; it is possible to fit polynomials of arbitrary order and other non-
linear functions of the data using linear regression, provided that the unknown 
coefficients are linear functions.  

3.2.3  Test results 
We use the Splinefit tool to automatically fit piecewise linear regression models to 
the 996 substations in the test data set; see the Appendix for further information. The 
particular regression algorithm used is not critical, but it should be a robust regression 
algorithm. We identify a subset of 853 substations with a BC below 0.6, indicating 
that there are no significant intraday or intraweek cycles in the power, and we 
automatically fit piecewise linear regression models to the annual power profiles of 
these substations. A subset of substations with low BC is used here to simplify and 
speed up the analysis by avoiding the cluster analysis step. In the following we 
present a residual analysis of the piecewise linear models for different assumptions 
about the breakpoints. We quantify the residuals in terms of the root-mean square 
(RMS) error, , of the residuals relative to the expectation value, , given by 
the regression model, 

 . (16) 

The number and position of breakpoints can be defined in different ways. A basic 
assumption is that there is only one breakpoint located at the onset of space heating, 
which typically is 2-3°C below room temperature. For example, with a single break 
point at 16°C the RMS error for the population of 853 substations is 4.3. The high 
RMS error is a consequence of the relatively high standard deviation at high outdoor 
temperature compared to the expectation value, ; see Figure 3.1 for and 
example. In addition, we use a random 50% subset of the annual data for each 
substation to fit the regression model, and the remaining 50% of the data to calculate 
the regression model residuals. Therefore, the RMS error is an estimate of the 
generalization error of the regression model. 

Additional breakpoints can be defined manually, or by dividing the outdoor 
temperature interval into subintervals of equal length, or into subintervals defined by 
an approximate equal number of observations within each interval. The first two 
approaches require application-dependent knowledge about the climate and substation 
data, so that overfitting resulting from too few data points in some interval can be 
avoided, in particular at low outdoor temperatures where the data can be sparse. The 
latter approach is straightforward to automate because it does not depend on the range 
or distribution of the dependent variable, and it ensures that the numbers of data 
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points within the intervals are comparable. Therefore, we use the second, frequency-
based positioning approach in this work. The breakpoints can either be defined 
individually for each substation, or they can be determined jointly for the whole 
population of substations so that all regression models share the same set of 
breakpoints. The former approach result in lower RMS error and is preferred, unless 
there is a need to have identical breakpoints for all substations, for example to 
simplify visual comparison of regression models. 

We calculate the annual RMS error for the 853 substations for a varying number 
of breakpoints, which are defined independently for each substation so that the 
number of data points that falls in-between each adjacent pair of break points are 
equal on an annual basis (approximately equal when the number of data points 
divided by the number of intervals is not an integer). We use a random 50% subset of 
the annual data for each of the 853 substations to fit the regression models, and the 
remaining 50% of the data to calculate the regression model residuals. As we describe 
above the purpose of this procedure is to estimate the generalization error of the 
piecewise linear regression model. The result of this calculation is presented in Table 
3.1.  

Table 3.1. Generalization RMS error versus the number of breakpoints and piecewise 
linear segments used to model the relationship between the outdoor temperature and 
the thermal power for 853 substations with . 

Number of breakpoints Number of segments RMS error 

0 1 172 

1 2 125 

2 3 56 

3 4 8.0 

4 5 3.6 

5 6 2.6 

6 7 2.5 

7 8 2.4 

8 9 2.5 

9 10 2.5 

 
According to the table above the RMS error with four frequency-based breakpoints is 
3.6, which is slightly lower that the RMS error obtained with one breakpoint at 16°C. 
By introducing up to seven breakpoints and eight segments the RMS error can be 
further reduced, which indicates that a maximum of eight segments should be used. 
There is no benefit of adding more breakpoints in terms of variance because a higher 
number of breakpoints result in a slightly higher RMS error, which may indicate 
over-fitting. Six regression models that are fitted to the power profile of an apartment 
building with a BC of 0.6 are illustrated in Figure 3.12, for a varying number of 
breakpoints. 
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Figure 3.12. Six piecewise linear models that are fitted to the power profile of an 
apartment building. The BC for this building is 0.6 and there are no significant time-
varying cycles in the power. The six models are fitted with a varying number of 
breakpoints and segments, as indicated by the labels within the panels. 
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For substations with cycles in the power the weekly schedule resulting from the 
cluster analysis is used to divide the data into low- and high-power clusters, and a 
piecewise regression model is fitted to each cluster; see Figure 3.13 for an example. 
This substation has evident intraday and intraweek cycles in the power and a BC of 
0.97; see Figure 3.5. 

 

Figure 3.13. Two piecewise linear models that are fitted to the power profile of an 
office building in Stockholm with two branches in the power profile. This building has 
a BC of 0.97. The two regression models are fitted automatically using a weekly 
schedule to group the data into high- and low-power categories. 

Some misclassified data points are visible in Figure 3.13. Some of these data appear 
at public holidays. For example, the small group of misclassified data points at about 
-2°C appears at the end of December and beginning of January. 

3.2.4   Residual analysis 
The residuals of a fitted model are the differences between the observed values and 
the prediction calculated using the regression model, . If the model 
fits the data well the residuals should be randomly distributed. If the residuals have an 
evident non-random structure the model fits the data poorly. The purpose of the 
discussion above about intraday and intraweek cycles in the power, and how to 
analyse and describe such cycles with cluster analysis and a weekly schedule, is to 
remove evident cycles in the residuals of the regression model of some substations. 
By fitting separate regression models to the high- and low power categories the 
variance of the residuals are reduced significantly. For substations with a low BC and 
only one cluster a single regression model is used. We select four random substations 
from the population of 996 substations and calculate normal probability plots for 
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these four substations, see Figure 3.14. A normal probability plot illustrates the 
probability of deviations from the expectation value, both for the data sample and an 
idealized normal distribution. Another common plot that is used to illustrate the 
distribution function of variables is the QQ-plot (Murphy, 2012, Section 8.4.5), which 
displays the quantiles of the data versus the quantiles of a reference distribution.  

 

 

Figure 3.14. Normal probability plots of the regression-model residuals for four 
different substations that are selected randomly from the population of 996 
substations. The dash-dotted line represents a normal distribution. In all four cases 
the upper tail is short, while the lower tail is either short or too heavy. 

The probability distribution functions of the model residuals vary between 
substations, and they are often skew and rarely normally distributed. The deviation 
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from normality is not surprising because there are several hidden variables and states 
that affect the power used by a district heating substation that are not accounted for 
by the piecewise linear relationship between the outdoor temperature and power 
(formally, the central-limit theorem is not applicable here because of the character of 
the variables involved and the limited size of the one-hour samples). For example, the 
thermal dynamics of the building, effects of sun and wind, details in the control of the 
ventilation system and human behaviour can affect the thermal power. The linear 
regression approach proposed here is still useful because a large sample is used to 
generate the model, and a simple model and fitting procedure is motivated by the 
need to automatically calculate thousands of regression models for substations that 
have complex and varying characteristics. It is possible that a more accurate model 
can be defined by integrating a dynamic model of the building with a probabilistic 
model that describes the cycles, but we have not investigated that possibility. Our 
empirical results show that the piecewise linear model is sufficiently accurate to be 
useful for the identification of outstanding anomalies and faults, and it gives sensible 
results when applied to a sizable population of substations in an automated fashion. 

3.2.5  Imputation of missing data 
Imputation is the problem of estimating missing data. Faults in the communication 
with energy meters, or energy meters that are rebooted or run out of power are 
common causes of missing energy metering data. Linear interpolation is commonly 
used today for the estimation of missing energy data, which is a crude estimate when 
the outdoor temperature varies or there are time-dependent cycles in the power. A 
regression model of the type introduced above provides a more accurate method for 
imputation of missing energy data, which accounts for both the temperature-
dependence and eventual time-dependent cycles in the power.  

3.2.6  Implementation 
Several processing steps are required to calculate regression models of the power 
profile. A block diagram of the key steps is illustrated in Figure 3.15. The first step is 
to extract features from the energy meter data. The BC is calculated and a decision is 
made whether a weekly schedule should be created. The decision to proceed with the 
cluster analysis is based on the value of the BC according to the discussion above. 
Alternatively, the cluster analysis is performed for all substations and the result is 
used to determine whether a schedule needs to be created. The latter approach is more 
reliable because the BC can be low when there are cycles in the power (we have not 
observed that but in principle it may happen), but also requires more computational 
resources. If clusters are detected the data is grouped into high-, mixed- and low-
power categories, and regression models are fitted to the high- and low-power 
categories. Only one regression model is fitted if there are no evident cycles / clusters 
in the power profile.  
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Figure 3.15. A block diagram illustrating the computational steps needed to 
determine the regression model(s) of a substation power profile. 

 
Regression models can be fitted to data received during a specific interval of time, 
which we refer to as a reference period. By comparing regression models that have 
been fitted at different reference periods it is possible to detect and illustrate changes 
in the power. This is useful for fault diagnosis and for the communication with 
customers when a fault is detected and bills have to be adjusted (Reference group). 
By plotting the power data and regression models before and after the introduction of 
the fault a major change becomes evident. 

The bimodality coefficient and weekly schedule (when applicable) can be 
automatically calculated for the whole population of substations for a reference 
period, preferably at low outdoor temperature. An interface that enables management 
of expected deviations from the schedules is needed, in particular for the management 
of holidays. Schedules should be calculated for a reference period, and it should be 
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possible to create different schedules for different periods of time because the cycles 
can change over time. 

If the historical data that is used to calculate the bimodality coefficient and weekly 
schedule is faulty the result can be incorrect. Therefore, it is important that this tool is 
combined with tools for anomaly detection and ranking, so that incorrect schedules 
can be detected and recalculated using data from another reference period. Methods 
that can be used to detect such anomalies are discussed in the next two chapters of 
this report. This approach can also be used to model the flow and the supply 
temperature, but no cluster analysis is needed in the case of the supply temperature. 
We discuss these points below.  

3.3 Flow 
The primary flow can be modelled much like the power because the power is 
controlled with the flow valve(s). This means that the block diagram that is illustrated 
in Figure 3.15 can be applied to calculate regression models of the flow also. The 
methods for anomaly detection that we discuss in this report do not require that a 
regression model of the flow is used, but such models can be helpful for diagnosis 
purposes when an anomaly is detected and a manual investigation of the substation 
data is required. An example of the relationship between the outdoor temperature and 
flow is illustrated in Figure 3.16, which includes also a piecewise linear model that is 
fitted to the flow data. 

 

Figure 3.16. The primary flow versus the outdoor temperature for an apartment 
building. The power profile of this substation is illustrated in Figure 3.1. The solid line 
is a piecewise linear regression model that I fitted to one year of data, but only 10% of 
the data is displayed (circles).  

