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Sammanfattning 

Detta projekt samlar några av de mest erfarna organisationerna och 

människorna i Europa när det gäller mätning av metanutsläpp från 

produktionsanläggningar för biogas. Projektet har två huvudsyften. 

Dess första syfte är en litteraturstudie för att samla befintlig data och 

kunskap, främst i Europa, när det gäller metoder för att mäta 

metanutsläpp och deras resultat. Dess andra syfte är en jämförelse av 

några mer eller mindre etablerade mätmetoder under en jämförande 

mätning på en biogasanläggning. I vår kännedom har inte något 

liknande arbete utförts tidigare. Målet med projektet är att resultaten 

kan ligga till grund för ytterligare projekt, såsom en gemensam 

europeisk standardisering av mätmetoder och datautvärdering. 

Standardisering är viktigt för att säkerställa att anläggningars 

prestanda bedöms på samma sätt när de installeras i olika länder. 

Biogas anses vara ett klimatneutralt bränsle eftersom kolet i biogasen binds från 

atmosfärisk koldioxid, CO2. Den CO2 som frigörs vid förbränning av biogas anses 

därför vara biogen och inte fossil. Vidare så ersätter biogasen förbrukning av fossila 

bränslen vilket sänker de totala CO2-utsläppen. Biogas består huvudsakligen av metan 

(CH4), och eftersom metan i sig är en stark växthusgas så är det viktigt att samla 

kunskap om metanutsläppen som sker i form av förluster som kan uppstå i 

produktionskedjan för biogas, och det är också viktigt att minimera dessa utsläpp. 

Metan är en växthusgas och bidrar till den globala uppvärmningen. Räknat per 

utsläppt ton så bidrar metan med 28-34 gånger mer påverkan jämfört med CO2. 

Utsläpp av ett ton metan motsvarar alltså 28-34 ton koldioxidekvivalenter. När man 

diskuterar metanutsläpp från biogasproduktion är det dock viktigt att komma ihåg att 

metanutsläpp också förekommer från naturgasanläggningar, vid alternativ behandling 

av gödsel och från deponier. Diskussioner har pågått i många delar av Europa och 

världen om det här problemet och flera initiativ för att bestämma storleken på 

metanförlusterna från biogasproduktion har gjorts. Mätningar har utförts med hjälp av 

många olika metoder och angreppssätt, och utsläppssiffror baserade på rena 

antaganden har också påträffats i litteraturen. 

I biogas- och uppgraderingsanläggningar kan utsläpp av metan till luft förekomma i 

olika delar av systemet. Vanliga utsläppskällor på biogasanläggningar är ventilationer, 

buffert/lagertankar, rötkammare, biogödsellager och avvattningssystem. Vanliga 

utsläppskällor på uppgraderingsanläggningar är koldioxidrik restgas och 

ventilationsluft med spår av metan, samt anläggningens analysinstrument. Förutom 

det faktum att metan är en växthusgas så finns det en rad andra skäl till varför dessa 

utsläpp bör minimeras, inkluderande säkerhetsaspekter, anläggningsekonomi och lukt. 

Den genomförda litteraturstudien sammanfattar ett antal studier av metanutsläpp på 

biogasanläggningar i ett antal olika länder. Från litteraturstudien kan man dra 

slutsatsen att utsläppsstudierna har genomförts med varierande metoder och 

angreppssätt. Den stora variationen i metoder gör att det är svårt att dra några 

generella slutsatser utifrån de tillgängliga resultaten. Vad som är en typisk 



 
 

biogasanläggning varierar också mellan olika länder vilket gör jämförelsen ännu 

svårare. Rapporterade resultat av de totala metanförlusterna från biogasanläggningar 

sträcker sig typiskt mellan 1 - 3 % av den producerade mängden metan. 

Det finns i allmänhet två fundamentalt olika angreppssätt för att mäta utsläpp av gaser 

från ett område eller en anläggning som har diffusa utsläppskällor, t.ex. en 

biogasanläggning. Dessa olika angreppssätt är fjärranalys och mätningar på plats. 

Fjärranalys kan utföras med ett antal olika metoder som samtliga är inriktade på att 

bestämma hela anläggningens utsläpp genom att mäta metankoncentrationen i 

omgivningsluften vid anläggningen. I detta projekt prövades två olika tekniker för 

fjärranalys; dispersionsmodellering med bLs-modell (”backwards Lagrangian 

stochastic”) och spårgasmetoden. Dispersionsmodellering baseras på mätningar av den 

genomsnittliga metankoncentrationen längs olika mätsträckor i vindriktningen 

nedströms anläggningen, samtidigt som olika väderförhållanden i omgivningen 

uppmäts. För detta ändamål kan ett s.k. Open-Path-system (t.ex. FTIR eller laser) 

användas tillsammans med meteorologiska mätningar. Spårgasmetoden kombinerar ett 

kontrollerat utsläpp av en spårgas från den studerade anläggningen med tidsupplösta 

koncentrationsmätningar i vindriktningen nedströms anläggningen. Eftersom denna 

metod använder en spårgas för att bestämma luftdispersionen så behövs inte någon 

matematisk modellering av denna. Fördelen med fjärranalys är att den totala mängden 

utsläpp från anläggningen bestäms, men metoderna kan inte användas för att 

lokalisera enskilda utsläppskällor eller kvantifiera deras andel av de totala utsläppen. 

Mätningar på plats utförs genom att var och en av utsläppskällorna bestäms enskilt vid 

respektive källa. Med detta angreppssätt är det möjligt att skilja mellan stationära (t.ex. 

ventilation) och diffusa (t.ex. läckage) utsläppskällor. De enskilda utsläppens andel av 

de totala utsläppen kan också bestämmas. I detta projekt provades både direkta 

mätningar av metanhalt och gasflöde i utsläppspunkterna, samt provtagningssystem 

som provtar en stor gasvolym genom utspädning av utsläppet med luft. Speciella 

provtagningstekniker har också tillämpats vid exempelvis biogödsellager och biofilter, 

där delar av ytan täcks in med provtagningshuv. Totalt fyra olika team genomförde 

mätningar på plats i samband med den jämförande mätningen i Linköping. 

Den jämförande mätningen inleddes också med att tre olika team genomförde 

läcksökning på anläggningen. Två av teamen hade tillgång till varsin IR-kamera för 

detektion av metanutsläpp som annars inte är synliga för blotta ögat. Det tredje teamet 

hade endast tillgång till ett traditionellt läcksökningsinstrument som måste föras intill 

ett läckage för att det ska kunna detekteras. 

Slutsatsen av jämförelsemätningarna i Linköping är att de allmänna resultaten från 

olika metoder och arbetssätt är jämförbara. I Figur 1 ses resultat från de fyra team som 

mätte på plats på anläggningen. I Tabell 2 och Tabell 3 sammanfattas resultat från 

mätning på plats och med fjärranalys för två olika tidsperioder. Den studerade 

anläggningen är stor i storlek och de totala utsläppen är jämförelsevis låga. Den totala 

metanförlusten som rapporterats från mätningarna på plats i anläggningen varierar 

mellan 0,6-1,1 % av den producerade mängden metan. Det finns höga och okända 

osäkerheter i alla mätresultat och de beror på både analytiska osäkerheter och 

tidsvariation i utsläppskällor. 

Några lärdomar gjordes från de jämförande mätningarna i Linköping. När schemat för 

mätningarna sattes inrättades det avsiktligt för att inte ha flera team i samma mätpunkt 

samtidigt som kunde påverka eller störa varandra. På grund av den stora 



 
 

tidsvariationen i utsläppskällorna har detta val dock gjort att en strikt jämförelse av 

resultaten inte kan göras. Variationer i driften under mätveckan inträffade som gjorde 

det ännu svårare att jämföra resultaten. För en framtida liknande mätkampanj 

rekommenderas det därför att så många mätningar som möjligt utförs parallellt, och 

mätningar bör kompletteras med internkalibreringar med gasflaskor med känd 

metanhalt. 

Ett föreslaget nästa steg är att ta fram en gemensam handbok om mätningar av 

metanutsläpp från biogasanläggningar. Handboken ska hjälpa användaren att välja en 

mätmetod och ett angreppssätt anpassat till syftet med mätningen. Handboken bör 

lista för- och nackdelar för respektive metod och arbetssätt. Vidare bör den vägleda 

användaren i att analysera och förstå rapporterade värden från olika metoder och 

angreppssätt. Handboken skulle också vara en viktig referens vid ett framtida möjligt 

arbete med standardisering av metanutsläppsmätningar från biogasanläggningar. 

 

Figur 1. Jämförelse av rapporterade värden för utsläppspunkter av låg magnitud. Utsläpp från rötrestlager och 
tryckvakter ingår inte i sammanställningen. 

 

Tabell 1. Jämförelse av resultat från mätning på plats och med fjärranalys, tisdag 9 sept. 

Utsläppskälla  Värde (kg CH4/h) 

Summa utsläppskällor av låg magnitud 0.85 

Aminskrubber, tryckvakt utblås, vänstra huset 9.2 

Rötrestlager 4.4 / 6.5 

Summa på plats mätningar 14.4 / 16.5 

Fjärranalys spårgasmetoden (med std. avvikelse) 17.9 ± 3.1 
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Tabell 2. Jämförelse av resultat från mätning på plats och med fjärranalys, torsdag 11 sept. 

Utsläppskälla  Value (kg CH4/h) 

Summa utsläppskällor av låg magnitud 0.85 

Aminskrubber, tryckvakt utblås, mellan husen 0.32 

Rötrestlager 4.4 / 6.5 

Summa på plats mätningar 5.6 / 7.6 

Fjärranalys bLs modell (med std. avvikelse) 4.9 ± 1.5 
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Summary 

This project gathers some of the most experienced organizations and 

people in Europe regarding the measurement of methane emissions 

from biogas production plants. The project has two main objectives. 

The first objective is a literature study to gather existing data and 

knowledge, mainly in Europe, regarding methane emission 

measurement methods and results. The second objective is a 

comparison of some more or less established measurement methods 

during a joint comparative measurement campaign at a Swedish 

biogas plant, “Tekniska Verken i Linköping”. To our knowledge 

similar work has not been performed previously. 

Biogas is regarded as a climate-neutral fuel since the carbon in the biogas is fixed from 

atmospheric carbon dioxide, CO2. Biogas consists mainly of methane (CH4), and since 

methane in itself is a strong greenhouse gas, it is important to gather knowledge about 

the methane emissions in the form of losses that might occur in the biogas production 

chain, and subsequently it is important to minimize these emissions. When discussing 

methane emissions from biogas production, it is important to bear in mind that 

methane emissions do also occur in natural gas installations, in alternative manure 

treatment and in landfills. 

From the literature study it can be concluded that a number of studies of the methane 

emissions from biogas plants have been performed in different countries, using 

different methods and approaches. The large variation in methods makes it hard to 

draw general conclusions from the existing data. A rather large variation between 

typical plants in different countries makes the comparison even harder. Reported 

results of the total methane losses from biogas plants typically range between 1 – 3 % of 

the produced methane.  

There are in general two fundamentally different approaches to measure gas emissions 

from an area or facility that have diffuse emission sources, such as a biogas plant. They 

are remote sensing and on-site measurements. Comparative measurements were 

performed by six different teams, four of them applied on-site measurement methods 

and two performed remote sensing methods. The conclusion of the comparative 

measurements is that the general results from different methods and approaches are 

comparable. The studied plant is large in size and the overall emissions are comparably 

low. The total methane loss reported by the on-site measurement teams range between 

0.6 – 1.1 % of the produced methane. There are high and unknown uncertainties in all 

measurement results and they are due to both analytical uncertainties and time 

variation in emission sources during the testing period of one week. 

A suggested next step would be the production of a handbook on methane emission 

measurements from biogas installations. This handbook should aid the user in 

choosing a suitable measurement method and approach, depending on the purpose of 

the measurement task. It should list advantages and disadvantages of the respective 

methods and approaches. Further, it should guide the user in analyzing and 

understanding reported values using different methods and approaches. The handbook 

would serve as an important reference to future work on standardization of methane 



 
 

emission measurements from biogas installations. Standardization is important in 

order to ensure that plant performance is deemed likewise when installed in different 

countries. 
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Abbreviations 

Abbreviation Explanation 

ATEX Appareils destinés à être utilisés en ATmosphères 

EXplosibles. 2 EU directives to protect employees from 

explosion risk in areas with an explosive atmosphere. 

bLs backward Lagrangian stochastic (model). 

CHP Combined Heat and Power (unit). 

CRDS Cavity Ring-Down Spectroscopy. 

DBFZ Deutsches Biomasseforschungszentrum. German 

Biomass Research Centre. 

DGC Dansk Gasteknisk Center. Danish Gas Technology 

Centre. 

DTU Danmarks Tekniske Universitet. Technical University of 

Denmark. 

FID Flame Ionization Detector. 

FTIR Fourier Transform InfraRed spectroscopy. 

HBT Hohenheimer Biogas yield Test. 

IEA International Energy Agency. 

IR InfraRed spectroscopy. 

ISO International Organization for Standardization. 

LEL Lower Explosive Limit. The lowest concentration of a 

gas in air capable of producing a flash of fire in presence 

of an ignition source. Methane gas has a LEL of 4.4 vol-

%. 