A regression model of this type can be used for diagnosis purposes to detect outliers 
in the flow with the method that is discussed in Chapter 4, signal drift with the 
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method that is described in Chapter 5, and precision problems or abnormal noise 
levels with the method that is described in Chapter 6. 

A well-known problem is that the primary supply can be manually short-circuited 
during the summer and that an open valve is forgotten, which results in abnormal 
flow and inefficient operation of the substation. This problem can be detected with 
regression modelling and outlier detection. 

3.4 Primary supply temperature 
In Chapter 2 we discuss two basic methods for fault detection using the primary 
supply temperature. Limit checking with a constant threshold that is set slightly above 
the maximum expected temperature is useful for detection of large deviations, for 
example as a result of faults in the cabling or electronics. The second basic test is that 
the primary return temperature should be lower than the primary supply temperature. 

It is possible to improve on these basic limit-checking approaches by modelling 
the relationship between the outdoor temperature and the primary supply temperature 
with a piecewise linear regression model; see Figure 3.17 for an example. 
 

 

Figure 3.17. Primary supply temperature versus the outdoor temperature. This is a 
typical example that illustrates how the supply temperature of a substation can be 
modeled in terms of the outdoor temperature. The regression model (solid line) has 
four breakpoints and it is fitted to one year of hourly data. For clarity, only 10% of the 
data (circles) are illustrated in the figure. 

The primary supply temperature varies with the outdoor temperature because the 
temperature that is supplied to the network from the heat production plant is 
controlled with weather forecasts. Using a regression model of the supply temperature 
it is possible to apply the outlier detection and ranking method that is described in 
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Chapter 4, to detect signal drift with the method that is described in Chapter 5, and 
precision problems or abnormal noise levels with the method that is described in 
Chapter 6. Therefore, the implementation and algorithms needed for fault detection 
with power data can be reused with minimal changes for fault detection with the 
supply temperature. 

3.4.1  Comparing neighbours in the network  
An alternative approach is to make use of the redundancy in the supply temperatures 
measured by different substations, which are connected to the same network at 
locations where the supply temperatures are similar (Sandin et al., 2012). For 
example, substations that are connected at nearby positions along the same supply 
pipe may have similar supply temperatures, provided that the flow is reasonably high 
so that cooling in the connection pipe is low, see Figure 3.18.  
 

 

Figure 3.18. The primary supply temperature, Tps,i(t), of one substation, i, can be 
compared with the supply temperature, Tps,j(t), measured at another substation, j, 
located in the same network at a position where the supply temperature is similar. 

The supply temperature varies with geographical location because there are thermal 
losses within the distribution network, and this effect is more prominent at long 
distances and low flow. Therefore, it is important to compare substations that have 
similar supply temperatures. If the network structure and coordinates of the 
substations are known that information can be used to identify the substations that 
should be compared. Another approach, which is straightforward to automate and 
does not require knowledge about the network structure and geographical 
coordinates, is to analyse the correlation between supply temperature time series, 
Tps,i(t) and Tps,j(t). The correlation coefficient is defined in terms of the covariance 
matrix of the two time series. In general, the correlation coefficient  of two 

variables  and  is defined as 

 , (17) 
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where  denotes the average and  is the standard deviation. 
In order to identify substations with similar supply temperatures using correlation 

analysis it is necessary to de-trend the time series data, otherwise it is difficult to 
discriminate between the substation pairs because the covariance is dominated by the 
seasonal trend in the supply temperature. Common de-trending approaches include 
(Box et al., 2008): differencing, curve fitting, filtering, and piecewise approximation 
with polynomials. There are two options that are straightforward to implement here; 
either the expectation value given by a piecewise regression model is used to subtract 
the seasonal trend, or a differencing / high-pass filtering approach is used. A time 
series that has a non-stationary average (seasonal trend) can be made stationary by 
taking the first-order difference of the samples, , at position  and ; 

. First-order differencing is used here because it is straightforward to 
implement and it does not require a long-term record of data, which would be the case 
if a regression model were used. This approach is implemented in the function named 
find_correlated  in the Appendix. 

3.4.2  Test results 
We calculate the correlation coefficient between de-trended primary supply 
temperatures of each pair of substations in the test set, , where  

denotes the first-order finite differences of the supply temperature time series. 
Figure 3.19 illustrates the correlation coefficient between the de-trended supply 
temperature to one apartment building and the de-trended supply temperatures to the 
other 995 substations in the test set. A subset of the substations has highly correlated 
supply temperatures because the correlation coefficients are close to one. 

For each substation in the population we calculate the correlation coefficients with 
respect to all other substations, and the maximum correlation coefficient is identified 
in each case. In this way the pairs of substations that have maximally correlated (de-
trended) supply temperatures are identified and can be used for the subsequent 
comparison of supply temperatures, forming the basis for fault detection. We 
calculate the maximal correlation coefficients and the corresponding geographical 
distances between substations for each substation in the test set using one year of 
supply temperature data, see Figure 3.20. 
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Figure 3.19.The correlation coefficients between primary supply temperatures of one 
apartment building compared to all other substations in the test set. The supply 
temperature to this building is illustrated in Figure 3.17. 

 

 

Figure 3.20. Maximum correlation coefficients for the whole population of substations 
in the test set versus the corresponding geographical distances. 

This result shows that for most substations in the test set there are other substations 
that have similar supply temperatures in terms of high correlation coefficients. A few 
substations have low maximum correlation coefficients in comparison to the 
remaining population, which indicates that these substations have abnormal supply 
temperatures. However, this analysis is limited to 996 substations, which is a fraction 
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of the substations in the whole network. Therefore, low correlation coefficients can 
result also from the limited data set. In a full-scale analysis, where all substations of 
the network are included, an exceptionally low correlation coefficient motivates 
further diagnosis.  

There is no evident relationship between the maximum correlation coefficients 
and the corresponding geographical distances between substations, which indicates 
that the geographical distance alone is insufficient for the identification of substations 
with similar supply temperatures. The identification of pairs of substations with 
similar supply temperatures using the correlation coefficient can possibly be useful 
also in networks where substations are allowed to contribute power to the network, 
for example in the form of excess heat from industrial processes. In that case an 
analysis based on network structure may be difficult, but the correlation analysis 
approach presented here remains simple and can still be automated. 

The difference of supply temperatures measured by two maximally correlated 
substations is defined as 

 , (18) 

where  is the time and  is a pair of substations with maximally correlated de-
trended supply temperatures. The supply temperature difference, , is expected to 

have a low variance when the flow is high in both substations, while low flows may 
be associated with higher variance because of cooling in the pipes. Therefore, we 
consider the relationship between the supply temperature difference and the 
geometric mean of the flow, which is the square root of the product of the two flows. 
A geometric mean is used because it normalizes the ranges of the variables being 
averaged, so that no variable dominates the weighting and a high flow in one 
substation can compensate for vanishing flow in the other substation. Figure 3.21 
illustrates an example of the supply temperature difference for the substation that is 
illustrated in Figure 3.17. The maximum correlation coefficient is 0.84 for this 
substation. A piecewise linear regression model that can be used for anomaly 
detection (Chapters 4-6) is fitted to the data. 
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Figure 3.21. Difference of primary supply temperatures measured by two different 
substations with maximally correlated supply temperatures versus the geometric 
mean of the flow. A piecewise linear regression model with eight segments is fitted to 
the data, which can be used for fault detection. 

This is a typical result, where the variance is high at low flow and vice versa, which is 
a consequence of cooling in the pipes. Note that there can be an offset in the supply 
temperature difference because the temperature sensors of flow meters are often 
calibrated in pairs, so that the difference between primary supply and return 
temperatures is measured accurately, but not necessarily the absolute temperatures. 
Therefore, the offset from  in the regression model is arbitrary and is not 

considered as an indicator of anomalies. The magnitude of the temperature difference 
illustrated in Figure 3.21 is smaller than that illustrated in Figure 3.17, which means 
that this is a more accurate model of the supply temperature than a model that is fitted 
directly to , in particular at low outdoor temperatures when the flow is 

high. 

3.5 Return temperature  
The primary return temperature is more difficult to model compared to the other 
variables (power, flow and supply temperature) because several hidden processes 
affect it, in particular the use of heated tap water. When working with hourly data the 
return (and supply) temperature is sampled once per hour, which means that a short-
term fluctuation in the return temperature at the time when the sample is recorded will 
result in an abnormal deviation of the hourly value. Therefore, the variance in the 
return temperature is significantly higher than the variance of the supply temperature; 
see Figure 3.22 for an example, and Figure 3.17 for the corresponding primary supply 
temperature. The relationship between the average return temperature and the outdoor 
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temperature is complex and varies significantly between substations. These 
circumstances make modelling and anomaly detection beyond the level of basic limit 
checking difficult. 

 

Figure 3.22. The primary return temperature versus the outdoor temperature. 

We have not identified an accurate method for anomaly detection of the primary 
return temperature. Unlike the case with the primary supply temperature there is no 
explicit redundancy in the data that can be used to validate the return temperature. 
A relatively simple modification that would reduce the variance of the return 
temperature is to calculate the hourly value with a digital low-pass filter within the 
energy meter, instead of sampling a momentaneous value. See Bergquist et al. (2004) 
for a discussion about low-pass filtering of variables in district heating substations. 
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4 OUTLIER DETECTION 
An outlier is an observation that appears to deviate markedly from other members of 
the sample in which it occurs. Typically this means that the numerical value of an 
outlier observation is distant from the rest of the data, see Figure 2.4 for an example. 
Data sets may also contain multiple outliers. Outliers can occur by chance when 
sampling a random variable, but they can also indicate novel observations in an 
experiment that does not fit the model or expectation (cf. black swan metaphor) and 
they can result from measurement errors. Here we are mainly interested in the latter 
aspect, where outliers may indicate that measurements are faulty. 

A common cause of outliers is that values are sampled from a mixture of multiple 
distributions, which in practice may not be fully understood and described. Such 
distributions can be modelled with mixture models, or the sub-population identities of 
the observations can be identified with clustering or unsupervised learning methods. 
Here we use the latter approach. The bimodality coefficient and weekly schedule of 
load cycles that are introduced above are used to identify whether values correspond 
to high- or low thermal load distributions before we test for eventual outliers in the 
data. This approach is transparent and reduces the variance of the model residuals 
significantly for substations with cycles in the load. 

Outliers play an important role also when calculating statistical models of data. In 
that context robust estimators that are insensitive to outliers are used. An outlier score 
can be used to quantify by how much an outlier deviates from the expectation. The 
Box plot (Tukey, 1977) is a commonly used graphical tool for the identification and 
illustration of outliers, see Seem 2007 for an example. In this chapter we describe a 
method that can be used for automated detection and scoring of outliers, which can be 
used to identify outstanding outliers in energy metering data of a large population of 
substations. 