OTNOC Other Than Normal Operating Condition. 

ppm parts per million 

SP Technical Research Institute of Sweden. 

TDLAS Tunable Diode Laser Absorption Spectroscopy. 

VDI Verein Deutscher Ingenieure. Association of German 

Engineers. 
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Definitions 

Phrase Definition 

Active area source An area source of emission with gas flow 

being actively driven off, typically an open 

biofilter where a fan controls the gas flow 

through the filter. 

Closed chamber Sampling hood which encloses the sampling 

area and does not allow for air passing in or 

out of the chamber, also called static chamber. 

Open chamber Sampling hood which encloses the sampling 

area and allows for air entering the chamber 

with a known mass flow and allows for air 

leaving the chamber, also called dynamic 

chamber. 

Passive area source An area source of emission where gas flow is 

not being actively driven off. 
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1 Background 

Biogas is regarded as a climate-neutral fuel since the carbon in the 

biogas is fixed from atmospheric carbon dioxide (CO2). The CO2 

released when combusting biogas is therefore regarded as being 

biogenic rather than fossil. Further, any consumption of fossil fuels 

replaced by biogas will lower the total CO2 emissions. Biogas consists 

mainly of methane (CH4), and since methane in itself is a strong 

greenhouse gas, it is important to gather knowledge about the 

methane emissions in the form of losses that might occur in the 

biogas production chain, and subsequently it is important to 

minimize these emissions. 

Methane is a greenhouse gas and contributes to global warming. Calculated per 

emitted ton, methane contributes 28-34 times more compared to CO2. Thus, a methane 

emission of one ton corresponds to 28-34 tons of carbon dioxide equivalents [1]. When 

discussing methane emissions from biogas production, it is important to bear in mind 

that methane emissions do also occur in natural gas installations, in alternative manure 

treatment and in landfills. 

The Renewable Energy Directive (Directive 2009/28/EC) was adopted in 2009 by the 

EU. According to the Directive, by 2020, all member states shall have 10 % (on energy 

basis) renewable fuels in the transport sector. A number of sustainability criteria must 

be met in order for a biofuel to be accounted. To be accounted as sustainable the 

greenhouse gas emission savings from the use of the biofuel must be at least 35 % 

compared with the use of a fossil fuel. Over time the greenhouse gas constraint 

increase, the savings must be 50 % by the year 2017 and from the year 2018, biofuels 

produced in plants taken into operation after January 1st 2017, the savings must be at 

least 60 % [2]. Consequently the sustainability criteria are closely related to methane 

emissions and measurements of these at biogas plants.  

Discussions have been ongoing in many parts of Europe and the world about this issue 

and several initiatives to determine the size of the losses have been made. 

Measurements have been performed using many different approaches and methods, 

and methane emission figures based on assumptions have also been found in literature. 

In biogas and upgrading plants methane emissions to air can occur in different parts of 

the system. Common sources of emissions at biogas producing plants are ventilation, 

buffer/storage tank, digester, digestate storages and dewatering equipment. Common 

sources of emissions at biogas upgrading plants are the off-gas, ventilation and analysis 

instruments. Except for the fact that methane is considered a greenhouse gas there are 

other reasons to why these emissions should be minimized and these are: safety 

aspects, economy and odor [3]. 

1.1 GOAL OF THE PROJECT 

The project has two main objectives. The first objective is a literature study to gather 

existing data and knowledge, mainly in Europe, regarding methane emission 

measurement methods and results. The second objective is a comparison of some more 
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or less established measurement methods during a joint comparative measurement 

campaign at a Swedish biogas plant, Tekniska verken in Linköping. To our knowledge 

similar work has not been performed previously. 

The goal of the project is that the results can serve as a basis for further projects, such as 

a common European standardization of measurement procedures and data evaluation. 

The latter is seen as particularly important in order to make available measurement 

results comparable. Standardization is important to ensure that plant performance is 

deemed likewise when installed in different countries. 

 

 



 MEASUREMENTS OF METHANE EMISSIONS FROM BIOGAS PRODUCTION 
 

16  

 

 

 

2 Measurement methods  

In general, there are two fundamentally different approaches to 

measure gas emissions from an area or facility that have diffuse 

emission sources, such as a biogas plant. They are remote sensing and 

on-site measurements. 

Remote sensing measurement methods include a number of different methods all 

aiming for quantification of whole site emissions by measuring atmospheric methane 

concentrations often off-site but not always. In this project two remote sensing methods 

were tried out; the backward Lagrangian stochastic (bLs) model and the tracer 

dispersion method. The bLs model is based on measurements of average methane 

concentrations along different paths downwind the facility together with 

simultaneously measuring the meteorological conditions in the surroundings. For this 

purpose an Open-Path-System (e.g. FTIR or laser) can be used along with one or more 

meteorological stations. With this data the emission rate can be simulated with an 

inverse dispersion model or radial plume mapping. The tracer dispersion method 

combines a controlled tracer gas release from the treatment facility with time-resolved 

concentration measurements downwind of the facility [4]. As the method applies a 

tracer gas to determine the air dispersion, modelling is not needed. The advantage of 

both methods is that they determine the total amount of emission from the full scale 

facility – integrating the individual emissions from different on-site sources/leak areas. 

Thus the methods cannot be used to locate single on-site emission sources or quantify 

their share of the total emission.  

On-site measurement methods aim to identify and quantify single sources of emission 

at the site. This approach enables the differentiation between stationary (e.g. gas 

upgrading) and diffuse (e.g. leaks) sources of emission.  

Some advantages and disadvantages of these methods are listed in Tabell 3. 

Tabell 3. Advantages and disadvantages of remote sensing and on-site measurement 

 Remote sensing On-site 

Advantages Determination of total 
emission rate 

Longer time measurement 
series 

No influence on plant 
operation/design 

No leakage search and 
encapsulating 

Time effort independent of 
plant size 

No modeling step involved 
(tracer disp.) 

Localization of single sources 

Quantification of single sources 

Low detection limit for total 
emission rate 

Weather independent 
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 Remote sensing On-site 

Disadvantages Depending on weather 
conditions (wind direction and 
wind speed) 

Disturbance by topography, 
buildings, trees, etc.. 
(especially relevant for bLs) 

Uncertainties of inverse 
dispersion modelling  (only bLs) 

Requires site access and prober 
tracer placement (only tracer 
dispersion) 

Requires drivable roads in 
prober distance to the site 
(only tracer dispersion) 

Only short time window per 
single source 

Possibly not all sources 
accessible  

Time consuming on large 
plants 

2.1 REMOTE SENSING 

To date no international standard exists for the measurement of fugitive and diffuse 

methane emissions from anaerobic digestion facilities. However, there is a basic 

guideline on the investigation of diffuse sources (VDI 4285) where remote sensing 

methods are considered. In addition, a mandate from the European Commission to 

CEN has been issued to standardize measurement techniques for the emission 

monitoring of diffuse emissions from industrial sites, such as refineries [5]. Several 

remote sensing methods are descripted in detail by the EPA handbook [6]. 

2.1.1 The inverse dispersion modelling method 

Total methane emissions were quantified using an open path spectrometer sensitive to 

methane in the downwind plume, a meteorological station with 3D sonic anemometer 

and a backward Lagrangian stochastic model. This model is based on the Monin-

Obukhov similarity theory [7]. The model approximates the emission source as a 

homogeneous area. If the measurement path is placed far enough downwind this is a 

viable simplification [8]. The spectrometer measures the path averaged methane 

concentration on path lengths of up to 500 m. Alternative to TDLAS devices the 

methane concentration can be determined by Open Path Fourier Transform Infrared 

Spectroscopy (FTIR) or mobile point measurement devices. The advantage of the open 

path devices is that a continuous measurement covering the same path is possible over 

a long time period. A 3D sonic anemometer is essential to register the turbulence 

parameters in the atmosphere. These are needed for the simulation of the emission rate. 

Apart from Windtrax other Lagrangian dispersion models are available, e.g. LASAT 

(Germany) or NAME (United Kingdom). This method has already been used to 

determine emissions from farms, landfills and biogas plants. The setup is illustrated in 

Figure 1. 

For this project DBFZ applied the bLs method for whole site methane quantification, 

see Annex 3. 



 MEASUREMENTS OF METHANE EMISSIONS FROM BIOGAS PRODUCTION 
 

18  

 

 

 

 

Figure 1. The setup of TDLAS for bLs modelling of the emission rate from area sources. 

2.1.2 The tracer dispersion method 

Total methane emissions can be quantified using a mobile tracer dispersion method 

that combines a controlled release of tracer gas from the biogas facility with 

concentration measurements downwind of the facility, by using a mobile high-

resolution analytical instrument ( [9], [10], [11]). The tracer dispersion method is based 

on the principle that a tracer gas released at a source area, in this case a biogas facility, 

disperses into the atmosphere likewise the methane emitted from the same area. Since 

the ratio of their concentrations remains constant along their atmospheric dispersion, 

the methane emission rate can be calculated using the following expression when the 

tracer gas release rate is known: 

 

𝐸𝐶𝐻4
= 𝑄𝑡𝑟 ∗

∫ (𝐶𝐶𝐻4
)𝑑𝑥

𝑝𝑙𝑢𝑚𝑒 𝑒𝑛𝑑

𝑝𝑙𝑢𝑚𝑒 𝑠𝑡𝑎𝑟𝑡

∫ (𝐶𝑡𝑟)𝑑𝑥
𝑝𝑙𝑢𝑚𝑒 𝑒𝑛𝑑

𝑝𝑙𝑢𝑚𝑒 𝑠𝑡𝑎𝑟𝑡

𝑀𝑊𝐶𝐻4

𝑀𝑊𝑡𝑟
 

 

where 𝐸𝐶𝐻4
 is the methane emission in mass per time, 𝑄𝑡𝑟 is the tracer release in mass 

per time, 𝐶𝐶𝐻4
 and 𝐶𝑡𝑟 are the measured downwind concentrations in parts per billion 

(ppb) subtracted of their background concentrations and 𝑀𝑊𝐶𝐻4
 and 𝑀𝑊𝑡𝑟 are the 

molar weights of methane and tracer gas, respectively [9]. 

 

 
Figure 2. The principle of the dynamic plume method for quantifying GHG emissions from area sources. 

The tracer gas should have a long atmospheric lifetime. Tracer gases often used include 

N2O, SF6, and acetylene. Downwind plume concentrations are measured driving along 

transects with an analytical equipment, which is a fast and has a high sensitivity  

capable of detecting methane and tracer gas concentrations down to ppb level every 
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second ( [9], [11]). A GPS should be connected to the instrument for logging the 

measured concentrations to their geographical location. Correct simulation of the 

methane emitted from the source is very important to obtain precise emission rates. In 

order to obtain the best possible simulation of the source area, the tracer gas should be 

released from the part of the plant where the most elevated methane concentration are 

seen and/or expected. The principle is illustrated in Figure 2. 

For this project DTU applied the tracer dispersion method for whole site methane 

quantification, see Annex 5. 

2.2 LEAK DETECTION 

Leak detection, as the name suggests, is performed to detect (to locate) leakages. The 

methods used for leak detection can not necessarily be used to quantify the size of the 

emission, or to calculate the mass flow of e.g. methane. 

The simplest form of leak detection can be performed without technical equipment, 

using only the human senses. Leaks can be detected by smell, sound, vision or touching 

a leaking object. With the additional help of leak detection spray, that helps to produce 

foam or bubbles at the leak, many leaks can be detected and hence hopefully avoided. 

For performance of systematic leak detection it is however recommended to use a 

portable leak detection instrument, using a sensor that reacts to a rise in methane 

concentration. Common simple and cheap leak detection instruments have detection 

limits of 1-5 ppm, which will enable the user to find very small leaks. Some leak 

detection instruments will give a value of the methane concentration on a display. Even 

though the uncertainty of this value is comparably large it is allowed to use in the 

Swedish voluntary agreement system if the emission in a certain measuring point is 

less than 0.1 % of the total amount of methane produced in the plant and less than 10 % 

of the total emissions. Common sensors are semiconductor sensors or catalytic sensors 

[3]. 

In recent years methane lasers have been developed. These instruments measure the 

total methane concentration along the trajectory of a laser beam that is emitted from the 

instrument, giving the results in a path-integrated unit (ppm m). This technique makes 

it easier to perform leak detection over large areas. 

The most advanced leak detection instrument available is the IR camera, which 

continuously shows an image where leaking methane can clearly be seen in the picture, 

which is otherwise not visible by the human eye. The IR camera is capable of producing 

both images and videos. With the aid of an IR camera, large areas can quickly be 

scanned for leaks. The IR camera is not capable of detecting very small leaks, an 

approximate limit of detection is 0.5 vol-% methane concentration, but the size of the 

leak (the mass flow) will also have an influence on the detection limit. 

2.3 ON-SITE MEASUREMENTS 

2.3.1 Methane concentration 

The measurement of methane concentration in waste gases from stationary sources is 

standardized in EN ISO 25140:2010 and EN ISO 25139:2011. EN ISO 25140:2010 

describes the continuous method of using a Flame Ionization Detector (FID), together 
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with a Non-Methane Hydrocarbon cutter which filters out other hydrocarbons than 

methane. This instrument usually has a wide range of concentration measuring ranges, 

from 1 ppm up to 100 000 ppm (10 vol-%). This technique has been applied by DGC 

and SP in this project, see Annexes 4 and 6. The manual sampling method where gas 

samples are taken in bags for later analysis with a gas chromatograph (GC) in a 

laboratory is described in EN ISO 25139:2011. This technique has been applied by DBFZ 

in this project, see Annex 2 (instead of gas bags evacuated glass vials with 22 ml 

volume were used). 

Apart from these standardized methods there are also other techniques available to 

determine the methane concentration such as photo-acoustic, IR and FTIR analysers. 

The photo-acoustic technique has been applied by AgroTech in this project, see 

Annex 1. 

2.3.2 Direct measurement of gas flow 

Determining the gas flow is a great challenge in these measurements since the situation 

varies a lot between different sampling points and between plants. In addition, the 

sampling points/sources of emission are rarely prepared for measurements. The main 

goal is to measure the flow but in many cases it is technically or practically difficult to 

perform. There are a number of measurement methods to use, for example pitot tube 

measurements with differential pressure readings, hot wire anemometer, vane 

anemometer etc.., and a standardized approach is described in EN ISO 16911-1:2013. 

The technique of direct measurement of the gas flow has been regularly applied by SP 

in this project, see Annex 6, but other teams also used the technique for some emission 

sources. 

If measurements are difficult or impossible to perform there are other ways to 

determine the gas flow, e.g. the manufacturer’s fan data for a forced ventilation release 

and as a last resort template values can be used. 

2.3.3 Open area measurements 

Concentration and flow measurements as described above cannot be performed on 

open area sources, such as digestate storage tanks or biofilters. Different types of 

sampling hoods do exist, which can be used to encapsulate a small area of the emission 

source, enabling measurement and calculation of the total area source emission. 

The simplest case of such a sampling hood is the sampling hood for biofilters, where 

the hood has a surface area of typically 1 m2 at the bottom placed on the biofilter 

surface, and a sampling pipe area of typically ~0,0001 m2 at the top, see Figure 3. In this 

way the very low gas flow through the biofilter surface is possible to measure. This 

type of sampling hood, for active area sources, is standardized by VDI [12]. This type of 

sampling hood was however not used in this project. 
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Figure 3. Sampling hood for biofilters. 

 

For other area sources, such as digestate storage tanks, sampling hoods based on open 

chamber and closed chamber techniques can be used (see definitions). For a closed 

chamber a certain sample area is enclosed by the closed chamber and the gas 

concentration within the chamber is sampled periodically [13]. The measuring principle 

is based on the measurement of an increasing gas concentration inside the chamber 

volume. After putting the closed chamber on the emission surface a gradually 

increasing gas concentration can be determined. For this project DBFZ applied the 

closed chamber technique at some emission sources, see Annex 2. 

For the closed chamber, samples are taken at certain time intervals (e. g. 5, 10, 15, 20, 25, 

30 min). Then the emission rate can be calculated from the slope of the gas 

concentration, the chamber volume and the encapsulated surface area according to 

Equation 1. 

  

ESpec = 
∂c

∂t
 ∙ 

V

A
 ∙ 0.06 Equation 1 

ESpec 
Surface specific emission 

mass flow 

g m-2 h-1 

∂c

∂t
 

Linear slope of gas 

concentration 
mg m-3 min-1 

V 
Volume inside the 

chamber 

m3 

A Encapsulated surface area m2 

For an open chamber measurement a known flow of air is passed through the chamber 

allowing for calculation of the mass flow emission, see Figure 4. Both the open chamber 

and closed chamber sampling hoods, for passive area sources, are standardized by VDI 

[14]. For this project, SP applied the open chamber technique at the digestate storage 

tank, see Annex 6. The open chamber technique can also be applied when measuring 

the emission from leakages, as has been applied by DBFZ in this project, see Annex 2. 
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Figure 4. Schematic principle of an open chamber. 

2.3.4 High volume sampler technique 

The basic technique of the high volume sampler is evacuating the leaking biogas from a 

hole or crevice together with a large amount of diluting air. The sample of diluted 

biogas is conveyed to a flow measuring device and FID analyzer and the total mass 

flow of leaking methane is calculated as the product of volume flow and methane 

concentration above background value in the diluting air. 

To control the leaking biogas flow the actual leakage (the hole or crevice) is covered by 

a suction hood or wrapped in plastic sheet, allowing for dilution air and leaking biogas 

to be conveyed to the flow and concentration measurement. 

For this project AgroTech and DGC applied the high volume sampler technique at 

most emission sources, see Annexes 1 and 4. 

 

Figure 5. High volume sampler. 

 

Figure 5 shows the principle of the sampling technique and a picture of a high volume 

sampler where the sampling hood is attached to a silo tank.  
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The sample system consists of: 

- Sampling hood or  

- Antistatic ventilation hose  

- ATEX approved blower  

- Control box including safety circuit in case of too high concentration of 

methane in the sample gas (alarm breaks in at 10 000 ppm methane equivalent 

to 25 % of LEL) 

- Flow measurement (calibrated orifice) 

- FID equipped with a Non-Methane Hydrocarbon cutter according to section 

2.3.1. 

The high volume sampler technique is described elsewhere and may not be exactly the 

same layout as described above, but the main principle is still the determination of 

coherent values of sample gas flow and methane concentration.  

Also portable, intrinsically safe, battery-powered high flow samplers are commercially 

available. These instruments are mainly designed to determine the rate of gas leakage 

around various pipefittings, valve seals and compressor seals found in natural gas 

transmission, storage, and compressor facilities. 
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3 Biomethane production and methane 
emission measurements in the studied 
countries 

This chapter details the biomethane (biogas) production in studied 

European countries and also gives an overview of the known methane 

emission measurements that have been performed. 

3.1 BIOMETHANE PRODUCTION 

This chapter is based primarily on the publication IEA Bioenergy Task 37 – Country Reports 

Summary 2014 [15].Unless stated otherwise, this is the source for all information given herein. 

The biogas market has been established in a number of European countries with 

significant growth in the 2000 – 2020 period. The largest producers of biogas today are 

Germany, Italy, UK and France [16]. 

The largest European producers of biomethane (biogas upgraded to natural gas 

quality) are Germany, Sweden, Austria, Switzerland and the Netherlands [16]. 

Countries such as Denmark and UK are growing fast and are currently constructing 

several biogas upgrading plants due to the introduction of attractive financial 

incentives.  

Biogas is produced from biogas in landfills and in anaerobic digesters. The feedstocks 

used for anaerobic digestion varies in different countries. The main production is based 

on energy crops in Germany while it is mainly based on various waste products in 

Sweden and UK [15]. 

Also the utilisation of the biogas varies between the countries. Electricity production is 

dominating in Germany and UK while automotive fuel is dominating in Sweden. The 

utilisation of biogas as automotive fuel is gaining more interest in several countries and 

is expected to grow significantly in countries such as Denmark, Germany and UK [15]. 

Below follows a description of the current situation and expected development in the 

countries that are further discussed in this report. 

3.1.1 Austria 

Today the main production of biogas is derived from energy crops, sewage sludge and 

landfills. The annual biogas production corresponds to 1.5–2.5 TWh. Current trends are 

that high prices of biogas feedstock (e.g. maize) lead to severe difficulties to operate the 

plants economically. This has led to keen interest to investigate the possibility to use 

alternative substrates. There is a total of 368 biogas plants in Austria. 

In Austria biogas is utilised mainly for electricity and heat production. Even though the 

aim is to upgrade more biogas to biomethane for use as automotive fuel, this change is 

taking place rather slowly. There are around 7,700 natural gas vehicles (NGVs) and 

about 180 compressed natural gas (CNG) filling stations. Three of the filling stations are 

situated at biogas upgrading plants. There are 11 biogas upgrading units in operation. 

All commercial technologies are represented (amine scrubber, water scrubber, 
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membrane and PSA). The upgrading plants are rather small, 600-800 Nm3/h, and have a 

combined capacity of around six million Nm3 biomethane annually. 

3.1.2 Denmark 

154 biogas plants are in operation in Denmark, with a yearly production of 1.2 TWh of 

biogas. Animal manure is the most important biogas feedstock, with a high prospective 

potential. According to the Danish Biogas Association, roughly 7% of the animal 

manure is today supplied to biogas plants in Denmark. The aim is to increase it to 50% 

by 2020. Along with manure, organic wastes from industry and sewage sludge also 

make a significant contribution to the biogas production today. In 2012 the Danish 

Energy Agency predicted a 4-fold increase (to 4.7 TWh) of the total biogas production 

by 2020. The Biogas Task Force concluded in 2013 that the increase will only be a 

doubling, to around 3 TWh by 2020. A limited number of biogas projects, representing 

an increase of about 400 GWh, have already reached a final decision. 

Today biogas is mainly used for heat and power production in Denmark. The Danish 

government believes that biogas will be an important automotive fuel in the future, 

especially when replacing fossil fuels used by heavy duty vehicles. The first four 

Danish biogas upgrading plants are in operation and a number of biogas upgrading 

projects are at various stages of planning. There are seven biogas filling stations and 

more are about to be established. Currently, around 80 CNG cars are in operation in 

Denmark. In 2013 there was only one small biogas upgrading plant in operation in 

Denmark that was supplying biomethane to the natural gas network. In 2014, four new 

biogas upgrading plants were taken into operation. The use of biogas in Denmark as a 

transport fuel is only in its early days, and the main driving force is government 

policies in the form of certificates. At the end of 2014 there were 10 filling stations for 

compressed natural gas (CNG). 

3.1.3 France 

The vision of the French Environment and Energy Management Agency is to produce 

70TWh biogas annually by 2030 and that 600 biogas plants will be built every year. 50% 

of the biogas produced shall be injected into the grid, 30% shall be used to generate 

electricity and the remaining 20% shall be used to produce heat. In 2050, the aim is to 

produce 100TWh. 

In France there are 256 biogas plants and 245 landfills. The number of farm AD plants 

is expected to double by the end of 2013. A recent study financed by ADEME on The 

estimation of feedstock for AD use shows that the potential resources for AD will give 

a probable potential of 56TWh by 2030. Based on its own calculation, an estimation of 

ADEME expects a theoretical production of 70TWh by 2030. 

In France there is a strong development of on-farm and centralized biogas plants and 

for landfills to recover biogas for electricity generation (today only 90 out of 245 

landfills utilize biogas). Around 120 on-farms AD plants were built by the end of 2013 

and nearly 15 centralized units. In addition, 60 WWT and 80 agrofood industries AD 

plants are currently in operation. In 2010, a study showed a relatively low energy 

recovery from biogas, around 60% of raw energy, the main part coming from landfills. 

There are only four biogas upgrading plants in operation, but more than 400 

applications to inject biomethane into the natural gas grid, which indicate a significant 

increase of the number of upgrading plants in a nearby future. Today, all the 
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biomethane produced is injected into the natural grid or sold as fuel for vehicles. More 

than 13,500 vehicles, of which 3,500 are trucks, are in use in France with a daily 

consumption of 265,000 Nm3. 37 public filling stations and around 130 private filling 

stations are in operation. 

3.1.4 Germany 

The share of renewable energies in energy generation is to be raised to 40-45 percent by 

2025, to 55-60 percent by 2035, and to 80 percent by 2050. The reform of the Renewable 

Energy Sources Act (EEG) should play a key role in the success of the energy reforms. 

The introduction of specific growth targets for different technologies is a new 

development for the German renewables support scheme. The annual growth of 

biomass including biogas is limited to a maximum of 100 MW compared to 2,500 MW 

for onshore wind and solar power. 

The 7960 biogas plants in the agriculture sector make the biggest contribution to biogas 

production today with electricity and heat supply of 25,120 GWh/year and 10,550 

GWh/year, respectively. According to information from the Federal Ministry for the 

Environment, Nature Conservation, Building and Nuclear Safety, in 2013 the main part 

of the biogas was used for electricity and heat production, while biogas utilization as an 

automotive fuel is rare. The share of energy consumption in Germany for electricity, 

heat and fuel amounted to 4.7%, 1% and 0.1%, respectively. 

In 2014 a total number of 151 biogas upgrading plants were in operation with a feed-in 

capacity to the gas grid of 93,650 Nm3/h biomethane. Compared with data from the 

previous year, the number of plants increased by 25%. Amine scrubbing, water 

scrubbing and pressure swing adsorption (PSA) are the most commonly applied 

technologies. Due to the reduction in the feed-in tariffs, the number of new biogas 

upgrading plants will presumably be smaller than the 20-30 plants/year erected in 

previous years. Surveys have revealed that at least five of the projects under 

construction or in planning are not realized due to the 2014 EEG reform and/or a 

continuation of the projects are not yet finally clarified. 

Based on data from Erdgas Mobil GmbH in 2013, about 170 filling stations with 100% 

biomethane have sold 300 TWh biomethane. This corresponds to 20% of natural gas 

consumption by the 95,000 registered gas vehicles in Germany. 

3.1.5 Sweden 

In Sweden there is a governmental aim to produce 50 percent of the energy from 

renewables by 2020 (this has already been reached), but there are no specific targets for 

biogas production. Sweden also has a governmental vision to have a fossil free 

transportation sector by 2050. The results from a public inquiry on how to reach this 

vision are expected to be important for the future governmental support for 

biomethane production in Sweden. 