4.1 GESD test for outliers 
Several tests for outliers exist and there is no generic best choice. However, the 
generalized extreme studentized deviate (GESD) test (Rosner, 1983) is recommended 
when the number of outliers is unknown because it works well under a variety of 
conditions (Iglewicz & Hoaglin, 1993). In particular, the GESD method has been 
studied and proposed for the detection of abnormal energy use in buildings (Seem, 
2007; Li et al., 2010). Therefore, we introduce this algorithm here and provide an 
implementation in the Appendix. Further information and examples are available 
online (NIST, 2012, Section 1.3.5.17) and a detailed step-by-step description of the 
algorithm can be found in Seem, 2007. 

Given an upper bound on the number of potential outliers, , the GESD method is 
defined for a hypothesis test of the following type.  
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Hypothesis Description 

  There are no outliers in the data set. 

  There are  outliers in the data set. 

  
The test statistic is iteratively defined in terms of the standardized maximum absolute 
deviation of the sample 

 ,    ,   , (19) 

where  is the expectation value or mean of the sample and  is the standard 
deviation. In this work we calculate the expectation value using piecewise regression 
models that are fitted to data from a historical reference period (one exception occurs 
in Chapter 2, where we use a simplified approach based on a weekly moving average 
for the estimation of the mean power). When the first statistic, , has been calculated 
from the  observations in the sample  the value  that maximizes the 

absolute deviation is removed from the sample. This step is defined by the set 
operation , which implies that the maximum deviation  is removed 

from the set . The subsequent  are calculated from the remaining values in . This 
procedure is repeated until  extreme values have been removed from the sample  
and the resulting standardized statistics , , , …,  are known. 
For each statistic, , the following test quantity is calculated (Rosner, 1983) 

 , (20) 

where  is the inverse of the cumulative Student’s t-distribution with  degrees of 

freedom and a tail area probability  that is defined by 

 . (21) 

Here  is the (idealized) significance level, for example  for a 95% 
confidence level. The cumulative Student’s t-distribution is a standard function that 
can be calculated with most statistical software packages. This function can also be 
expressed in a regularized incomplete beta function (Olver et al., 2010, Section 8.17). 
See the implementation of the GESD outlier test in the Appendix for further 
information. The number of outliers in the sample is given by the maximum  so that  

 . (22) 

Simulation studies indicate that this test is accurate for  and reasonably 
accurate for  (Rosner, 1983), which is easily achieved when dealing with 
hourly energy metering data. Formally, these results are valid only when the 
probability density function of the sample is approximately normal because the test 



 

 

 

67 

F A U L T D E TE C T I O N  W IT H  H O U R L Y 
D IS T R IC T  E N E R G Y D A TA  

statistic involves only the mean and standard deviation of the sample. Nevertheless, 
our empirical studies indicate that the GESD method is useful for the detection of 
outliers in energy metering data, which is in line with the conclusions by others 
(Seem 2007; Li et al., 2010). The GESD method is also straightforward to implement 
in automated fashion, which is an important aspect if the method is to be 
implemented and used by the industry.  

4.2 Ranking of outliers with Z scores 
Outliers can be scored depending on how much they deviate from the expected value. 
Scoring is a helpful tool for ranking of outliers, for example when a high number or 
high rate of outliers in the data prevents manual inspection of all potential outliers. In 
the context of hourly district energy data, ranking of outliers is necessary because 
deviations from ideal behaviour are expected for natural reasons (energy meters have 
limited precision, the one-hour sampling interval results in inconsistencies between 
the variables etc., see Chapter 1). Therefore, methods for ranking of anomalies are 
needed to enable fast detection of outstanding outliers and investigation of potential 
faults. Ranking methods are also useful for the detection of anomalies that are not 
related to faults in the substation instrumentation, but which may be of interest for the 
customers. For example, a problem with the ventilation that affects the load cycles 
can be detected and provided as an information service to the customer. 

A basic approach is to score the outliers with the number of standard deviations of 
the outlier value, a so-called standard score or Z score 

 . (23) 

Here  is the value of an observation that has been identified as an outlier with the 
GESD method and  is the Z score of the outlier. For example, a Z score of 10 
implies that the outlier deviates from the expectation value by ten standard deviations. 
In addition to the magnitude of the Z score, the sign of a score is informative because 
it indicates whether the value of an outlier is higher or lower than the expected value. 

A Z score that is defined in this way is not robust. If there are outliers in the 
sample the standard deviation can be overestimated, which results in low Z scores and 
an underestimate of the potential importance of the outliers. Also, the mean is not a 
robust statistic. Therefore, it is common practise to use a modified Z score, which is 
less sensitive to outliers. One approach is to identify a clean subset of the data that is 
free of outliers and to calculate the scores of outliers relative to the clean subset 
(Simonoff, 1984). Given a subset  of outliers in , another subset of  that 
excludes the outliers can be defined 

 . (24) 
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A modified Z score can be defined in terms of the clean estimates of the expectation 
value and standard deviation 

 . (25) 

In practise we calculate the expectation value with a piecewise regression model, 
which is fitted to historical data with robust regression. The standard deviation is 
calculated after excluding the outliers from the sample, according to the formula 
given above. Since the number of outliers in a sample is usually unknown the upper 
bound, , in the GESD outlier identification step can be incremented iteratively until 
no more outliers are found. An interesting approach for the identification and ranking 
of potential outliers with linear models that does not require knowledge about the 
number of outliers is described by Hadi & Simonoff, 1993. 

Another modified Z score can be defined in terms of the median absolute 
deviation (Iglewicz & Hoaglin, 1993) 

 , (26) 

where  is the median of the sample. Median absolute deviation (MAD) scores with a 
magnitude above 3.5 are considered to be potential outliers. This is a robust score 
because the median, and median absolute deviation are robust statistics. In general, 
the MAD score is preferred when the distribution can be skew, which sometimes is 
the case here. However, the concepts of mean and standard deviation are more widely 
known and straightforward to integrate with standard piecewise regression models of 
the expectation value. Therefore, we use the first definition, , of the modified Z 
score in this work. This is also the score proposed by Seem, 2007. 

4.3 Interpretation of Z scores 
In order to understand qualitatively what a modified Z score of an outlier means in 
terms of probabilities it is instructive to consider the normal distribution. For a 
normally distributed random variable about 68% of values are within one standard 
deviation, , from the mean; about 95% are within two standard deviations; and about 
99.7% are within three standard deviations. This means that most of the observed 
values of a normal distribution are within three standard deviations, which is a rule-
of-thumb known as the 3-sigma rule. More precisely, the probability that a normally 
distributed random variable lies outside the range  is 

  , (27) 

where  is the error function (Olver et al., 2010). This relationship is illustrated in 
Figure 4.1. This relationship can be translated into an expected frequency or rate of 
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observations that are outside a certain number of standard deviations from the mean, 
see Table 4.1. 

 

Figure 4.1. Probability that an observed value from a normal distribution deviates 
more than some number of standard deviations from the mean. 

Table 4.1. Frequency of observations of a normally distributed variable that fall 
outside a certain number of standard deviations from the mean. 

Deviation Z score,  Average frequency 

  1 in 3 

  1 in 22 

  1 in 370 

  1 in 15 787 

  1 in 1 744 278 
  1 in  

 
In reality the hourly data that we are modelling here does not have residuals that are 
normally distributed. For example, the normal distribution overestimates the tail 
probabilities because physical limitations of the substation prevent arbitrarily high 
and low loads. There are also systematic errors, which are consequences of the 
simplicity of the model and the incomplete knowledge about the processes that affect 
the overall energy use. Skew distributions of the residuals are common, but some 
substations have nearly symmetric distributions. Anyway, the proposed scores are 
useful for the identification of outstanding outliers using a ranking procedure. This 
point is illustrated by the empirical test results that are presented below. An example 
of outliers identified in data from an apartment building is illustrated in Figure 4.2.  
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Figure 4.2. Outliers identified with the GESD method and Z score ranking in historical 
data from an apartment building. These abnormal values were not discovered during 
ordinary operation and their cause is unknown. The piecewise regression model (bold 
solid line) and maximum absolute deviation (MAD) with a 50% added tolerance (bold 
dashed line) is displayed in addition to the data (thin solid line). Data identified as 
potential outliers with the GESD method (crosses) and data that falls outside the 1.5 
MAD limit (circles) are highlighted. The numbers next to the highlighted outliers 
denote modified Z scores .  

4.4 Complementary ranking methods 
The modified Z score that is introduced above is a useful but not sufficient indicator 
of anomalies. In particular, if the data record of a substation includes faults from the 
beginning, or during the reference period used to calculate the regression model it is 
possible that the Z scores are low even though data is faulty. In such cases the faulty 
behaviour is the norm and it cannot be identified as abnormal. 

The absolute deviation, , is a useful complement to the Z score because 
it is an absolute quantity that is independent of the expected variance of the variable. 
A corresponding relative measure that does not give preference to high-load 
customers can be defined by normalizing the absolute deviation with the contracted 
power, or median power for each substation. Therefore, in addition to Z-score 
ranking, substations can be ranked according to the maximum absolute deviation 
(MAD). Given a model for calculation of energy cost this approach can also be 
extended to include the economic risk that is associated with absolute and relative 
deviations, but we have not considered that possibility in this work. In addition to the 
magnitude of a Z score, the duration and frequency of outliers (Pakanen et al., 1996, 
Section 3.7) or the sum of Z scores of outliers can be considered. In principle, a 
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learning-to-rank approach (Murphy, 2012, Section 9.7) could be developed so that the 
ranking mechanism is improved when faults are identified and confirmed. 

4.5 Test results  
We calculate the maximum modified Z scores for the population of 996 substations in 
the test set. The calculation is based on one year of data and we consider the power, 
the flow and the primary supply temperature separately in the three subsections 
below. We display the annual power profiles, flow profiles and supply temperature 
profiles for substations that have outliers with exceptionally high Z scores. Note that 
(given a regression model, which needs to be fitted to historical data), the outlier 
detection test and the calculation of a modified Z score can be performed online when 
an hourly value is received from an energy meter. Therefore, outliers with high Z 
scores can be detected immediately. 

4.5.1  Detection of abnormal power  
We calculate the maximum magnitude of modified Z scores of the power data for all 
996 substations in the data set, using regression models with eight piecewise linear 
segments that are automatically fitted to the data; see Figure 4.3. 

 

Figure 4.3. Maximum magnitude of modified Z scores for all substations in the test 
set. There are six substations that have at least one modified Z score above 100. 