In Sweden the production of biogas has been fairly constant at around 1.3–1.7 TWh for 

several years. The main reason is the difficulties in showing a reasonable profit for new 

investments and new biogas plants. Biogas produced in new plants has been balanced 

by the steady decline in landfill gas production.  

In Sweden, around 50% of the biogas is used as CNG/biomethane. This part is 

increasing every year to meet the increasing demand from the increasing number of gas 
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vehicles. The main part of the remaining biogas is used for heat production. Nearly all 

upgraded biogas is used as automotive fuel, the annual biomethane production in 

Sweden is around 900 GWh. The biomethane is produced in 53 biogas upgrading 

plants with various technologies (~70% water scrubbers and, ~15% PSA, ~15% amine 

scrubbers). In one plant, with a capacity of 60 GWh, the biomethane is liquefied and 

sold as LBG (Liquefied Biogas). Of the methane used as an automotive fuel, the 

biomethane share was 58% on energy basis in 2013. It is used by 47,000 gas vehicles, of 

which 2,200 are buses and 750 are heavy duty vehicles. Around 210 filling stations 

dispense CNG/biomethane, five of these also have liquefied gas, LNG/LBG. 

3.1.6 Switzerland 

The Federal Council has adopted the energy strategy 2050 in order to guarantee 

security of energy supply in the long term. The thrust of this strategy is to gradually 

phase out nuclear power and, on the other hand, to develop hydro power as well as the 

new renewable energies (sun, biomass, biogas, wind, wastes and geothermal heat) and 

to improve energy efficiency of buildings, appliances and transportation. Energy 

supply difficulties could be overcome by fossil-fuelled power generation and by energy 

imports. Concerning biogas, the energy strategy aims an annual electricity production 

of 1.6 TWh by 2050. In order to reach this goal, the focus is on coordinated energy 

research.  

In Switzerland there are around 610 biogas plants and six landfills. The total gross 

biogas production was 1,129 GWh in 2013. The biogas is mainly used to produce 

electricity and heat in CHP plants, but the biomethane production is growing rapidly. 

There are 19 upgrading plants (mainly PSA units, amine scrubbers and organic 

physical scrubbers), two at agricultural sites, eight at wastewater treatment plants and 

seven at biowaste AD sites, with a total biomethane production of approximately 128 

GWh. The target is to inject 300 GWh into the grid by 2016. Today more than 11,000 

vehicles run on methane and 140 filling stations are in operation. 

3.2 EXISTING MEASURING PROGRAMS AND PERFORMED MEASUREMENTS 

This chapter briefly describes existing measuring programs and other performed 

measurements in different countries which are known to the project group. 

3.2.1 Austria 

In Austria a large project called “Klimoneff” was performed in the last years [17]. The 

focus lay on the quantification of fugitive methane emissions from agricultural biogas 

plants using a remote sensing method and on the analysis of digestate. 

The remote sensing method in use was Open Path TDLAS in the downwind plume in 

combination with inverse dispersion modelling (refer to section 2.1). The emission 

quantifications were performed on five facilities. One of those was analysed in detail. 

For this biogas plant the results from seven days of data collecting gave a median value 

of 4 % loss of the produced methane when the open digestate storage tanks were filled. 

During periods when the storage tanks were empty, data from 6 measurement days led 

to quantification of 3 % methane loss. The four other plants were surveyed for two 

times five hours each. The estimated methane loss during these periods was given 

within the range from 1.6 up to 5.5 %. At least two of these plants had open digestate 
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storage tanks. For parts of these measurements operational problems of the facilities 

were reported. 

3.2.2 Denmark 

Until 2012/13 there have been no studies in Denmark measuring and documenting 

methane leakages and emissions from biogas plants.  

In April 2013 AgroTech and DGC initiated a project with the overall aim of reducing 

greenhouse gas emission from biogas plants in terms of methane losses. This is done by 

developing a method for identification and quantification of methane leakages. In the 

project, “Methane Emission from Danish Biogas Plants” funded by Energinet.dk under 

the ForskEL programme, nine biogas plants were screened for methane emissions and 

the identified leakages were subsequently quantified. One of the tasks in the Danish 

project is to test and evaluate the selected method against another method. 

Participating in the Linköping measurements in this current European project fulfil this 

demand. The project has developed an operational method for identification and 

measurement of methane emission from biogas plants. The developed method was 

utilized to identify and quantify methane emission at ten Danish biogas plants. In total 

50 leakages were identified. The measured methane emission from individual leakages 

varied considerably from zero to 276,000 Nm3 CH4 per year. The total amount of 

methane emitted from the studied biogas plants summed up to 4.2 % of the total 

methane production at the studied plants.  

In 2012/13 DTU Environment performed emission measurements at Avedøre 

wastewater treatment plant located in the Copenhagen area, Denmark [11]. In total, 9 

measurement campaigns were conducted where the total emission of methane and N2O 

from the plant was quantified using the tracer dispersion method. The measurements 

performed on the plant showed that most of the methane emission occurred from the 

anaerobic sludge treatment, while the majority of the N2O emission derived from the 

biological nitrogen removal in the aeration tanks. The methane emission rate varied 

between 5 kg h-1 up to 92 kg h-1, whereas the emission of N2O ranged from the detection 

limit (0.4 kg h-1) up to 10.5 kg h-1. The high emissions were observed during periods 

when the plant experienced operational problems. For example, the highest emission of 

methane was measured during a period with foaming problems in the anaerobic 

digesters, while the highest N2O emission was observed during sub-optimal operation 

of biological nitrogen removal in the secondary treatment of wastewater. The measured 

methane emissions accounted for between 2 and 33% of the total methane production 

at the plant. Similarly it was seen that between 0.15 (detection limit) and 4% of the total 

nitrogen into plant was released via N2O emissions. 

From 2013 to 2015, DTU Environment has measured methane and N2O emissions using 

the tracer dispersion method from seven wastewater treatment plants, all with 

anaerobic digesters. The investigations are still ongoing and the results are not yet 

reported. Measured methane emissions varied between 3 and 30 kg h-1 [18]. 

In 2013/14, DTU Environment measured methane emissions from three plants treating 

organic waste (household waste, garden waste and industrial waste) and producing 

biogas. Two of the plants have combined aerobic / anaerobic treatment, while one plant 

only performs anaerobic treatment. All three plants showed significant emissions of 

methane (20 to 40 kg h-1) [18]. 
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3.2.3 France 

French regulation defines some requirements on methane monitoring: methane 

concentration in biogas and emissions from combustion plants (engine, turbines, 

boilers) should be monitored (CH4, CO2, NOx, SOx). 
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Studies have been conducted on anaerobic digestion in France for 2 years in order to 

identify: 

- plant specific feedback on: 

o incidents / dysfunctions or OTNOC situations that could lead to 

methane emissions, and  

o measures that were taken to limit emissions, and to prevent future 

emissions (continuous improvement). 

o specific hotspot methane emissions, installations or activities where 

methane could be emitted directly to atmosphere.  

The information was collected through a bibliographic review and situations applicable 

to French plants. In that way, a typology of anaerobic digestion plants was drawn up 

(for environmental and accidental risk analysis). 

Several programs to quantify emissions (including methane) are in progress or have 

started during 2015. The objective is to identify and quantify biogas leakages at several 

stages [19]. 

Performed measurements: 

- Stack emissions 

Measurement campaigns were done in three farm installations on emissions from 

engines. Results showed that methane emission from engines are in the range of 1,7 

– 3,2 % of methane production [20]. 

 

- Diffuse emissions 

Some operators have voluntarily done methane emission detection by IR cameras 

to identify diffuse and fugitive sources. These measurements do not provide 

quantification but help operators to identify spot emissions and measures to be 

taken to limit emissions or identify equipment that needs to be monitored or 

repaired. 

3.2.4 Germany 

Due to the "Renewable Energies Act" the number of biogas plants in Germany has 

grown to about 8,000 (agricultural biogas plants with CHP or biogas upgrading and 

bio-waste treatment plants) [21]. Consequently the avoidance of GHG emissions from 

biogas plants has been of paramount importance for a few years. Concerning the 

investigation of GHG emissions, please note that the biogas technology employed at 

agricultural biogas plants and bio-waste treatment plants differs significantly.  

Agricultural biogas plants: 

IR cameras and hand held methane lasers are used allowing remote sensing of leakages 

from plant components which are difficult to access. There are results showing the 

occurrence of leakages in gas-conducting plant components on biogas plants. One 

project investigated ten biogas plants and showed that biogas losses from leakages are 

relevant [22]. Eight plants had an overall number of 22 leakages and seven of them 

were evaluated as serious leakages (four occurrences of untight wires to adjust 
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agitators; bull eye (observation window), pipe penetration, leakage in double 

membrane roof).  

Another project investigated a large number of biogas plants and evaluated the data 

concerning the frequency of occurrence of certain leakages [23]. Results from this 

project are shown in Figure 6. 

 

Figure 6. Number and location of detected leakages (modified from [23]). 

 

Typical leakages are the foil roofs (single and double membrane) and the wires to 

adjust the agitators, but also different leakages in gas-conducting plant components (e. 

g. CHPs, compressors, gas pipes) can occur. 

In yet another project, ten agricultural biogas plants in Germany were investigated [24]. 

From these ten plants seven were based on wet fermentation, two on dry continuous 

fermentation (no. 1 and 6) and one on dry batch fermentation (no. 5). The measurement 

program included two measurement periods (summer and winter) in each plant, and 

every plant component was investigated (substrate storage, feeding unit, digestion, 

digestate storage and gas utilization). 

The methane emissions were determined by an on-site method. First a plant survey 

was carried out to identify the emission spots and in the second step the emissions 

were quantified. The silage storage, the feeding units (e. g. screw conveyor, mixing 

tank) and the digestion (e. g. leakages, methane diffusion in the supporting air of 

double membrane roofs) were investigated by means of an open chamber system. The 

methane emissions from the open digestate storages were determined by a closed 

chamber. Not gastight covered storages and substrate storage tanks were investigated 

by means of the air injection method. The emissions from the gas utilization were 

directly measured in the exhaust pipe. The measured methane emission factors are 

shown in Figure 7. 
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Figure 7. Methane emissions in g CH4 kWhel
-1 from ten agricultural biogas plants in Germany. The emission 

sources are classified as gas utilization (CHP/upgrading unit), open/not gastight covered digestate storages 
and miscellaneous [24]. 

 

The main emission sources were open or not gastight digestate storage tanks and the 

gas utilization. While plants 1, 2 and 6 had gastight covered digestate storages and 

consequently did not show any detectable methane emission from this source, the 

remaining plants emitted methane amounting to 0.40 – 20.14 g CH4 kWhel-1 (0.22 – 

11.22 % CH4 loss) from open/not gastight covered digestate storages. However, the 

methane emissions from the open/not gastight covered digestate storages were based 

on two single measurements only. So the results do not represent an average emission 

factor over a whole year. 

Furthermore each plant showed a detectable methane slip in the exhaust of the gas 

utilization. The emission factors from the CHPs varied from 1.09 to 5.89 g CH4 kWhel-1 

(0.61 – 3.28 % CH4 loss) for the single CHP units. These methane emissions were caused 

by an incomplete combustion in the engine. The methane slip from the upgrading units 

(no. 8 and 9) amount to 9.58 and 2.19 g CH4 kWhel-1 (5.34 and 1.23 % CH4 loss) which 

were caused by a defective or missing post combustion.  

Miscellaneous emissions sources (e. g. leakages or the processing of fermentation 

residues) contributed marginally to the overall methane emissions from the 

investigated plants. An exception is a leakage from plant 3 which was not considered in 

Figure 7. This leakage (a not properly closed service opening) caused an emission factor 

of 5 % CH4-loss. 

In the last project covered in this section, three agricultural biogas plants with an 

upgrading step to biomethane were investigated [25]. Each plant was based on wet 

fermentation and used a chemical scrubber for the upgrading process. Plants 1 and 2 

used energy crops and plant 3 used residual materials (distiller's wash). While the 

digestate storages of plant 1 and 3 were gastight, the storage tanks from plant 2 were 

not gastight covered. 

The methane emissions were determined by both an on-site method (comparable 

procedure to [24]) and a remote sensing method by means of an open-path TDLAS 
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system and the software tool Windtrax. The measurements were carried out 

simultaneously to ensure the comparability of the results, which are shown in Table 4. 

 

Table 4. Methane emissions in % CH4-loss from three biogas plants with an upgrading step to biomethane in 
Germany [25] 

 On-side method Remote sensing method 

 MP-Result 

in % CH4 

Uncertainty 

in % CH4 

Average 

in % CH4 

Uncertainty 

in % CH4 

BMA I – MP II 0.12 0.02 0.51 0.21 

BMA I – MP III 0.13 0.02 

BMA II – MP I 0.12
1
 0.67

2
 0.03

1
 0.30

2
 2.0 0.8 

BMA II – MP II 0.96
1
 1.29

2
 0.26

1
 0.55

2
 

BMA II – MP III 0.22
1
 - 0.05

1
 - 

BMA II – MP IV 0.72
1
 1.33

2
 0.22

1
 0.66

2
 

BMA II – MP V 0.09
1
 - 0.02

1
 - 

BMA III – MP I 0.14 0.04 0.22 0.12 

BMA III – MP II 0.13 0.03 

BMA III – MP III 0.05 0.01 

BMA III – MP IV 0.05 0.01 
1
 … Summation of only actually measured emission sources 

2
 … Extrapolation of measured emission factors on the overall system 

BMA = biomethane plant; MP = Measurement Period 

 

From the comparison of the two methods the following conclusions were drawn [25]: 

 “Both methods were suitable for quantification of methane emissions of biogas 

plants.”  

 The on-site method is time consuming on large sites, but identifies individual 

sources. Only short periods can be measured at each emission spot. Recurrent 

measurements during the year may decouple the results from environmental 

conditions. 

 “The remote sensing method provides meaningful values over the total 

emission rate of the plants and their temporal variability. The method is highly 

dependent on wind conditions and the topological and infrastructural 

conditions.” Furthermore the measurement does not affect the plant operation.  

  “At all three plants, the emission rate measured by the remote sensing method 

was higher than from the on-site method. A comparison of emission rates of 

two plants, one of them determined by the on-site method and the other by 

remote sensing, would not be justified due to the systematically lower estimate 

by the on-site method.”  

 “Malfunctions can have a significant impact on the total emission level of a 

biogas or biomethane plant. The continuous measurement of emissions from 

overpressure/underpressure valves is a promising way to represent the 

http://dict.leo.org/ende/index_de.html#/search=comparability&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
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relationship between the operating conditions of biogas plants and the 

resulting emissions.”  

Bio-waste treatment plants: 

In one project twelve German bio-waste treatment plants were investigated [26]. From 

these twelve plants four were based on wet fermentation, five on dry continuous 

fermentation and three on dry batch fermentation. The plants were chosen as a 

representative selection to the German plant inventory. The publication presents the 

results of the GHG emission measurements and the resulting carbon footprints from 

the plants. 

It must be pointed out that bio-waste treatment plants are designed differently 

compared to agricultural biogas plants. Many plant components (e. g. substrate 

delivery and pretreatment, processing of fermentation residues, digestate storages, 

composting tunnel, batch digesters) can be encapsulated and exhausted. Then the 

exhaust is conducted to a biofilter and is treated there. Consequently each emission 

source which was conducted to the biofilter is part of this overall emission source. So 

the single emission sources (e.g. post composting process) cannot be compared 

between the single plants. 

The plants are partly very different concerning their process technology and this has to 

be considered if the methane emissions should be interpreted in the right way. The 

results show that the emissions are dominated by the manner of plant operation. Figure 

8 shows the component-specific emissions (as carbon dioxide equivalents) from each 

plant. Except for plant 6 (high ammonia emissions caused by non-operating acid 

scrubber), methane is the most important GHG. 

Insufficient aeration or unaerated post-composting processes led to increased GHG 

emissions (especially methane, cp. Figure 8 plants no. 1, 2 and 12). In some plants the 

GHG emissions from the post-composting are included in “Emissions after biofilter” 

(cp. Figure 8, e.g. biogas plant 10), because the post-composting process was 

encapsulated and attached to the biofilter. Furthermore the results show that the open 

storage of fermentation residues can cause considerable GHG emissions and should be 

avoided. 
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Figure 8. GHG emissions in kg CO2-eq Mg-1 bio-waste from twelve bio-waste treatment plants in Germany 
(modified from [26]). 

Besides diffuse and stationary point sources and area sources, operational and time-

variant methane emission sources have to be considered as well. In one study pressure 

relief vents from two agricultural biogas plants were investigated over long time 

periods (60 – 100 days) by means of a vane anemometer and temperature sensor 

permanently installed in the exhaust duct of the pressure relief vent. The methane 

losses measured were 0.06 CH4-loss (plant A, winter) and 3.88 % CH4-loss (plant B, 

summer). There were different influences which affect the methane emissions from 

pressure relief vents; the plant management during normal operation, OTNOC 

situations (mainly the outage of the primary gas utilization) and the atmospheric 

conditions. Additionally these influences are able to affect each other and create a 

compounded impact on the operational methane emissions from pressure relief vents 

[27].  

3.2.5 Sweden 

A pair of Swedish studies in 2003 and 2005 showed considerable methane emissions 

from biogas production plants and biogas upgrading plants. Therefore, in 2007, the 

Swedish Waste Management Association (Avfall Sverige) introduced a system called 

the “Voluntary Agreement” for biogas production plants and biogas upgrading plants 

with the aim to quantify and reduce methane emissions [3]. 

The purpose of the Voluntary Agreement is to control and minimize the emission of 

greenhouse gases. Carbon dioxide, methane and nitrous oxide are greenhouse gases 

that can occur in the biogas system. However, in the Voluntary Agreement system, 

only methane is included. Methane is the main component in biogas and by focusing 

on only methane, other factors can be included, such as economy and the safety aspect. 

The Voluntary Agreement consists of two main parts: 

 Systematic leak detection including rectification of found leakages. This is 

mainly performed by the staff at each plant at least once a year. 
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 Emission measurements at discharge points to quantify the emissions and 

losses. This is performed by an external independent measurement consultant 

at least once every three years.  

The system boundaries of the Voluntary Agreement specify the outer limits for the 

emission and only emissions within these boundaries are quantified. The following 

criteria are included [3]: 

 Only the parts of the plant that the plant owner owns and can control are 

included. 

 Only the parts that are associated with the production of biogas or 

cleaning/upgrading of the gas are included. Emissions that occur in association 

with the use of the gas or the digestate, and emissions that occur during 

transportation of substrate, digestate and gas, are not included in the system. 

During the first three-year period of the Voluntary Agreement, 2007-2009, 

measurements and calculations were performed at 18 biogas producing plants and 20 

upgrading plants. For the second period, 2010-2012, 21 biogas producing plants and 28 

upgrading plants participated [28].  

The average methane emission for the biogas producing plants during the first period 

was 1.6 % relative to the produced amount of raw gas. A moving average for the time 

period 2007-2012 was concluded to be 1.9 %. The emission levels seem to be quite 

constant, and it is more likely that the small increase in methane loss is due to the fact 

that additional sources of emissions were discovered at the plants during the second 

measuring period, 2010-2012. In addition, some of the plants that joined for the second 

period showed relatively high losses of methane [28]. 

The average methane emission for the biogas upgrading plants was 2.7 % relative to the 

produced amount of clean gas, for the first period, 2007-2009. The moving average for 

the time period 2007-2012 was 1.4 % which indicates that substantial improvements 

had been made at several of the participating plants. Also, newer plants that had joined 

the system for the second period have modern techniques with lower emission profiles 

(e.g. chemical scrubbers or post-treatment systems) [28]. 

The third time period 2013-2015 is ongoing, and the current discussion concerns the 

extension of the system to the many waste water treatment plants that have biogas 

production. 

3.2.6 Switzerland 

One project performed in Switzerland looked for leakages on gas-conducting plant 

components at twelve plants by means of an IR-camera (Esders GasCam) and a 

portable methane analyzer (Esders Goliath) [29]. The leakages were not encapsulated 

and quantified. The data validation was limited to qualitative analysis. In Table 5 the 

detected weak points are dedicated to a relative significance. 

Table 5. Relative significance of the detected emission sources detected by the GasCam [29]. 

Emission source Frequency Reason Emission potential 

Connection of foil 
roof to tank wall 

Very high Constructional defect Per leakage low  
sum of leakages 
overall big 

Pipe penetration High Constructional defect Big 
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Emission source Frequency Reason Emission potential 

Stirrer adjustment High Missing maintenance Low 

Open digester 
overflow 

High Constructional defect Medium 

Bull eye Medium Constructional defect Low 

Stirrer Medium Missing maintenance Medium 

Membrane Medium Material fatigue Very big 

Pressure relief vent Low Constructional defect Very big 

Screw conveyor Very low Constructional defect Big 

Inspection opening Very low Constructional defect Big 

 

In the same project, methane emission measurements from open digestate storages 

were performed at three plants during four seasons. The measurements were 

performed with an open chamber system and complemented with batch tests in a 

laboratory (HBT – Hohenheimer biogas yield test) [29]. 

The measurements were not carried out directly in the storage. Instead the post 

digester, the open digestate storage and the solid digestate storage were sampled. The 

digestate samples were taken into the open chamber system (0.24 m3 volume) and each 

measurement lasted 5 days. The flow velocity inside the chamber was adjusted to the 

wind velocity (0.1 – 2 m s-1) over the open digestate storage. Simultaneously the 

samples were analyzed in the laboratory by the HBT. The results of the chamber 

measurements were extrapolated to calculate the methane loss. The results are 

presented in detail in Table 6, Table 7 and Table 8. 

Table 6. Methane emissions from digestate of the post digester [29]. 

Post 
digester 

Methane emissions Methane 
production 

Methane 
emissions 

Temperature in °C 

 Nm
3
 

Sample 60 
d 

Nm
3
 d

-1
 

tank 
Nm

3
 d

-1
 % CH4-loss Ambient Digestate 

 Biogas plant 21 

Jun2011 0.212 24.7 925 2.7 12.5 21.0 

Sep2011 0.10 1.1 925 0.1 12.8 17.1 

Dec2011 0.031 3.6 925 0.4   

May2012 0.056 6.5 925 0.7 17.4 20.3 

 Biogas plant 13 

Jul2011 0.028 2.3 578 0.4 20.1 25.2 

Oct2011 0.011 0.9 578 0.2 13.2 18.6 

Jan2012 0.018 1.4 578 0.3 1.7 11.6 

Mar2012 0.024 2.0 578 0.3 12.7 16.5 

 Biogas plant 5 

Aug2011 0.058 3.2 784 0.4 20.4 21.6 

Feb2012 0.000 0.0 784 0.0 0.0 0.9 

Apr2012 0.026 1.5 784 0.2 12.1 12.5 

Jun2012 0.075 4.2 784 0.5 15.8 19.3 
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Post 
digester 

Methane emissions Methane 
production 

Methane 
emissions 

Temperature in °C 

Average 0.046 4.3  0.5   

 

Table 7. Methane emissions from digestate of the liquid digestate storage [29]. 

Liquid 
storage 

Methane emissions Methane 
production 

Methane 
emissions 

Temperature in °C 

 Nm
3
 Sample 

60 d 
Nm

3
 d

-1
 

tank 
Nm

3
 d

-1
 % CH4-loss Ambien

t 
Digestate 

 Biogas plant 21 

Jun2011 0.124 13.7 925 1.5 14.5 18.6 

Sep2011 0.080 8.8 925 1.0 13.7 20.1 

Dec2011 0.011 1.2 925 0.1   

May2012 0.128 14.2 925 1.5 10.7 15.6 

 Biogas plant 13 

Jul2011 0.033 2.5 578 0.4 18.6 22.8 

Oct2011 0.014 1.1 578 0.2 10.1 18.4 

Jan2012 0.047 3.6 578 0.6 2.1 9.1 

Mar2012 0.031 2.3 578 0.4 11.5 17.7 

 Biogas plant 5 

Aug2011 0.183 9.7 784 1.2 18.9 19.6 

Feb2012 0.000 0.0 784 0.0 7.0 7.7 

Apr2012 0.038 2.0 784 0.3 9.0 12.7 

Jun2012 0.026 1.4 784 0.2 15.8 18.7 

Average 0.060 5.1  0.6   

 

Table 8. Methane emissions from digestate of the solid digestate storage [29]. 

Solid 
storage 

Methane emissions Methane 
production 

Methane 
emissions 

Temperature in °C 

 Nm
3
 Sample 

60 d 
Nm

3
 d

-1
 

tank 
Nm

3
 d

-1
 % CH4-loss Ambien

t 
Digestate 

 Biogas plant 21 

Jun2011 0.018 0.2 925 0.0 17.4 45.9 

Sep2011 0.136 1.6 925 0.2 16.1 46.1 

Dec2011 0.000 0.0 925 0.0   

May2012 0.000 0.0 925 0.0 14.7 35.1 

 Biogas plant 13 

Jul2011 0.026 0.2 578 0.0 20.0 51.0 

Nov2011 0.000 0.0 578 0.0 2.7 25.8 

Jan2012 0.000 0.0 578 0.0 2.2 22.3 

Mar2012 0.000 0.0 578 0.0 15.2 39.5. 

 Biogas plant 5 

Aug2011 0.200 1.1 784 0.1 23.4 55.0 
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Solid 
storage 

Methane emissions Methane 
production 

Methane 
emissions 

Temperature in °C 

Feb2012 0.000 0.0 784 0.0 3.2 5.9 

Apr2012 0.000 0.0 784 0.0 10.4 25.7 

Jun2012 0.021 0.1 784 0.0 21.3 42.0 

Average 0.033 0.3  0.0   

 

The digestate from the post digester and the liquid digestate storage had comparable 

methane losses of about 0.5 – 0.6 % CH4 and the methane loss from the solid digestate 

was lower than 0.1 % CH4. The residual methane potential from the post digester 

varied between 3.8 and 14.5 %, from the liquid digestate between 3.3 and 13.5 % and 

from the solid digestate between 0.4 and 3 %. The measured methane emissions from 

the open chamber system were 2 – 24 % for the post digester, 3 – 37 % for the liquid 

digestate and 0 – 20 % for the solid digestate. In conclusion the results showed that the 

separation did not abate methane emissions from not gastight digestate storages. 