The modified Z scores are calculated using a robust estimate of the standard 
deviation, which means that outliers are excluded and that the standard deviation is 
calculated from the remaining residuals of the regression model. Next we present the 
annual power profiles of the 18 substations that have the highest magnitudes of Z 
scores; see Figures 4.4 – 4.6. Faults have been detected and addressed in most of 
these cases. 
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Figure 4.4. Power profiles of the six substations with the highest Z scores. 
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Figure 4.5. Power profiles of the top 7–12 substations with high Z scores. 
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Figure 4.6. Power profiles of the top 13–18 substations with high Z scores. 
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4.5.2  Detection of abnormal f low 
Outliers in the flow data are detected much like outliers in the power data. Piecewise 
linear models with eight segments are automatically fitted to the flow profiles of the 
substations and the GESD outlier test is applied to the model residuals. The maximum 
magnitudes of the Z scores for the 996 substations in the population are displayed in 
Figure 4.7. Next we present the annual flow profiles of the 18 substations that have 
the highest magnitudes of Z scores; see Figures 4.8 – 4.10. 

 

Figure 4.7. Maximum magnitude of modified Z scores for the flow data of all 
substations in the test set. There are nine substations that have at least one modified 
Z score above 100. 
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Figure 4.8. Flow profiles of the six substations with the highest Z scores. 
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Figure 4.9. Flow profiles of the top 7–12 substations with high Z scores. 
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Figure 4.10. Flow profiles of the top 13–18 substations with high Z scores. 
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4.5.3  Detection of abnormal supply temperatures  
The primary supply temperature is analysed in a different way compared to the power 
and flow data. For each substation, correlation analysis is used to identify another 
substation with a maximally correlated de-trended supply temperature. It is not 
necessary to perform bimodality and cluster analysis in this case. Piecewise linear 
models are automatically fitted to the primary supply temperature difference, , of 

each pair of substations versus the geometric mean of the primary flow of the two 
substations. The GESD outlier test is applied to the regression model residuals, just 
like we did for the power and flow. The maximum magnitudes of the Z scores for the 
996 substations in the population are displayed in Figure 4.11. Next we present the 
annual supply temperature profiles of the 18 substations that have the highest 
magnitudes of Z scores; see Figures 4.12 – 4.14. 

 

Figure 4.11. Maximum magnitude of modified Z scores for the supply temperature of 
all substations in the test set. There are nine substations that have at least one 
modified Z score above 100. 
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Figure 4.12. Supply temperature profiles of the six substations with the highest Z 
scores. 
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Figure 4.13. Supply temperature profiles of the top 7–12 substations with high Z 
scores. 
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Figure 4.14. Supply temperature profiles of the top 13–18 substations with high Z 
scores. 
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4.5.4  Comparison of results  
We compare the top-lists of the maximum Z scores of different substations, which are 
illustrated in Figures 4.3, 4.7 and 4.11, in order to see whether faulty substations are 
identified, and whether some faulty substations appear on more than one top-list. The 
result is illustrated in Table 4.2. Seven out of the top-10 substations with abnormal 
outliers in the power data have been confirmed as faulty. The status of the remaining 
three is unknown. Included in the table is also the position of these ten substations in 
the top-lists of Z scores for outliers in the flow and primary-supply temperature data, 
respectively. Most of the ten substations are highly ranked on at least two top-lists, 
and one substation is among the top-11 on all three lists. These results indicate that 
substations that appear high up on the top-lists of outliers with high Z scores should 
be investigated because they are likely to be faulty. 

Table 4.2. Summary of the top-10 substations displayed in Figure 4.3, which have the 
highest maximum Z scores of outliers in the power data. The indices / positions of 
these ten substations in the top-list displayed in Figure 4.7 is included in the second 
column. The third column displays the indices of these ten substations in the top-list 
illustrated in Figure 4.11. The fourth column indicates whether a fault is identified. 

Top-list position 
  
Power, max |Z| 
(cf. Figure 4.3) 

 
 
Flow, max |Z| 
(cf. Figure 4.7) 

 
 
Tps, max |Z| 
(cf. Figure 4.11) 

 
 
 
Fault confirmed 

Top-1 Top-323 Top-329 Yes, energy meter replaced. 

Top-2 Top-2 Top-113 Yes, flow meter and temperature 
sensors replaced. 

Top-3 Top-1 Top-262 Yes, instrumentation rebuilt. 

Top-4 Top-3 Top-380 Yes, energy meter and flow meter 
replaced. 

Top-5 Top-191 Top-3 No, cause unknown. 

Top-6 Top-4 Top-638 Yes, instrumentation rebuilt. 

Top-7 Top-15 Top-451 Yes, energy meter, flow meter and 
temperature sensors replaced. 

Top-8 Top-272 Top-554 Yes, communication device 
replaced. 

Top-9 Top-11 Top-7 No, cause unknown. 

Top-10 Top-103 Top-67 No, cause unknown. 

4.6 Implementation 
Ranking of outliers can be implemented online in an energy-meter data management 
system, for example in the form of a sorted list of substations that is automatically 
updated. This list should have multiple columns with associated sorting functions, 
including a column for the modified Z score, the absolute deviation and the 
normalized absolute deviation. Plots similar to Figures 4.3 and 4.11 illustrate the 
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distribution of modified Z scores for the whole population of substations, which is 
helpful to identify exceptional outliers. Such plots can be created also for the absolute 
deviation and the normalized absolute deviation. 

A plot of time sequence data and outliers similar to that in Figure 4.2 is helpful for 
manual diagnosis. A plot of that type could for example be displayed when a 
substation is selected in the sorted list. The interface used to calculate and display 
regression models should be easily accessible so that regression models from 
different reference periods can be selected in order to see the effect on the outliers 
and Z scores. In addition to outliers in the power, outliers in the flow and  can be 

used for diagnosis purposes to analyse the cause of potential faults. 
A method for tagging of outliers is needed so that potentially faulty substations 

can be monitored. Tags can also be used to notify operators when a regression model 
is calculated for a time period that contains outliers or faulty data. 
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5 DRIFT DETECTION 
There are several components of an energy meter that can change behaviour over 
time, in particular the flow sensor, temperature sensors and electronics (amplifiers 
and voltage references). Therefore, faults can emerge gradually under long-term 
operation, leading to an increasing bias in the energy calculated by the energy meter. 
We refer to this behaviour as drift. This type of fault is difficult to detect with the 
basic limit checking and outlier analysis methods that are described above because 
there is no sudden, abnormal change of the variables. Because faults like these can be 
integrated over long periods of time the associated cost can be high. Therefore, a 
method for detection of drift is described here.  

5.1 Illustration with regression models  
The following example illustrates the problem that we are addressing. If there is a 
significant change in the mean power from one period of time to another the resulting 
offset can be illustrated by comparing two regression models, which are fitted 
separately to the data from each period of time, see Figure 5.1.  

 

Figure 5.1. Regression models fitted to data from a substation at two different time 
periods. The power is artificially biased by one standard deviation (8 kW) during one 
of the time periods (dashed line, crosses), which results in an offset compared to the 
unbiased case (solid line, circles). 

This method is useful for visual inspection, and as a pedagogic tool for the 
communication with customers when faults are detected and payments have to be 
adjusted. Note that regression models can change over time also in the absence of 
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faults, for example when buildings or building subsystems such as the ventilation are 
modified or upgraded. Next we introduce a method for automated detection of drift.  

5.2 Drift detection with cumulative sums 
From a mathematical point of view faults of this type are associated with a gradual 
change of the probability density function of the residuals of the process model, in 
particular the mean. A cumulative sum of residuals is a simple and effective statistic 
for early detection of small changes in the mean, which can be implemented in the 
form of cumulative sum control charts (Woodall & Adams, 1993; NIST, 2012), so-
called CUSUM charts. A cumulative sum, , can be defined iteratively in this way 

 , (28) 

where  are the values of a variable with expectation value , for example the 
thermal power, and  is an optional normalization parameter. When new values 
become available the difference between each value and the expectation value is 
summed in a cumulative manner. If the expectation value is correct the deviations 
from the expectation value will average. On the other hand, if the values are sampled 
from a distribution with a biased mean value the magnitude of the cumulative sum 
will progressively increase. 

If the change of the mean can be either positive or negative, which is the case 
considered here, the cumulative sum statistic is better divided in two parts 

 , (29) 

 . (30) 

Here  is a reference level for the magnitude of the shift in the mean that we wish to 
detect. If the probability density function of  is known the probability that the 
magnitude of a cumulative sum exceeds some value can be calculated and a test 
statistic can be defined (NIST, 2012, Section 6.3.2.3). In that case a decision limit, , 
is defined and whenever or  is equal to or greater than  the mean of the 
variable is considered to be shifted. A typical choice of parameters is to set , 
which means that the statistic is standardized, and  is set to a fraction of the standard 
deviation, . The test statistic can perform poorly when the size of the mean shift is 
significantly different from the assumed reference level. One approach to address that 
problem is to assign a probability density to the reference level (Ryu et al., 2010). 

When modelling a large population of district energy substations automatically 
with piecewise regression and hourly energy metering data the probability density 
functions of the residuals varies between substations, are not normally distributed, 
and are often skew. Therefore, it is difficult to define definite decision limits for 
change detection. However, the effect of a gradually increasing change of the mean 
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eventually becomes significant and can be detected. An example is illustrated in 
Figure 5.2. In this figure the power is artificially shifted with time in a linear fashion 
so that the shift is zero at the beginning of the displayed time period and one standard 
deviation,  kW, at the end of the one-year time period. Other parameters are 

 and . The power profile of this substation is illustrated in Figure 
5.1 and the non-shifted regression model that is displayed in that figure is used to 
calculate the expectation value of the power, . 

 

Figure 5.2. Cumulative sum statistic of the power, , versus time in the presence of a 
gradually increasing bias in the power. 

The statistic  starts to deviate in September, when the shift of the power is about 3 
kW. The two regression models that are illustrated in Figure 5.1 represent the models 
that result before and after the introduction of the one-  change of the power. The 
offset between the two regression models is about one standard deviation, which is a 
change of order 10%. In contrast, the CUSUM statistic  changes by more than one 
order of magnitude during the same time period. Next we describe how this statistic 
can be used to identify abnormal substations in a population. 

5.3 Ranking with cumulative sums 
The cumulative sum of different substations can be qualitatively compared and 
ranked if the normalization constant, , is chosen so that the magnitudes of the sums 
are comparable. This can be achieved if a standardized variable with normalization 
constant  is used. The reference level, , should not be set too high or too low 
because then changes can remain undetected, or the cumulative sums can be high by 
chance, respectively. Since we are interested predominantly in small and gradually 
increasing changes of the mean, the reference level should be comparable to the 
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standard deviation, . The cumulative sums and  can be calculated for each 
substation, starting at the end of some reference time period with associated known 
regression models of the data. The substations can be scored with a maximum 
cumulative sum statistic 

 , (31) 

so that substations with outstanding cumulative sums can be identified with a ranking 
procedure. Depending on the magnitude and historical trend of the cumulative sum 
statistic the top-ranked substations can be further investigated or tagged for continued 
monitoring. Figure 5.3 illustrates an example of how the CS statistic can be affected 
by an increasing bias of the power, which is simulated here with an additive linear 
function of time. The bias term increases from zero at the beginning of the time 
period to one (or one half) standard deviation at the end of the time period, as 
indicated by the legends in the figure.  