A specific project performed in Switzerland, but which is relevant to other countries as 

well, investigated the methane diffusion from single foil roofs [30]. The diffusion of the 

biogas storage foils was measured in a laboratory according to DIN 53380 (Testing of 

plastics - Determination of gas transmission rate - Part 2: Manometric method for 

testing of plastic films). The measurements were carried out with pure methane at a 

temperature of 41 °C, about 200 – 300 kPa absolute pressure and 0 % relative humidity. 

It must be pointed out that in reality biogas is water vapor saturated and consequently 

water condenses at the biogas storage foil. Furthermore biogas is a gas mixture of 

methane and carbon dioxide and the permeability coefficients of single gases in gas 

mixtures can possibly affect each other. 

The single foil roofs from overall ten biogas plants and new foils from the 

manufacturers were investigated in a laboratory and their results are shown in Figure 

9. 

 

Figure 9. Methane diffusion in Ncm3 m-2 d-1 bar-1 from single foil roofs [30]. 
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The methane diffusion from new and unused EPDM-membranes (thickness 1.50 mm) is 

at between 1 690 and 2 190 Ncm³ m-2 d-1 bar-1 in contrast to the manufacturer 

information of 400 or 785 Ncm³ m-2 d-1 bar-1. A different temperature level between 

manufacturer information (23 °C) and the used temperature of 41 °C was also found. 

The methane diffusion from the investigated foil roofs was between 1 650 and 

2 730 Ncm³ m-2 d-1 bar-1. Their layer thicknesses were between 0.8 and 1.5 mm. The 

methane diffusion showed a dependence of the layer thickness. With increasing 

thickness the methane diffusion was reduced. In case of filled biogas storages, the 

EPDM-foil expanded by up to 40 %. This could increase the methane diffusion 

calculation by approximately 24 %. Other influences, such as the used substrates in the 

biogas plant, or the age of the foils did not have verifiable influence on the methane 

diffusion. 

3.2.7 Other countries 

One project performed in Canada investigated a Canadian biogas plant over a whole 

year [31]. An average of 3.1 % CH4-loss during normal operation was measured using a 

remote sensing method (TDLAS and the software Windtrax). The results of the whole 

year are presented in Table 9. 

Table 9. Average seasonal fugitive emission rates as a percentage of seasonal methane production [31]. 

  Autumn Winter Spring Summer Average 

Methane production in m
3
 h

-1
 183 183 70 224 164 

Methane 
emissions in 
% CH4 

Normal 
operation 

2.9 2.7 5.2 1.7 3.1 

Flaring/ 
Venting 

20 25 --- 13 19 

Main-
tenance 

0.5 --- 1.8 --- 1.2 
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4 Measurements at Tekniska verken in 
Linköping, Sweden 

As a part of this project, comparative measurements of methane 

emissions were performed at the biogas plant in Linköping, Sweden, 

owned by Tekniska verken.  

Measurements were performed during the working week September 8th-12th in 2014 by 

six measurement teams, see Table 10. 

Table 10. Measurement teams and details on equipment and time for measurement. 

Team Approach Analyzer Meas. days Report 

AgroTech, DK On-site Photo-acoustic Tuesday Annex 1 

DBFZ, DE (1) On-site GC-FID Tue-Fri Annex 2 

DBFZ, DE (2) Remote TDLAS Tue-Thu Annex 3 

DGC, DK On-site FID-Cutter Tue-Wed Annex 4 

DTU, DK Remote CRDS Tue-Wed Annex 5 

SP, SE  On-site FID-Cutter Mon-Tue Annex 6 

 

The complete measurement reports produced by the different teams are available as 

annexes to this report. These reports are generally detailed regarding the measurement 

methods and the application of methods at the Linköping plant. Hence, reporting of the 

results in this report does not go into much detail but rather tries to summarize and 

compare the results obtained by the different teams. For a basic understanding of the 

results presented later in this report it is however necessary to highlight some 

information concerning the measurement methods and analytical equipment applied 

by the different teams: 

 AgroTech (on-site). AgroTech used an IR camera (FLIR GF 320) for the leak 

detection (together with DGC) and used a high volume sampler system during 

the emission measurements. Methane concentration measurements are made 

by a photo-acoustic analyser. 

 DBFZ (on-site). DBFZ used an IR camera (FLIR GF 320), a portable methane 

laser (GROWCON LaserMethane mini Gen2) and a portable biogas monitor 

(Geotech BM 2000) for the leak detection. For the emission measurements both 

direct measurements and open/closed chamber methods were used. Methane 

concentration measurements follow EN ISO 25139:2009 (GC-FID in 

laboratory). 

 DBFZ (remote). DBFZ used a TDLAS (GasFinder2.0, Boreal Laser Inc.) and a 

weather station with 3D sonic anemometer (Model 81000, RM Young) to 

measure path averaged concentrations and meteorological conditions in the 
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downwind plume of the site. Inverse dispersion modelling was performed 

using the software Windtrax [32]. 

 DGC (on-site). DGC used an IR camera (FLIR GF 320) for the leak detection 

(together with AgroTech) and used a high volume sampler system during the 

emission measurements. Methane concentration measurements follow EN ISO 

25140:2010 (FID with Cutter). 

 DTU (remote). DTU measured downwind plume concentrations of methane 

and the tracer gas acetylene using a mobile analytical platform holding a fast 

and high sensitive cavity ring down spectrometer (CRDS) capable of detecting 

methane and acetylene concentrations down to ppb level every second, a GPS 

and a weather station.  

 SP (on-site). SP used a portable leak detection instrument (Sewerin EX-TEC 

PM4) for the leak detection and followed the guidelines in the Swedish 

Voluntary Agreement system (see section 3.2.5) during the emission 

measurements. In short, only well-defined and systematic emission sources are 

covered by the quantification method, excluding leaks and other diffuse 

sources. Direct measurements of the gas flow and methane content are made. 

Methane concentration measurements follow EN ISO 25140:2010 (FID with 

Cutter). 

4.1 PLANT DESCRIPTION 

The Åby biogas plant is one of Sweden’s largest biogas plants, owned and operated by 

Tekniska Verken i Linköping. It is situated in Linköping 200 km south-west of 

Stockholm and has been in operation since 1996. The plant has an annual permit of 

treating 100,000 tons of organic waste, and the annual production of raw biogas was 

about 17,000,000 Nm3 in 2013. Besides biogas the plant produces 80,000 tons of wet bio 

fertilizer, which is sold to farmers. Table 11 shows the distribution of the substrates 

treated at the plant. 

Table 11. Substrate input in 2013. 

Type  Proportion (% weight) 

Slaughterhouse cat. 3 20 

Food Industry 35 

Alcohol 0.5 

Thin stillage 1.5 

Fat 2 

Glycerol 1 

Food waste 40 

 

The plant production layout comprises receiving and pre-treatment facilities, four 

digesters, gas storage/upgrading and biofilter. The layout is shown in Figure 10. 
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Figure 10. Layout of Åby biogas plant, Tekniska Verken i Linköping. 

4.2 LEAK DETECTION 

Leak detection was performed on Monday afternoon by all the on-site measurement 

teams. AgroTech and DGC performed it together as one team. The three different 

teams performed leak detection separately without influencing each other. Some 

already known emission points such as digestate storage, biofilter release and gas 

upgrading CO2 release were not part of the leak detection campaign, the focus was on 

trying to identify other sources of emission such as equipment leaks or emissions from 

storage tanks. Results were compared at a meeting during Monday evening and then 

the teams decided which emission points should be measured during the following 

days.  

Table 12. Results from leak detection campaign performed on Monday. 

Leakage DBFZ AgroTech/DGC SP 

Upgrading unit,  
meas. device inside 
the right compressor 
unit 

Detected Detected Not detected, does 
not look for leaks 
inside ventilated 
buildings 

Upgrading unit,  
safety valve pipe on 
roof 

Detected Detected Not detected 

Carbon filter house Detected Detected Detected 

Hygienization tank, 
manhole and pipe 

Not detected Detected Detected 

Hygienization tank,  
one-hour holding tank 

Not detected Detected Not detected 

Homogenization tank Detected Detected Not detected 
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Leakage DBFZ AgroTech/DGC SP 

Digester no 3 Not detected Not detected A few minor gas leaks 
were detected on the 
roof 

A brief outline of the results from the leak detection campaign is presented in Table 12. 

Pictures of the identified leaks are shown in Figure 11 and their placement on the plant 

is shown in Figure 12. 

Leakage # 1 

Upgrading unit – ventilation duct 1  

(facing north – away from the biogas plant) 

 

Leakage # 4 

Carbon filter house  

ventilation duct leading from the container 

 

 

Leakage # 2 

Upgrading unit – ventilation duct 2  

(facing east towards digester 4) 

 

Leakage # 5 

Carbon filter house – gas booster F22  

 

 

Leakage # 3 

Upgrading unit – safety valve pipe leading above 

the container  

Leakage # 6 

Carbon filter house – gas booster F21 
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Figure 11 a). Overview of detected leakages, arrows indicate precise location of the leakages (taken from DGC 
report). 

 

Leakage # 7 

Carbon filter house – gas filter  

 

 

Leakage # 10 

Homogenisation tank  

swan neck 

 

Leakage # 8 

Hygienisation tank  

man hole at the top of the tank  

 

Leakage # 11 

Homogenisation tank  

hole in the concrete roof  

 

Leakage # 9 

Hygienisation tank  

overloading valve  

Leakage # 12 

Hygienisation tank (one-hour holding tank)  

swan neck at the top of the tank  
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Figure 11 b). Overview of detected leakages, arrows indicate precise location of the leakages (taken from DGC 
report). 
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Figure 12. Overview of the plant and the detected leakages + other emissions sources (taken from DBFZ on-site 
report). 
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Results from the leak detection campaign depend on the detection equipment used, the 

experience of the personnel performing the leak detection and variations in plant 

conditions. 

SP did not find the leaking safety valve pipe on the roof of the upgrading unit, since 

this area was not investigated by them. SP uses a portable leak detection device which 

needs to be situated in the emission point to allow for detection, whereas the other two 

teams use IR cameras that are able to detect leaks from a distance. Leak detection is not 

performed by the measurement teams in the Swedish Voluntary Agreement system 

(see section 3.2.5) but the plant owner needs to have routines and equipment to 

perform it themselves. On the other hand SP detected some minor leaks on top of 

digester no. 3 that the other teams did not find due to the relatively large detection 

limit of the IR cameras. 

DBFZ did not detect the leaks at the hygienization tank and SP did not detect the leaks 

at the homogenization tank. Neither of these contributes to any great deal to the total 

emission measured later on (see section 4.3). 

AgroTech/DGC detected a leakage with the IR camera at a swan neck exit on top of a 

one-hour holding tank which is part of the hygienization process. They were however 

in doubt whether the leakage detected with the IR camera was methane or just emitted 

heat from the hot tank. It can be hard to differ between methane and heat emission 

with the IR camera. The emission was investigated later during the week and was not 

found to be emitting methane. 

The conclusion of the results from the leak detection campaign is that an IR camera is a 

very good tool to be able to find leaks at a biogas plant in an effective way, but since it 

is hard to differ between methane and heat with the cameras, a portable leak detection 

instrument is a necessary complement. It must be pointed out that a portable leak 

detector should preferably use a methane specific measuring principle. Instrumentation 

which is based on e.g. semiconductors often has cross sensitivity to hydrogen sulfide. 

Certain sources, such as the hygienization or the homogenization tank are then 

possibly overestimated concerning methane concentration measurements. For example, 

at the flange of the hygienization tank SP measured about 10 vol-% (thermal 

conductivity sensor) and DBFZ measured only 0.1 vol-% CH4 (IR analyzer). 
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4.3 ON-SITE EMISSION MEASUREMENTS 

With all the reports from the teams finally available in January 2015, a comparison 

spread-sheet was made and circulated to the teams. The spreadsheet was discussed 

thoroughly during a telephone meeting with all the teams, and the revised version of 

the spread-sheet following this meeting is the basis of the results and how they are 

presented in this chapter. Individual results here are given in the unit g/h, whereas the 

emission rates are always given in the unit kg/h in other parts of this report. Table 13 

indicates at what times the respective teams performed measurements at the individual 

sources. 

Table 13. Measurement days and times for the respective emission sources. 

Emission source AgroTech DBFZ DGC SP 

Homogenization tank 
Tues.  

16:10- 
17:00 

Tues. 
14:45-16:00 

Wed. 
10:30-12:05 

N/A 

Hygienization tank 
Tues. 

15:35- 
16:05 

Thur. 
08:00-13:00 

Wed. 
15:30-18:15 

N/A 

Biofilter N/A 
Tues. 

11:45-13:00 
N/A 

Mon. 
14:00-16:00 

Digestate storage N/A 
Tues. 

16:00-18:45 
N/A 

Tues. 
13:00-16:45 

Activated carbon filter building 
Tues. 

17:40- 
18:40 

Wed. 08:00-13:00 
Tues. 

16:00-19:15 
Tues. 
15:00 

Chemical scrubber, CO2 release N/A Wed. 15:00-16:00 N/A 
Tues. 

8:55-10:20 

Chemical scrubber, compr. buildings 
Tues. 

10:55- 
12:50 

Wed. 17:00-19:00 
Tues.  

11:30-12:50 
Tues. 
16:30 

Chemical scrubber, prs. relief vents 
Tues. 

11:20- 
12:15 

Thur. 14:00-15:00 
Tues. 