 

Figure 5.3. Cumulative sum statistic for the power of four different substations. In 
three cases the power is shifted by a bias that increases linearly with time from zero 
to one standard deviation, resulting in comparable  statistics at the end of the one-
year time period. In the fourth case the power drifts by one half standard deviation, 
resulting in a lower  value. 

The CUSUM parameters are  and . The drift of the power results 
in a long-term trend towards higher values of . In all four cases the  statistic 
increases with time after a threshold value of the drift is reached, and it exceeds 103 at 
the end of the one-year time period. 
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In general, a cumulative sum of a random variable can attain high values by chance. 
For example, the cumulative sum of a normally distributed random variable with unit 
variance will attain values higher than 103 with high probability after summing a few 
million samples. The purpose of the reference level, , in the CUSUM statistic is to 
supress such random fluctuations. If the reference level, , is low compared to the 
standard deviation the  statistic can become high also in the absence of a bias term 
because the residual of the regression model is a random variable. In order to 
illustrate the effect of a varying reference level we calculate the hourly  statistics 
over a period of one year for 853 substations in the dataset with BC below 0.6 (see 
Section 3.2 for further information about this selection criteria). Figure 5.4 displays 
the relative number of substations in the population that have at least one  value as 
high as that indicated by the horizontal axis. For example, with  all 
substations (100%) have at least one  value of 10, while only 80% of the 
substations have  values of 102, and less than 10% of the substations have  
values of 103. These numbers are lower for higher values of . For example, with 

 less than 20% of the substations have  values of order 102.  

 

Figure 5.4. The relative number of substations in a population versus the  values 
attained for five different choices of the reference level, . In this calculation no bias 
term is added to the power.  

In this calculation no bias term is added to the power and the data is pre-processed 
with the GESD method (see Chapter 4) in order to reduce the effect of faults that 
appear as outliers in the dataset. The high  values in Figure 5.4 result from the real-
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world residuals of the 853 regression models. This figure shows that  values of 102 
are common for reference levels below one standard deviation, while less than 10% 
of the substations have  values approaching 103 during the same time period. Few 
substations have  values exceeding 103, which means that the high values attained 
in the example illustrated in Figure 5.3 can be identified with a ranking procedure. 
We find that the high  values in Figure 5.4 typically are associated with short-term 
peaks that are characteristically different from the monotonous long-term trends that 
are illustrated in Figure 5.3. Therefore, visual inspection of the trends of the relatively 
few substations that have exceptionally high  values can be carried out to identify 
and tag potentially faulty substations with long-term drift for continued monitoring or 
field inspection. 

In principle this method can be generalized to other variables, provided that there is a 
(regression) model that can be used to calculate the expectation value of the variable. 
For example, the  statistic of the flow, , and supply temperature difference, , 

can be calculated using piecewise regression models (Chapter X). 

5.4 Implementation 
The maximum cumulative sum statistic  is straightforward to integrate with the 
online interface for ranking of outliers (Section 4.6) in the form of an extra sortable 
column. An implementation of the CUSUM statistic with name cusum  is provided in 
the appendix. A plot of time sequence data similar to that in Figure 5.3 is helpful for 
manual diagnosis. A plot of that type could for example be displayed when a 
substation is selected in the sorted list. The reference level should be optional, so that 
it can be adjusted for substations with exceptionally high variability in the residuals. 
The interface used to calculate and display regression models should be accessible so 
that regression models from different reference periods can be selected in order to see 
the effect on the , and  statistics. 
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6 DETECTION OF ABNORMAL 
QUANTIZATION 

Oversized or faulty flow meters, malfunctioning flow valves, faults in the cabling or 
electronics, and rounding errors can lead to abnormal quantization of energy meter 
data, which means that the values of a variable are limited to a few discrete levels and 
have poor precision. For example, an oversized or incorrectly configured flow meter 
can result in insufficient precision of the flow measurements, and an old valve that is 
stuck in one position can result in constant flow. An example of a substation with 
poor precision in the hourly flow and power data is illustrated in Figure 6.1. These 
types of faults are difficult to detect with the outlier and drift detection methods that 
are described above because there is not necessarily an associated increasing bias or 
sudden, abnormal change of the variable. Because faults of this type can be integrated 
over long periods of time the associated cost can be high. Therefore, we describe a 
method for detection of abnormal quantization of variables here. 

 

Figure 6.1. Data from an apartment building with abnormal quantization of the flow 
and power data, which results in a low information content of the hourly flow and 
power samples (4.3 bits per sample and 3.9 bits per sample, respectively). 
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6.1 Ranking with entropy 
In information theory, entropy is a measure of the expected information contained in 
a message, for example in terms of bits (Murphy, 2012, Section 2.8). Claude Shannon 
introduced the information entropy concept in 1948 in his seminal mathematical 
theory of communication. The concepts of information and entropy are fundamentally 
related to uncertainty, the average unpredictability of a random variable. Entropy 
plays an important role in a wide range of applications and research fields, and it is 
fundamentally related to the thermodynamics of physical systems by the generalized 
Jarzynski equality. That being said, the description of entropy that is included here is 
pragmatic and focused on the use of entropy for the detection of abnormal energy 
metering data with a ranking procedure, which is similar to that proposed for outlier 
detection. 

In order to appreciate the basic concept it is instructive to consider a typical 
textbook example of entropy; the coin-tossing example. When tossing a fair coin that 
has equal probabilities of coming to rest with either side of the coin facing upwards, 
the average entropy of each coin-toss experiment is one bit. There are two possible 
outcomes with equal probabilities, which means that the information that we gain 
about the state of the coin in one experiment is  bit. When tossing two fair 
coins simultaneously there are four possible outcomes of the experiment, so the 
information gained about the state of the two coins in one experiment is  
bits. This idea generalizes to an experiment with  fair coins, which provides  bits of 
information, and to digital representations of information that are based on binary 
states (bits). In the context of digital technology it is often the inverse relation 
between the number of possible states, , and the number of independent bits, , that 
is of interest, , because it determines how many bits that are needed to 
represent a certain number of integer values. For example,  is the number 
integer values that can be represented by eight bits (one byte). 

Now consider what would happen if the coin is unfair, which means that it is more 
likely to come to rest with one particular side facing upwards. In that case we can 
predict the most frequent result and be right more often than we are wrong, which 
means that the information that we gain from each coin-toss experiment is less than 
one bit. In the extreme case that one particular side of the coin is always facing 
upwards the information that we gain from an experiment is zero because the 
outcome of the experiment is pre-determined (formally, the uncertainty about the 
outcome decreases with the number of experiments made and has a limit of zero). 
The key point is that the entropy is a measure of the average uncertainty about the 
value of a variable. 

If a variable that represents a non-stationary macroscopic physical quantity like 
flow, temperature or power has high precision we expect that the variable should 
assume many different values over time and that the information entropy 
(uncertainty) of the variable should be high. In contrast, if the variable is stationary, 
or assumes a few discrete levels the uncertainty and entropy of the variable is low. 
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Therefore, entropy can be used as a measure for the detection of variables with 
abnormal variations. Both exceptionally low and high entropies can be of interest. For 
example, high entropies can result from noise and low entropies can result from poor 
precision or stationary signals. Formally, the entropy, , is defined as the sum over 
probabilities, , of the different possible states, , of a variable 

 . (32) 

The unit of the entropy is one bit when a base-2 logarithm is used. An implementation 
of this function with name entropy is included in the appendix. Next we use this 
function to demonstrate how substations with abnormally quantized variables can be 
identified and we derive an estimate for the magnitude of the quantization error. 

6.2 Test results  
We calculate the entropy for the hourly primary supply and return temperatures, the 
flow and the power of the 996 substations in the test set, see Figure 6.2.  

 

Figure 6.2. Entropy of hourly temperature, flow and power values for the population 
of 996 substations. The calculation is based on one year of data. Low entropies of the 
flow and power indicate that these substations may have oversized or misconfigured 
instrumentation, which results in abnormal quantization of the data. 

The substations are ranked in order of increasing entropy of the power. The effective 
precisions of the temperature measurements are about 5 or 8 bits and vary between 
substations. There is an evident similarity between the entropies of the power and 
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flow data for different substations; Substations with low entropies of the power 
typically have associated low entropies of the flow. This is to be expected because a 
quantization of the flow variable affects the power calculated by the energy meter. 

In Figure 6.3 we display the power profiles of the four substations in the test set 
that have the lowest entropies of the power variable. The quantization of the power is 
evident in all four cases and most likely depends on rounding of the data. Next we 
describe how the quantization error can be estimated in terms of the entropy. 

 

Figure 6.3. The four substations among the 996 substations in the test set with the 
lowest entropies of the power. For clarity, only 10% of the one-year dataset used to 
calculate the entropy is displayed. 

6.3 Entropy and quantization error  
The minimum entropy of the power that can be allowed if the maximum quantization 
error is to be kept below some limit can be estimated in the following way. Assuming 
that the quantized levels of the power are approximately equally spaced the step size 
between levels is about 
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 , (33) 

where  is the entropy and  is a reasonable approximation. Using this relation 
and the condition that  the following limit is obtained for the entropy 

 . (34) 

For example, if we allow a maximum quantization error of  the entropy of 
the power should be higher than .3 bits ( ). This implies that 
the quantization errors for the four substations that are illustrated in Figure 6.3 are 
above or near the 10% level. In the population of 996 substations there are 5 
substations with power entropies below  bits, 30 substations with entropies 
below  bits and 169 substations with entropies below  bits. 
Note that a low entropy does not necessarily imply that the energy communicated by 
the energy meter is incorrect because it can be a matter of misconfiguration or 
rounding in the communication between the energy meter and the data management 
system. Anyway, the detection of abnormal quantization is motivated if the data is to 
be used for analysis purposes and services. 

6.4 Implementation 
Entropy-based ranking can be used to identify substations with potential measurement 
precision problems, instrumentation faults or misconfigurations that result in 
abnormal quantization or stationary values of variables. This can be implemented in a 
similar way as the outlier and drift detection methods, by adding a column for the 
entropy of the power (possibly also the entropies of other variables) to the sortable list 
of substations. The entropy could either be calculated once for a specific reference 
time period, or it can be calculated online as illustrated in Figure 6.4. 
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Figure 6.4. Weekly moving entropies of the power data for two different substations. 
One substation (solid line) is illustrated in Figure 6.1 and has evident quantization 
levels in the power profile, which results in a relatively low entropy. The other 
substation (dashed line) has higher entropy and no visible quantization levels in the 
power profile, see Figure 2.1. 
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7 DISCUSSION 
This report deals with probabilistic methods and heuristics for automated detection 
and ranking of anomalies (potential faults), which can be implemented in existing 
district-energy data management systems. The development of such methods is 
motivated by difficulties experienced by utilities to identify faults in large-scale 
district energy systems and to process the high number of false alarms that can result 
when simplistic methods for fault detection are used. The problem to detect faults is 
important for several reasons; Faults that affect billing need to be avoided; Energy 
market regulations tend to become more restrictive with time in terms of accuracy, 
system efficiency and environmental effects; There is a growing interest to exploit the 
energy metering data for system optimization and development of new information 
services. Instrumentation faults are not uncommon in this type of system and can for 
example result in outliers, long-term drift and loss of information (see Chapter 1 for 
further information and examples). The methods that are commonly used for load 
analysis and fault detection are simplistic and range from degree-day estimates to 
basic statistical modelling and limit checking of daily or monthly average quantities. 
The estimated cost of faults that remain undetected for longer periods of time is 
substantial, and faults that lead to incorrect billing and information can affect 
customer relations and trust. 

We focus on hourly energy metering data in this work, which is used by some 
district energy utilities and tend to become more common with time as the technology 
and data management software are upgraded. Hourly energy metering data offers 
significant advantages compared to daily or monthly averages. In particular, hourly 
values enable monitoring and analysis of intraday load cycles, improved system 
optimization strategies and customer information services. Intraday load cycles are 
directly related to peak loads, which can be costly since specialised peak-production 
plants that operate with fossil fuels are used. Therefore, monitoring and control of 
intraday cycles are important to enable improved system efficiency and a reduction of 
primary resource use, for example via price models that take intraday cycles and peak 
loads into account. Hourly data also offers improved sensitivity to faults that result in 
outliers, which can be difficult to detect when daily or monthly averages are 
considered. Note that the motivation for using hourly energy metering data comes 
from the effects of subsystems like ventilation systems, complementary heat sources 
and human behaviour, which can affect the average thermal power significantly at a 
timescale of one hour. The use of high-resolution data implies that more energy 
metering data is accumulated, which calls for efficient and automated methods for 
anomaly detection. The methods that are discussed in this report can in principle be 
applied also with daily energy metering data, except for the analysis of intraday 
cycles that is discussed in Section 3.1. If daily energy metering data is considered that 
method should be replaced with a method for analysis of intraweek cycles, for 
example the method that is described by Seem (2005, 2007) or Li et al. (2010). It 
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should be noted that the use of hourly district energy data is not unproblematic 
because the typical mix of hourly averages and instant samples in the management 
systems results in inconsistencies that can be significant, see Figure 1.2. This needs to 
be considered when designing methods for fault detection and diagnosis. 

The methods that are described in this report are summarized in Table 7.1. 
Heuristic limit checking tests are discussed in Section 2.1 and are successfully used 
by some utilities. For example, some of these tests are implemented in the 
commercial energy data management software GENERIS (by Enoro AB) and Elin 
(by Powel Energy Management AB). Limit-checking methods are straightforward to 
implement and enable detection of some common faults. Therefore, we recommended 
that these methods should be implemented. In Chapter 3 we describe various 
probabilistic models of hourly energy meter data. The methods that are described in 
Chapters 4-6 for outlier detection, detection of long-term drift and detection of 
abnormal quantization are based on residual analysis of the probabilistic models. The 
“basic model” that is listed in Table 7.1 is the simplified method for outlier detection 
that is described in Section 2.2, which does not require fitting of probabilistic models 
to historical data. The basic model is less accurate than the methods that are described 
in the subsequent chapters; in particular it is insensitive to long-term drift and faults 
that do not result in short-term outliers in the data. Outlier detection and scoring is 
useful for rapid detection of abnormal data, which is essential if faults are to be 
detected before customers potentially notice the effects on the control system or bills. 
Also, outlier detection should be implemented if services that depend on hourly data 
are developed and exposed to customers because outliers can often be spotted.  

Table 7.1. List of methods (columns) versus quantities considered for anomaly 
detection (rows). Symbols indicate whether a method is applicable (+) or not (-). 
These methods are described in Chapters 2-6 of this report. 

 Limit-
checking 

Basic 
model 

Cluster 
analysis 

Regression 
modelling 

Outlier 
detection 

Drift 
detection 

Quantization 
analysis 

 + + + + + + + 

 + + + + + + + 

 + + – + + + + 

 + – – – – – + 

 
Scoring and ranking of anomalies is a central concept that is discussed in this report. 
We find that statistical hypothesis tests are error prone because of the complex and 
varying dynamics of the many buildings in a district energy system, in combination 
with the low sampling frequencies that typically are used in energy data management 
systems. The residuals of the models that we consider in this work have varying 
probability distributions, which sometimes are similar to a normal distribution, 
sometimes are similar to a Weibull distribution, sometimes are multimodal and 
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sometimes seem to result from a combination of different distributions for the mode 
and tails. Therefore, without going into detailed modelling of individual buildings it 
does not make sense to define definite decision limits for fault detection beyond the 
basic heuristic limits that are defined in Section 2.1. Instead, we propose that 
abnormal data is scored according to the deviation from the expectation and that a 
ranking procedure is used to identify outstanding substations for further investigation. 
The effective thresholds that determine whether further investigation is motivated will 
in practise depend on the resources that are available and the experience of the 
operators. Scores can be defined in an absolute or relative way, which makes a 
difference when simultaneously considering a population of substations with both 
high and low average loads. For example, a minor outlier in the data from a high-load 
substation can be scored higher than a major outlier in the data from a low-load 
substation when an absolute score is used, but the consequences of the outliers in 
terms of customer relations and trust can be more significant for the substation with 
low load, low absolute scores and relatively low economic risk. Scoring of outliers in 
building energy data is also discussed by Seem (2007). 

We study the proposed methods using hourly data from a population of 996 
district heating substations. We have developed and used a Matlab implementation of 
the methods that are presented in this report, which enables automated analysis of 
data from several thousands of district energy substations. Sample code of key 
functions needed to implement the methods is provided in the appendix. This does not 
mean that the methods that are presented in this report are ready to use “as is”. 
Rather, they should be considered as proof of concept. It remains to learn which 
methods that will prove useful and cost-effective in a full-scale implementation. A 
real-world implementation also needs to account for eventual exceptions such as 
holidays, which is a consequence of the strict analysis of intraweek cycles that is 
described in Section 3.1. Seem (2005) proposes a different approach for the analysis 
of intraweek cycles, which is less sensitive to holidays because each day is classified 
in terms of a few “day types” rather than weekdays.  

At the end of this project we learned that Göteborg Energi AB uses piecewise 
linear regression to model the relationships between outdoor temperature and power, 
and the outdoor temperature and flow. The implementation, named Kasper, is 
developed since 2002 with support from two Master’s Thesis students (Munoz, 2006; 
Lindquist, 2010) and Professor Anders Odén at the Chalmers University of 
Technology. Also, a similar approach is under development for wind power 
(Forsman, 2011). In Kasper, the regression models have three fixed breakpoints and 
are fitted to daily average values for a given time period and subset of weekdays 
(high versus low load etc.). Substations are ranked according to the size of the 
regression model residuals, and a one-year moving average is used to identify drift. 
The regression models are also used for imputation of missing energy meter data, and 
as a visualization tool in the communication with customers. This means that two 
groups have independently made similar assumptions and come to similar 
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conclusions concerning the modelling approach and use of ranking heuristics. There 
are also some differences between the two approaches. We have considered hourly 
data and intraday cycles in addition to the intraweek cycles / day types, which is 
necessary when hourly values are considered, and we have adopted the approach 
described by Seem (2007) to identify and score potential outliers in the model 
residuals. Also, we describe an approach based on CUSUM control charts for 
detection of drift, and we introduce the concept of Shannon entropy for detection of 
oversized and misconfigured instrumentation. The implementation of piecewise linear 
regression is more refined in Kasper compared to our prototype implementation, and 
demonstrates that fault detection with piecewise regression models and residual 
analysis is applicable and useful in practise. 

In principle the methods that are discussed in this report may be applicable also to 
district cooling data, but we do not study that possibility here. The lower primary 
temperature difference in district cooling applications makes the fault detection 
problem a more delicate one. Therefore, we propose that the methods that are 
described here should first be implemented and evaluated in district heating systems. 

7.1 Directions for further work 
The limited information, low sampling rate and combination of instantaneous samples 
and averaged quantities that are commonly accessible in district energy management 
systems render the situation non-ideal for automated fault detection and information 
quality assessment. An optimal approach requires a technology and culture transition 
towards substations with holistic monitoring and control systems. That would enable 
integration of standard methods for fault detection and diagnosis, for example 
dynamical models and state estimation techniques. A step of that magnitude can be 
motivated if system optimization aspects and environmental effects are included in 
the picture. For example, holistic monitoring and control systems can be used to 
improve system efficiency (Delsing et al., 2009) and new price models can reduce the 
daily peak demands without compromising comfort (van Deventer et al., 2011). 

Some modern energy meters have integrated basic functionality for fault detection. 
An intermediate step is to develop more efficient methods for fault detection and 
diagnosis that either can be implemented in the energy meters, or the interfaces to the 
data management systems. By integrating the fault detection and diagnosis methods 
near the energy meter it is possible to access and process high-resolution data, at least 
for the primary flow and temperatures. The communication bottleneck that often exist 
between the energy meters and the data management systems needs to be respected 
and managed if this approach is to be useful for the industry, and it must be easy to 
configure the fault detection and diagnosis methods in a large-scale system. 

There is also room for improvement of the probabilistic methods that are 
described in this work in order to increase the sensitivity and robustness of the 
anomaly detection approach. In particular, the understanding of the probability 
distributions of the model residuals is incomplete and can be further investigated in 
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order to understand the underlying dynamics and derive improved probabilistic 
models. The analysis of intraday cycles can possibly be improved by considering an 
approach similar to that used by Li et al. (2010), or multivariate regression. Further 
work is needed to understand how faults affecting the primary return temperature can 
be detected directly, without reference to the power. This problem can be solved in 
principle by monitoring of the heat exchangers (Isermann, 2011), but it is difficult 
given the information that is commonly available in the management systems. 

The lack of a well-defined dataset makes the development and evaluation of 
methods for fault detection challenging, and the fact that historical energy metering 
data includes abnormal data is often ignored in the literature. Therefore, it would be 
useful if a reference dataset could be assembled for researchers and developers to use, 
which should include several years of data for a representative number of substations 
that have been confirmed as, respectively, faulty and non-faulty. Faults should be of 
varying type and need to be described in the dataset. 
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8 CONCLUSIONS 
Faults are common in district energy systems due to the high number of substations, 
which include several instrumentation components like mechanical flow meters, 
temperature sensors, cabling and electronic devices. Also, the instrumentation is 
designed for low cost and billing, not for redundant measurement and automated 
detection of faults. The methods that are commonly used for fault detection are 
simplistic and implemented at the energy data management level. A deluge of false 
alarms that is difficult and costly to analyse can result from the application of such 
methods. In summary, we observe that: 

 Abnormal measurements and instrumentation faults are detected for several 
percent of the substations in a district heating system on an annual basis. 