14:20-15:00 
N/A 

Analysis instruments on site N/A N/A N/A Tues. 

4.3.1 Homogenization and hygienization tanks 

SP did not measure these sources. The estimated methane mass flows were considered 

too low based on methane concentrations given by their portable leak detection 

instrument and not detectable gas flow. The preliminary measurements did not 

motivate performing proper measurements, also given that the nature of these sources 

would give values with a very high uncertainty and/or involve safety risks. 

Furthermore SP does not have the equipment or methods available that are necessary 

to perform measurements from the leaking flange (man-hole) on the hygienization 

tank. 

AgroTech argues that they would normally not include the homogenization tank in a 

measurement campaign since it is not part of the digestion process and also since their 

measurement method is not suitable for releases with low or even non-existing 

pressure difference between the emission source and the ambient air (see discussion 
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below). They did however perform the measurements for this project to compare their 

results with the other teams. 

The results from the measurements are presented in Table 14. 

Table 14. Emission measurements in homogenization and hygienization tanks 

Emission source (g CH4/h) AgroTech DBFZ DGC SP 

Homogenization tank (sum) 104 0.46 6 N/A 

- hole 86 0.45 3 N/A 

- pipe 18 0.01 3 N/A 

Hygienization tank (sum) 88 16 96 N/A 

- flange 7 10 6 N/A 

- pipe 81 6 90 N/A 

Total percentage methane loss 0.02 % 0.002 % 0.01 % N/A 

 

The results for the homogenization tank differ with a factor of 100 between the lowest 

and highest values. The homogenization tank is characterized by open access (holes 

and vent pipe) from the surrounding atmosphere to the confined tank volume meaning 

the tank “breathes” with the impact of atmospheric pressure, wind, stirring, supply of 

waste etc.. Therefore the pressure difference between the surroundings and the tank is 

close to zero. The larger the pressure difference between a volume of confined biogas 

and the atmosphere, the more precise the measurement result by the high volume 

sampler method (AgroTech and DGC) will be. Using the high volume sampler method 

will, at a source like this, always be a trade-off between affecting the source as little as 

possible with the risk of not detecting the entire emission or using a too high sample 

flow causing an overestimation of the emission by sucking out gas from the tank. 

At the time of DGC measuring, 10 September 10:30-12:05, there were relatively strong 

winds and there was some heavy turbulence at the sample location. In order to 

minimize the impact on the measurement DGC built a “tent” to cover the hole and 

pipe. The air/sample flow was chosen as low as possible to continuously securing a 

positive flow across the sample plane of the tent (no back flow with loss of methane 

emission caused by wind turbulence). The velocity was checked by a vane anemometer 

covering the entire cross sectional area (grid measurements). The result was a sample 

flow of approx. 500 m3/h simulating a velocity of 0,4-0,5 m/s across the leakages. 

Figure 13 shows how the tank breathes. DGC measured emissions ranging from zero 

(back ground level) to approx. 70 ppm. The fact that emissions occasionally fall to zero 

during the entire sample period indicates, that the sample flow applied is not affecting 

the emission excessively. 

As for the swan neck (pipe) the emissions never fall to background level but vary 

between 3 and 30 ppm, see Figure 14. One possible reason is that the sample flow was 

too large creating a vacuum resulting in sucking out gas from the tank. But this could 

also be caused by another explanation. The pipe can act as a chimney which creates a 

natural draft conveying a small flow of gas from the tank. 

The emission rate from a source where practically no pressure difference exists 

between atmosphere and the confined biogas volume is very prone to impacts by the 

high volume sampler method. It is believed that AgroTech overestimated the emission 

due to the difficulties described and DGC thinks that there is a small probability that 
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even their result could be overestimated and the measured emission may have been 

lower if a lower sample flow had been applied. It is further believed that DBFZ 

underestimated the emission since they used a closed chamber for their measurement 

(Figure 15), and this would also have had a great impact on the way that this emission 

source behaved. 

 

Figure 13. DGC results and sampling set-up at homogenization tank – hole. 

 

Figure 14. DGC results and sampling set-up at homogenization tank – pipe. 

 

Figure 15. DBFZ sampling set-up at homogenization tank – hole. 

 

For the hygienization tank the reported values are more in comparison. Strong 

variations in methane concentration were observed by the teams during their 

respective measurements. 

To finalize the discussion on these emission sources, we would like to strongly point to 

the fact that they contribute very little to the total emission of the plant, and one team 

(SP) did not even perform measurements due to this fact. 
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4.3.2 Biofilter 

AgroTech and DGC did not measure in this source since they do not have the 

equipment available that is necessary.  

The results from the measurements are presented in Table 15. 

Table 15. Emission measurements in biofilter release. 

Biofilter  AgroTech DBFZ DGC SP 

Emission rate (g CH4/h) N/A 152 N/A 204 

(methane concentration mg/Nm
3
) N/A 126 N/A 57 

(gas flow Nm
3
/h) N/A 1 209 N/A 3 564 

Total percentage methane loss N/A 0.02 % N/A 0.02 % 

 

DBFZ placed a plastic foil on the surface of the biofilter and took gas samples from it to 

analyze the methane concentration (Figure 16). Gas flow was measured in the pipe 

leading to the biofilter. 

SP measured both methane concentration and gas flow in the pipe leading to the 

biofilter. This is done according to the Swedish Voluntary Agreement system since it is 

there defined that there are no available results that show that biofilters would have 

any effect on the methane concentration. Biofilters will (at best) have an effect on 

odorous substances. 

 

Figure 16. DBFZ sampling set-up at biofilter. 

 

Despite the different approaches the mass flows reported by DBFZ and SP are in good 

comparison, but there is however a large difference in the underlying measurements of 

methane concentration and gas flow (Table 15). DBFZ performed their measurement on 

Tuesday when the measured gas flow was ca 4 m/s, but when they quickly checked the 

gas flow again on Friday it was then about 10 m/s. It is therefore believed that the gas 

flow to the biofilter varies quite a lot over time, but this variation does not seem to have 

much impact on the emitted mass flow of methane. 

  



 MEASUREMENTS OF METHANE EMISSIONS FROM BIOGAS PRODUCTION 
 

53  

 

 

 

4.3.3 Digestate storage 

AgroTech and DGC did not measure in this source since they do not have the 

equipment available that is necessary.  

The results from the measurements are presented in Table 16. 

Table 16. Emission measurements in digestate storage. 

Digestate storage AgroTech DBFZ DGC SP 

Emission rate (g CH4/h) N/A 4 382 N/A 7 335 

Total percentage methane loss N/A 0.51 % N/A 0.85 % 

 

Looking at the reported results there seems to be a large difference in measurement 

results, but looking at the individual measurements it is revealed that this difference is 

not due to a difference in the measurement results but rather due to assumptions and 

the way the results are treated. 

DBFZ performed measurements with a closed chamber at four points on the surface of 

the digestate storage. They chose one of the points where the surface layer was 

considered to be rigid, whereas the other three chosen points had a cracked surface 

layer. Further the assumption was made that 50 % of the total surface has a cracked 

surface layer and 50 % has a rigid surface layer, and the measurement results were 

corrected relative to this assumption. 

SP on the other hand did not purposely choose their four sampling points due to the 

appearance of the surface layer, but rather chose the points on random. SP reported the 

mean value of the individual results from the four sampling points. SP used an open 

chamber for their measurement. 

Looking at the individual measurement results in Figure 17, the DBFZ point on the 

rigid surface layer appears as an outlier with a notably lower value than the other 

measurements. All the other seven measurements are in agreement. 

Figure 18 shows the digestate storage tank and the appearance of its surface layer. The 

open chamber used by SP can also be seen in this figure (if the reader looks closely), 

which also gives an indication of the task necessary to perform sampling in many 

sampling points. Four sampling points – all near the wall of the tank for practical 

reasons – could probably not be regarded as representative of the whole surface layer.  
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Figure 17. DBFZ and SP individual measurement results at digestate storage (4 sampling points each). 

 

Figure 18. Digestate storage tank and the appearance of the surface layer. 
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4.3.4 Activated carbon filter building 

The results from the measurements are presented in Table 17. 

Table 17. Emission measurements in activated carbon filter building. 

Emission source (g CH4/h) AgroTech DBFZ DGC SP 

Activated carbon filter 97 138 133 80 

- leakage 1st compressor (F22) 75 68 111 N/A 

- leakage 2nd compressor (F21) 17 63 56 N/A 

- leakage flange 5 4 9 N/A 

- calculated sum of individual leaks 97 135 176 N/A 

Total percentage methane loss 0.01 % 0.02 % 0.02 % 0.01 % 

 

In the activated carbon filter building, three different leakages were detected. AgroTech 

applied their method on the individual leaks whereas SP measured the total emission 

from the building in the ventilation release. DBFZ and DGC used both approaches with 

very good agreement. DGC overestimated the individual leaks due to contaminated 

background air in the building. DBFZ used fresh air from outside the building for their 

individual measurements, giving an almost perfect agreement between individual 

leakages measurement and total emission measurement in the ventilation. 

It is believed that SP underestimated the gas flow in the ventilation since this was 

measured with a hotwire anemometer directly in the ventilation opening. DGC used 

the high volume sampler method also in the ventilation opening. 

4.3.5 Chemical scrubber, CO2 release 

AgroTech and DGC did not measure in this source.  

The results from the measurements are presented in Table 18. 

Table 18. Emission measurements in chemical scrubber, CO2 release. 

CO2 release AgroTech DBFZ DGC SP 

Emission rate (g CH4/h) N/A N/A N/A 85 

(methane concentration mg/Nm
3
) N/A 273 N/A 121 

Total percentage methane loss N/A N/A N/A 0.01 % 

 

DBFZ performed measurements on Wednesday when the chemical scrubber was 

running on ca 50 % load and do not have the data available from the plant to be able to 

calculate the mass flow of methane. SP performed measurements on Tuesday when the 

chemical scrubber was running on full load. 

The measurement point available for sampling is not suitable for flow measurement. To 

be able to calculate the emissions rate SP instead used the values of methane content 

and produced gas (Nm3/h) from the plant, which is standard practice. But since cooling 

air from the compressors is also released at this measurement point at the Linköping 

plant the calculation will not be correct in this case. 
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4.3.6 Chemical scrubber, compressor buildings 

The results from the measurements are presented in Table 19. 

Table 19. Emission measurements in chemical scrubber, compressor buildings. 

Emission source (g CH4/h) AgroTech DBFZ DGC SP 

Right compressor building 84 198 285 363 

(methane concentration mg/Nm
3
) 21 44 59 81 

(gas flow Nm
3
/h) 5 100 4 476 4 944 4 475 

Left compressor building  105 66 159 98 

(methane concentration mg/Nm
3
) 13 12 25 22 

(gas flow Nm
3
/h) 6 330 5 751 6 740 4 535 

Total percentage methane loss 0.02 % 0.03 % 0.05 % 0.05 % 

 

These sources illustrate the influence of both the methane concentration measurement 

and the gas flow measurement to the end result. 

All teams but SP use background values of methane concentration to compensate the 

source measurements. In this particular case this would be the methane concentration 

of the air that is led in to the respective compressor buildings, and this concentration is 

then raised by any leakages in equipment inside the building, before the air is emitted. 

For these particular sources DBFZ and DGC used background values of 2 ppm, 

whereas AgroTech used values of 34 ppm and 12 ppm respectively. It is believed that 

AgroTech’s measurement of background values was contaminated by the high 

emission of the leaking safety valve on the roof of the building. Particularly for the left 

compressor building, this correction for the background value has a relatively large 

influence on the reported result. 

Taking the above in consideration when looking at the methane concentration 

measurement results in Table 19, it shows a good relation between teams for the left 

compressor building but with some larger variations for the right compressor building. 

It is believed that there was some variation in the concentration over time, and it might 

very well also be due to the leaking safety valve nearby. 

SP use fan data for the gas flow values and since the fans are identical in the two 

buildings they report the same value for both buildings (slight difference due to 

temperatures). The fan data is in good agreement with the flow measurements 

performed by the other three teams for the right compressor building, but all 

measurements are consistently higher for the left compressor building for which we 

have no good explanation. 
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4.3.7 Chemical scrubber, pressure relief vents 

SP was not able to perform measurements on the leaking pressure relief vent, since the 

compressor was not running on the Wednesday when measurements were going to be 

performed. DBFZ performed measurements on the Thursday and at this time the plant 

personnel had fixed the leaking safety valve. Instead DBFZ detected another leaking 

relief vent (not covered by the emission source list) and performed measurements on it. 

The results from the measurements are presented in Table 20. 

Table 20. Emission measurements in chemical scrubber, pressure relief vents. 

Emission source (g CH4/h) AgroTech DBFZ DGC SP 

Prs. relief vent, left building 6 010 N/A 9 159 N/A 

Prs. relief vent, between buildings N/A 317 N/A N/A 

Total percentage methane loss 0.70 % 0.04 % 1.1 % N/A 

 

The only comparable results are between AgroTech and DGC for the pressure relief 

vent on the left building. The difference in reported numbers is quite large. DGC are 

quite confident regarding the result obtained because two measurements were 

performed at different sample flows (duplicate determination): 

 Measurement #1: Sampling hose was mounted directly on the vent pipe and 

sufficient sample flow controlled by checking for back flow of leaking biogas. 