 The cost of faults can be high, for example of the order 50 000 € per year in 
the case of a drifting flow meter for a large customer. 

 The methods that are commonly applied for fault detection are simplistic. 
 Some utilities manually handle thousands of false alarms per month, which is 

a costly, counter-productive and error-prone task. 
 There is a need for improved fault-detection methods. 
 There is a growing interest among the utilities to develop services and system 

optimization strategies that depend on high-resolution data, which requires 
more efficient methods for fault detection and quality assessment of the data. 

 
Therefore, development of improved approaches and methods for fault detection in 
district heating systems is motivated. In this report we present methods for detection 
and ranking of anomalies, which can be used to automatically identify potential faults 
in district energy metering data. In particular, we present methods for: 

 
 Regression modeling of variable relationships. 
 Analysis of intraday and intraweek cycles in the data.  
 Outlier detection and ranking. 
 Drift detection and ranking. 
 Detection of abnormal quantization (design faults, misconfiguration etc.). 

 
We study the proposed methods with data from a population of 996 substations and 
demonstrate that we can identify substations with documented faults, unknown faults 
and abnormal characteristics. In this population about 5% of the substations are 
abnormal and about half of these have been confirmed as faulty. The methods are 
selected and designed with automated use and applicability in mind, which is crucial 
to enable cost-efficient analysis of the data. The proposed methods need to be 
implemented by utilities in a full-scale district energy management system before the 
effects on the fault detection rate and cost efficiency can be properly evaluated.  
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APPENDIX 1 – Linear regression software 

Linear regression is common in fields like statistics, machine learning, data mining 
and explorative data analysis. Therefore, there are many implementations of 
algorithms for linear regression, which often include aspects like robustness towards 
outliers in the data and adaptive optimization of the position and number of segments 
(Friedman, 1991; Murphy, 2012, Chapter 16). Extensions to nonlinear functions of 
the data are also common. Some examples of software packages and libraries that can 
be used for linear regression are listed below. 

Free and open source 
● R Programming Language (earth, mda and polspline packages); 

http://r-project.org. 
● Orange for Python (earth package); http://orange.biolab.si. 
● ARESLab for Octave/Matlab; http://www.cs.rtu.lv/jekabsons/regression.html. 
● SPLINEFIT; http://www.mathworks.com/matlabcentral/fileexchange/13812-

splinefit 

Commercial  
● Matlab Curve Fitting Toolbox; 

http://www.mathworks.se/discovery/data-fitting.html 
● MARS from Salford Systems; http://www.salford-systems.com. 
● STATISTICA Data Miner from StatSoft; http://www.statsoft.com. 

 
In this work we use piecewise linear relationships because such functions represents 
the empirical data sufficiently well and a simple approach is motivated by the need to 
make tens of thousands of regression models in an automated fashion. A piecewise 
linear approach is also motivated by the common use of piecewise linear functions in 
the control system of district heating substations. When generating many regression 
models automatically for a large population of district energy substations the extra 
degrees of freedom associated with higher-order polynomials tend to make the results 
less reliable in the sense that some regression models are unnatural. ARESLab and 
SPLINEFIT have been used to produce the figures and results presented in this report. 
ARESLab supports adaptive regression. The optimization of segments is done in two 
steps, first by adding breakpoints to reduce the variance, then by pruning the 
breakpoints so that a reasonable trade-off between accurate fit and model complexity 
is achieved. Adaptive methods are useful for manual modelling, but are tricky to 
implement in a reliable way for automated generation of many models. Unless there 
is a good reason to use adaptive regression, we recommend that a fixed number of 
about five to ten segments is used. A formal introduction to robust linear regression 
can be found in Murphy (2012).  
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APPENDIX 2  – Code samples 
The core functions used to calculate the figures and results presented in this report are 
listed here. Software for linear regression is listed in Appendix 1. 

Basic online test for outl iers 
function [i,Z] = basic_test(s) 
% Basic online test and ranking of outliers. 
%   This method is a simplified form of the method described by 
%   John E. Seem (2007) for detection of outliers in the power, 
%   which can be generalized for detection of outliers also in 
%   the flow and supply temperature. One-week moving averaging 
%   is used to estimate and subtract the trend caused by varying 
%   outdoor temperature and seasons. A one-week moving average is 
%   used to average out intraday and intraweek cycles. 
%   This results in a simple online algorithm that can be used for 
%   automated detection and ranking of outliers in the power, 
%   flow and supply temperature (see *** below), which does 
%   not involve analysis of long-term historical records of 
%   data and is straightforward to implement. 
% 
%   s      Substation data record. 
%   i      Indices of outliers. 
%   Z      Modified Z scores of outliers (higher is worse). 
alpha = 0.05; % 95% confidence (ideal) 
nout = 100;   % If outliers are found we fetch the top-100 
nzdisp = 10;  % Number of top-Z scores to display 
t = s.time;   % Testing can be limited to data for the last few weeks 
y = s.power;  % Replace with s.flow to validate the flow, or             *** 
              % replace with T  or T  to validate the supply temperature, 

              % where T is the supply-temperature difference between 
              % two different substations with highly correlated 
              % supply temperatures, see “correlation analysis” below. 
 
% Temperature de-trending with weekly moving average 
ym = moving(y, 7*24); % 7*24 hourly values 
yy = y - ym; 
 
% GESD outlier detection 
[i,~,~] = gesd(yy, nout, alpha); 
j = true(1,length(y)); 
j(i) = false; 
% Modified Z scores 
Z = yy(i) / std(yy(j)); 
 
% Plot outliers and display Z scores 
semilogy(t,y,'k-',t(i),y(i),'rx'); 
for k=1:min([nzdisp length(Z)]) 
    lbl = sprintf('%1.1f',Z(k)); 
    text(t(i(k))+0.01*range(xlim), y(i(k))+0.01*range(ylim), lbl); 
    datetick; 
    xlabel('Time'); 
    ylabel('Power [kW]'); 
    % ylabel('Flow [m^3/h]');     % If the flow is considered     *** 
    % ylabel('\Delta T_{ps} [°C]'); % or the supply temperature 
end  



 

 

 

110 

F A U L T D E TE C T I O N  W IT H  H O U R L Y 
D IS T R IC T  E N E R G Y D A TA  

GESD test for outliers  
function [i,R,lambda] = gesd(x,r,alpha) 
% GESD test for outliers. 
% 
%   x      Data vector. 
%   r      Maximum number of outliers to search for. 
%   alpha  Significance level (for example 0.05 for 95% cf). 
%   i      Indices of outliers in x. 
%   R      R statistic. 
%   lambda Critical values. 
% 
%   For details, see ref. Seem 2007 and 
%   http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm 
 
    % Calculate test statistic and critical values 
    R = zeros(1,r); 
    ivec = zeros(1,r); 
    lambda = zeros(1,r); 
    n = length(x); 
    xtemp = x; 
    itemp = 1:length(x); 
 
    for i=1:r 
        m = mean(xtemp); 
        s = std(xtemp); 
        [R(i),j] = max(abs(xtemp-m)/s); 
        ivec(i) = itemp(j); 
        xtemp(j) = []; % delete R(i) 
        itemp(j) = []; 
        p = 1 - alpha/(2*(n-i+1)); 
        t = tinv(p,n-i-1); % Inverse of Student's CDF 
        lambda(i) = (n-i)*t/sqrt((n-i+1)*(n-i-1+t*t)); 
    end 
 
    % Number of outliers is determined by highest i so that R(i) > lambda(i) 
    i = max(find(R>lambda)); 
    i = ivec(1:i); 
 
end 
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Standardized power 
function ystd = std_power(s,tmax) 
% Calculate standardized power versus the different weekdays and time of day. 
%    The result is used as input for the cluster analysis and calculation of 
%    weekly schedules. 
% 
%   s      Substation data record. 
%   tmax   Outdoor temperature threshold (cycles are more evident at low 
%          outdoor temperature). 
%   ystd   A 7x24 cell array of vectors with standardized power. 
 
PLOT = 0; 
 
x = s.t_outdoor; 
y = s.power; 
 
w = weekday(s.time) - 1; % Sun Mon Tue Wed Thu Fri Sat 
w(w==0) = 7; % Mon Tue Wed Thu Fri Sat Sun 
h = hour(s.time); 
  
% Calculate standardized y for each weekday and hour 
ystd = cell(7,24); 
tmin = floor(min(s.t_outdoor)); 
for t=tmin:(tmax-1) 
     
    % 1°C binning, remove outdoor temperature dependence 
    i = (s.t_outdoor >= t & s.t_outdoor < (t+1)); 
    yi = y(i); 
     
    % Calculate standardized value 
    yi = yi - mean(yi); 
    yi = yi ./ std(yi); 
     
    % Extract weekdays and time of day 
    wi = w(i); 
    hi = h(i); 
     
    % Append values to tuple 
    for j=1:length(yi) 
        ystd{wi(j),hi(j)+1} = [ystd{wi(j),hi(j)+1} yi(j)]; 
    end 
end 
  
% Plot mean[ystd] and std[ystd] 
if PLOT 
    hold off; 
    pm = zeros(7,24); 
    sm = zeros(7,24); 
    style = {'k-','r-','g-','b-','m-','k--','r--'}; 
    for i=1:7 % weekdays 
        for j=1:24 % time of day 
            pm(i,j) = mean(ystd{i,j}); 
            sm(i,j) = std(ystd{i,j}); 
        end 
        errorbar(0:23,pm(i,:),sm(i,:),style{i}); 
        hold on; 
    end 
    hold off; 
    legend('Mon','Tue','Wed','Thu','Fri','Sat','Sun'); 
    xlabel('Time'); 
    ylabel('P_s'); 
end 
  
end 
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Bimodality coefficient  
function bc = bimodality(x) 
% Bimodality coefficient (BC) of distribution in the vector x. 
% 
%   Formula suggested by Warren Sarle. 
%   The BC is 1 for a Bernoulli distribution (maximum bimodality), 
%   1/3 for a normal distribution, and near zero for heavy-tailed 
%   distributions. The statistic of the BC is unknown. Another simple 
%   measure for bimodality is negative kurtosis, but that measure has 
%   limitations that motivated the invention of the BC. There are 
%   several tests for bimodality proposed in the literature, but none 
%   that offers a universal solution. Empirical results indicate that 
%   the BC is a useful and simple indicator for bimodality in district 
%   energy power data. As a rule of thumb, a value higher than about 
%   0.65 corresponds to bi- or multimodal distributions, while lower BC 
%   values indicate that the power distribution is practically unimodal. 
  
    bc = (skewness(x)^2+1) / kurtosis(x); 
  
end 
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Entropy 
function s = entropy(x) 
% Entropy of a set of numbers in bits. 
  
    x = reshape(x,1,numel(x)); 
  
    % Count how many times each number occurs 
    [~,n,~] = unique(sort(x)); 
    n = [n(1) diff(n)]; 
  
    % Calculate probabilities of numbers 
    p = n ./ numel(x); 
  
    % Calculate entropy (observe inner product) 
    s = -p*log2(p)'; 
  
end 
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Cluster analysis  
function schedule = power_schedule(s, tmax) 
% Make weekly schedule by cluster analysis of standardized power. 
%   Divide weekdays and time of day into three clusters 
%   corresponding to low, intermediate/mixed and high power. 
%   The returned schedule is a 7x24 matrix with -1 for low, 
%   0 for intermediate/mixed and +1 for high power. Intermediate 
%   should be interpreted as "both high and low" because that 
%   class typically includes data points belonging to both 
%   the low and high power clusters. When fitting regression 
%   models, the mixed cluster should be excluded. In limit checking 
%   and outlier detection the mixed-class data should be treated 
%   with conservative limits (the lower limits of the low-power 
%   cluster and the upper limits of the high-power cluster). 
%   For other approaches to identify clusters, see Seem 2005 
%   and Li et al 2010. The method proposed here is more simple 
%   than the method outlined in Li 2010, and we consider 
%   intraday cycles in addition to the intraweek cycles 
%   (Seem and Li et al focus on the daily average power). 
% 
%   s         Substation data record. 
%   tmax      Outdoor temperature threshold (cycles are more evident at low 
%             outdoor temperature). 
%   schedule  A 7x24 matrix of cluster identifiers: 
%             -1    low power demand, 
%              1    high power demand, 
%              0    mixed, both high and low power demand. 
  
% Toggle this to plot weekly schedule. 
PLOT = 1; 
  
% Toggle safe transitions. Inserts mixed class at 
% transitions from low to high power and vice versa. 
SAFE = 1; 
  
% Calculate standardized power 
pstd = std_power(s,tmax); 
  
% Create a vector of mean standardized power for cluster analysis. 
% This approach can be extended by including the variance of the 
% standardized power as an indicator that (i,j) should be included 
% in the "mixed" cluster. 
pv = zeros(4,7*24); 
for i=1:7 
    for j=1:24 
        pv(1,(i-1)*24+j) = i; 
        pv(2,(i-1)*24+j) = j-1; 
        pv(3,(i-1)*24+j) = mean(pstd{i,j}); 
    end 
end 
  
% Cluster analysis. Divide data in two clusters, then add 
% a point for an intermediate cluster and repeat the analysis. 
[~,c] = kmeans(pv(3,:)',2,'Start',prctile(pv(3,:),[10; 90])); 
[ik,c] = 
kmeans(pv(3,:)',3,'Start',[min(c);mean(c);max(c)],'EmptyAction','drop'); 
nclust = 3; 
if sum(isnan(c))==0 % 3 clusters (low,mixed,high) 
    imin = 1; 
    imid = 2; 
    imax = 3; 
elseif sum(isnan(c))==1 % 2 clusters (low,high) 
    if isnan(c(2)) 
        imin = 1; 
        imax = 3; 
    elseif isnan(c(1)) 
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        imin = 2; 
        imax = 3; 
    else 
        imin = 1; 
        imax = 2; 
    end 
    imid = -1; % disable 
    nclust = 2; 
else 
    error('Only one cluster, BC is too low?'); 
end 
  
% Create schedule 
schedule = zeros(7,24); 
schedule(sub2ind(size(schedule),pv(1,ik'==imin),pv(2,ik'==imin)+1))=-1; % low 
schedule(sub2ind(size(schedule),pv(1,ik'==imid),pv(2,ik'==imid)+1))=0; % mixed 
schedule(sub2ind(size(schedule),pv(1,ik'==imax),pv(2,ik'==imax)+1))=1; % high 
  
% Label transitions between high/low power as intermediate power. 
% The idea is simple: scan through the whole week sequentially in 
% time. If one particular hour is classified as 'high power' and 
% the next hour as 'low power' (or vice versa) then both hours are 
% re-classified as 'mixed' to reduce the risk of misclassification. 
if SAFE == 1 
    nclust = 3; 
    ss = reshape(schedule',1,7*24); 
    ss = [ss ss(1)]; % repeat first element to simplify indexing 
    for i=1:7 
        for j=1:24 
            if ss((i-1)*24+j)*ss((i-1)*24+j+1) == -1 
                schedule(i,j) = 0; 
                if j<24 
                    schedule(i,j+1) = 0; 
                else 
                    if i<7 
                        schedule(i+1,1) = 0; 
                    else 
                        schedule(1,1) = 0; 
                    end 
                end 
            end 
        end 
    end 
end 
  
% Plotting 
if PLOT == 1 
    hold off; 
    [h,d] = find(schedule == -1); % low power 
    plot(h,d,'bv'); 
    hold on 
    [h,d] = find(schedule == 0); % mixed 
    plot(h,d,'kd'); 
    [h,d] = find(schedule == 1); % high power 
    plot(h,d,'r^'); 
    xlabel('Weekday'); 
    set(gca,'XTickLabel',{'Mon','Tue','Wed','Thu','Fri','Sat','Sun'}) 
    ylabel('Time of day'); 
    ylim([0 23]); 
    if nclust==3 
        legend('Low power','Mixed','High power'); 
    else 
        legend('Low power','High power'); 
    end 
end 
  
end 
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CUSUM statistic  
function [Sm,Sp] = cusum(x,e,k,a) 
% Cumulative sum statistic for bias detection. 
% 
%   x sample values 
%   e expectation values 
%   k reference level 
%   a normalization constant 
% 
%   See http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc323.htm 
%   and Woodall & Adams, 1993 for further information. 
  
Sm = zeros(1,length(x)); 
Sp = zeros(1,length(x)); 
  
for i=1:length(x) 
    j = max([1 i-1]); 
    Sm(i) = max([0, Sm(j) - (x(i) - e(i) + k)/a]); 
    Sp(i) = max([0, Sp(j) + (x(i) - e(i) - k)/a]); 
end 
  
end 
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Correlation analysis  
function [id,cor,dist] = find_correlated(id,data,top) 
% Identify substations with highly correlated supply temperatures. 
% Arguments 
% id      ID of substation. 
% data    Substation database. 
% top     Number of geographical neighbors to consider, 
%         a higher number is better (~100 is usually ok). 
% Return values 
% id      Array of substation IDs (most correlated first). 
% cor     Array of correlation coefficients (descending order). 
% dist    Array of geographical distances. 
    cmax=-1e10; 
    cor = zeros(1,top); 
 
    % Find nearby substations. This is not necessary but is done 
    % here to reduce processing time. The use of geographical data 
    % can be avoided by including all substations in the network, 
    % which result in better matches at the cost of processing time. 
    % This function is defined below. 
    [nearby,dist] = find_nearby(id,data,top); 
  
    % Calculate correlation coefficients for each substation 
    s = get_substation(id,data); 
    for i=1:length(nearby)    
        s2 = get_substation(nearby(i),data); 
        % Align time sequences (skip head/tail and missing datapoints) 
        [j,k] = timealign(s.year,s.month,s.day,s.hour,s.minute, 
             s2.year,s2.month,s2.day,s2.hour,s2.minute); 
        % Calculate correlation coefficient, 
        % (OBS de-trending with first-order differences) 
        c = corrcoef(diff(s.t_ps(j)), diff(s2.t_ps(k))); 
        cor(i) = c(1,2); 
  
    end 
     
    % Sort substations using the correlation coefficients 
    [cor,ind] = sort(cor,'descend'); 
    id = nearby(ind); 
    dist = dist(ind); 
  
end 
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function [id,d] = find_nearby(id,data,top) 
% Identify substations that are geographically nearby. 
%    This function is not necessary, but is used there to 
%    speed up the search for high-correlation pairs 
%    (the search is limited to a geographical neighborhood). 
    d = zeros(1,n); 
    n = length(data.pos_id); 
    % Calculate distances to all other substations 
    s = get_substation(id,data); 
    for i=1:n 
        x = data.pos_x(i); 
        y = data.pos_y(i); 
        d(i) = (x-s.pos_x)^2 + (y-s.pos_y)^2; 
    end 
    d = sqrt(d); 
     
    % Sort distances 
    [d,id] = sort(d); 
     
    % Get ID numbers of substations 
    id = data.pos_id(id); 
     
    % Remove self reference 
    d = d(id ~= s.id); 
    id = id(id ~= s.id); 
     
    % Remove remote substations and substations 
    % without associated energy data 
    inc = false(1,length(id)); 
    idlist = unique(data.id); 
    for i=1:length(id) 
        if ismember(id(i),idlist) 
            inc(i) = true; 
        end 
        if sum(inc)==top 
            break; 
        end 
    end 
    id = id(inc)'; 
    d = d(inc); 
end 

 
 
 
 
 



validering av mätdata
Nya regler och ny teknik innebär att förbrukningen av fjärrvärme och 
fjärrkyla mäts allt oftare. Men fjärrvärmeföretagen anser att det är svårt att 
upptäcka fel i stora energisystem och att det är en utmaning att hantera och 
bearbeta en ökad mängd data. 

Det är viktigt att felen inte förblir oupptäckta eftersom det kan bli kost-
samt, men också att fjärrvärmeföretaget förlorar i trovärdighet till exempel 
när kunder upptäcker fel och får felaktiga räkningar. 

Här beskrivs hur avvikelser i energimätdata kan upptäckas med automa-
tiska metoder och ett minimum av mänsklig inblandning. Målet har varit 
att kunna analysera stora mängder mätdata på ett kostnadseffektivt sätt. 
Tack vare de nya metoder som beskrivs här kan avvikande mätvärden iden-
tifieras och rangordnas så att fjärrvärmeföretaget kan koncentrera sig på 
att analysera de centraler mest är mest avvikande. Rapporten är skriven på 
engelska, men har en svensk sammanfattning

Svensk Fjärrvärme • 101 53 Stockholm • Telefon 08-677 25 50 • Fax 08-677 25 55

Besöksadress: Olof Palmes gata 31, 6 tr. • E-post fjarrsyn@svenskfjarrvarme.se • www.fjarrsyn.se

Forskning som stärker fjärrvärme och fjärrkyla, uppmuntrar konkurrenskraftig   affärs- och 

teknikutveckling och skapar resurseffektiva lösningar för framtidens hållbara energisystem. 
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