 Measurement #2: Sampling was mounted on the hose and the hood was 

equipped with plastic skirts to prevent wind turbulence causing leaking biogas 

to escape. This method resulted in less pressure loss in the sampling system 

and consequently a larger sample flow and lower CH4 concentration. 

Measurement #2 is the one reported by DGC. Table 21 indicates that the CH4 emission 

measured by the two different sample flows is almost identical. 

Table 21. DGC results for the pressure relief vent on the left building. 

Measurement Sample flow (Nm3/h) CH4  
(ppm) 

Methane flow (g/h) 

#1 (13:15 – 14:08) 507 24 650 9 000 

#2 (14:22 – 15:03) 745 17 067 9 159 

4.3.8 Analysis instruments on site 

SP made notes of the sample flows passing through the analysis instruments that are 

permanently installed at the site, since this is normal practice in the Swedish Voluntary 

Agreement System. No other team did this. The sample flow through the one analyzer 

installed in the activated carbon filter building is however included in the DBFZ and 

DGC measurements from this source. 

The results from the measurements are presented in Table 22. 

Table 22. Emission measurements in analysis instruments. 

Analysis instruments AgroTech DBFZ DGC SP 

Emission rate (g CH4/h) N/A N/A N/A 41 

Total percentage methane loss N/A N/A N/A <0.01 % 
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4.3.9 Comparison of on-site measurements 

Figure 19 shows a comparison of the results reported by all the on-site teams for the 

emission sources of low magnitude, excluding the digestate storage and pressure relief 

vents. The exclusion of these sources makes for a more interesting comparison in this 

part, but they are of course very important to the end result. 

 

 
Figure 19. Comparison of reported values for emission sources of low magnitude. Emissions from digestate 
storage and pressure relief vents are not included. 

 

Figure 19 shows how the results compare presently with the equipment and methods 

applied by the different teams, as reported by them. The results show quite a large 

variation, with a coefficient of variation of 23 % for the total sum. The reported sums 

for these chosen emissions sources vary between 478 – 871 g CH4/h corresponding to 

0.06 – 0.10 % total methane losses.  

Results from the on-site measurements are summarized in Table 23. 

Table 23. Results from on-site emission measurements. 

Emission source (g CH4/h) AgroTech DBFZ DGC SP 

Sum of sources of low magnitude 478 570 679 871 

Prs. relief vent, left building 6 010
Tu

 N/A 9 159
Tu

 N/A 

Prs. relief vent, between buildings N/A 317
Th

 N/A N/A 

Digestate storage N/A 4 382 N/A 7 335 

Sum on-site methods 6 488 5 269 9 838 8 206 

Total percentage methane loss 0.75 % 0.61 % 1.14 % 0.95 % 

Tu Results from measurements on Tuesday 
Th Results from measurements on Thursday 
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There are large and unknown uncertainties in each reported result, but the large 

difference in the total percentage methane loss is mainly due to time variation of the 

emissions sources + the fact that the emission sources of high magnitude were not 

measured at the same time by all teams, or they were even not measured at all by some 

teams. 

For the comparison of the emission sources of low magnitude there is clearly a 

difference in reported results. The difference is due to two reasons: 

1. Difference in reported values for individual sources 

a. Due to differences in emission over time 

b. Due to differences in analysis methods 

2. Missing values for individual sources, due to some measurements not being 

performed by some teams 

The second reason makes it hard to compare results from the different teams applying 

somewhat different methods. It makes for an interesting comparison of the results if the 

missing values for each team are added to the result by using the mean value of the 

results from the other teams, for every single emission source. For example, DBFZ and 

SP measured 152 and 204 g CH4/h respectively in the biofilter release. The mean value 

of those measurements (178 g CH4/h) is added to the results for AgroTech and DGC. 

Using this method we end up with the results as illustrated in Figure 20. 

The comparison in Figure 20 does not reflect the current situation, but illustrates what 

we could possibly end up with in the future if all teams worked on their methods and 

added the equipment necessary. The coefficient of variation is only 14 % for this case. 

 

Figure 20. Comparison of estimated/hypothetic values for emission sources of low magnitude. 
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4.4 REMOTE SENSING EMISSION MEASUREMENTS 

The following section reports the methane emission rates obtained by application of 

two remote sensing methods; the backward Lagrangian stochastic (bLs) method and 

the tracer dispersion method. Please note that the methane emissions rates are reported 

in kg methane per hour. 

4.4.1 The backward Lagrangian stochastic method 

Measurements were carried out from Monday September 8th to Friday September 12th, 

2014. On Monday, Wednesday and Friday measurement of the background methane 

concentration were performed. From Tuesday to Thursday successful downwind 

measurements and simulations with adequate wind conditions were realized. 

The concentration readings of the TDLAS are sensitive to ambient temperature and 

were calibrated accordingly. The spectrometer used has a regression slope of -9.2x10-3 

per Kelvin. The paths downwind of the plant were placed at a height of about 1.5 m in 

distances of 80 to 200 m from the emission area depending on surroundings and wind 

conditions. The possibility to scan more than one path subsequently was used. Each 

measurement day, the spectrometer was scanning two or even three paths in intervals 

of 180 s. The input data for the simulation was filtered for invalid data and condensed 

to mean values in intervals of a quarter of an hour. The software calculates emission 

rates for the input intervals. For each data set, 50 000 air parcels were simulated 

backward in time starting from the measurement path. Depending on the concentration 

readings and the meteorological conditions the emission rate of the source area was 

calculated. The output of Windtrax was filtered using the following criteria. The 

friction velocity had to be larger than 0.15 m s-1. The absolute value of the Obukhov 

length had to be larger than 10 m and the fraction of the emission source area that had 

to be covered by air parcels touching the ground had to be higher than 90%. 

On Tuesday only five valid 15-minute intervals were carried out (11:00 - 11:30 and 

13:00 - 13:45) with emission rates ranging from 4 to 10 kg CH4h-1 with rising tendency. 

The concentration measurement took place on two paths in the North of the plant and 

both paths were needed to perform valid simulations. 

The measurements on Wednesday were performed using two paths south of the plant. 

Depending on the wind direction, valid emission rate calculations using only one of the 

paths were possible for a period in the morning (10:15 – 13:15) leading to an average 

emission rate of 13.9±2.0 kg CH4 h-1. Using both paths for the simulation, the average 

emission over the same time period was 2.1 kg CH4 h-1 higher than with only one path. 

This was the first indication that an unknown source might be close to the second path 

leading to an overestimation of the known source area of the biogas plant. Using the 

results of the simulations with the concentration readings from both paths over a 

longer period (10:15 – 15:00) gave an average emission rate of 18.9±4.2 kg CH4 h-1. 

Again, a rising emission rate was observed over the day. 

On Thursday three measurement paths were set up South and South-West of the 

biogas plant. Two paths were located to the Southwest. It turned out that the reading 

was lower on the path that was located closer to the biogas plant than on the path 

further away. This lead to the conclusion that emission might come from water canals 

between these two paths. Taking only the closer of these two paths and the path to the 

South into account led to an average emission rate of 4.9±1.5 kg CH4 h-1 for the facility 

during the measuring period from 10:30 to 16:15. 
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4.4.2 The tracer dispersion method 

Measurements were performed from Tuesday to Friday. During the first two days, area 

and plant methane screenings were performed. Successful quantifications were done in 

the afternoon on Tuesday and on the Wednesday.  

Off-site and on-site methane screenings indicated methane releases from digesters, 

biogas upgrading units, the open digestate storage tank and the food waste pre-

treatment area. Off-site screenings indicated several methane sources in the area such 

as a local landfill, a wastewater treatment plant, and a storage area for biosolids. The 

latter was located about 300 m west of the biogas facility and occasionally resulted in 

overlapping downwind methane plumes. These plumes were disregarded. 

The average methane emission rate measured during the afternoons of Tuesday (15:30-

16:00) and Wednesday (17:00 – 19:20) was 23.6±1.8 kg CH4 h-1 (including all plume 

traverses). The corresponding average plant emission factor (EFs) was 2.9±0.2% based 

on the amount of upgraded biogas generated. The methane emission from the area 

with the digester tanks were estimated to account for approximately 65±6% of the total 

emission from the plant. The remaining part of the methane emission came from the 

pre-treatment area and the open digestate storage tank.  

On Wednesday, the average methane emission was higher (24.5±1.7 kg CH4 h-1, which 

corresponds to 34.4±2.4 Nm3 CH4 h-1) than the average emission measured on Tuesday 

(17.9±7.8 kg CH4 h-1, which corresponds to 25.1±10.9 Nm3 CH4 h-1). This might be 

explained by the additional use of water scrubber during the second day, which is a 

technology known to release more CH4 in the atmosphere than a chemical scrubber. 

4.4.3 Comparison of remote sensing results 

Table 24 provides an overview of the results obtained by the two remote sensing 

methods. Daily average methane emission rates are expressed in kg CH4 h-1, while 

emission factors (EF) are provided in percentages. Emission factors were calculated as 

the ratio between the methane emission rate and the average methane production of 

upgraded gas for the specific day. All numbers are given in average value ± standard 

deviation. Methane emission rates were obtained for Tuesday, Wednesday and 

Thursday by the open-path method and on Tuesday and Wednesday by the tracer 

dispersion method. The daily average methane emission rates obtained by the 

backward Lagrangian stochastic method varied between 4.9±1.5 and 13.9±2.0 kg CH4 h-1 

with EFs between 0.6±0.2 and 1.7±0.2% whereas emission rates obtained by the tracer 

dispersion method varied between 17.9±3.1and 24.5±3.4 kg CH4 h-1 with EFs between 

2.2±0.4 and 3.0±0.4%. In general, the emission rates obtained by the tracer dispersion 

method were higher than rates obtained by the backward Lagrangian stochastic 

method. However, one should be cautious when comparing the results as both 

methods showed daily variations in the emissions and as the measurements were not 

conducted in parallel (not within the same time interval) due to different requirements 

in terms of specific wind directions and wind speeds.  

Both methods showed higher CH4 emissions on Wednesday 10th, which could be 

explained by the use of the water scrubber for the biogas upgrading process, a 

technology which is known to release more CH4 in the atmosphere than the chemical 

upgrading process.  
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Table 24.  Results overview about remote sensing methods; tracer dispersion method (TDM) and the Backward 
Lagrangian Stochastic methodl (BLSM). 

Measuring day 

Emission Rates Emission factors (EF) 

(kg CH4 h
-1

) (%) 

DTU-TDM DBFZ-BLSM DTU-TDM DBFZ-BLSM 

          

          

          

Tue Wed Tue Wed Thu Tue Wed Tue Wed Thu 

 
9

th
 10

th
 9

th
 10

th
 11

th
 9

th
 10

th
 9

th
 10

th
 11

th
 

Average 17.9 24.5 7.0 13.9 4.9 2.2 3.0 0.9 1.7 0.6 

SD 3.1 3.4 3.0 2.0 1.5 0.4 0.4 0.4 0.2 0.2 

Count 3 18 5 9 17 3 18 5 9 17 

SD: Standard Deviation, Count: number of transects/simulations (dimensionless value) 

EF: Emission Factor is calculated as the ratio between the emission rate and the average methane 

production for the specific day after upgrading processes.  

BLSM daily averages were calculated from simulation results using the following measurement 

paths: Tuesday – path 1 and 2, Wednesday – path 2, Thursday – path 2 and 3. See measurement 

report in the annex for details. 

The emissions measured on Wednesday by the two methods are the data best suited 

for comparison as both methods quantified emissions this day and because several 

emission rates were obtained. However, the open-path was applied in the morning 

(10:00-15:00) whereas the tracer dispersion method was applied in the afternoon (17:00-

19:00). Figure 21 shows nineteen successful open-path simulations and eighteen plume 

traverses along the day with wind from North-Northeast in the morning and from East 

in the late afternoon. Table 25 reports the corresponding average emission rates with 

standard deviation. Notice that since DBFZ’s data are based on both paths, reported 

values are different from those shown in Table 24. The average methane emission rate 

was 18.9±4.2 kg CH4 h-1 using the bLs method whereas an emission rate of 24.5±3.4 kg 

CH4 h-1 was obtained using the tracer dispersion method. Considering the standard 

deviation of means the emission rates obtained by the two different methods compares 

rather well. The average methane emission rate obtained by the tracer dispersion 

method is a bit higher in comparison to the average rate obtained by the bLs method. 

However, the emission rates measured during the day show an increasing trend. 

Especially the emission rates measured during the morning shows a general increase 

from 10:00 to 15:00. Thus it cannot be ruled out that the small difference in average 

emission measured in the morning and in the afternoon is actually due to an increase in 

the emission during the day. The biogas generation (before upgrading) decreased 

during the day from about 1852 Nm3 h-1 at 10:00 to 1792 Nm3 h-1 at 19:30. In the same 

period the emission rate changed from about 19 to 42 Nm3 h-1. We do however not 

know if the decrease in gas production was associated with venting from the reactors. 

In the same time the upgrading process slightly shifted from the chemical scrubber to 

the water scrubbers. While the amount of upgraded methane was on the same level all 

the time, the part upgrade by water scrubbers shifted from 42% to 55%. Assuming 2% 

methane loss for the water scrubbers and 0.01 % for the chemical scrubber [28], 

according to the on-site results this gives a rise of methane loss of 3 Nm3 h-1 during the 

period from 11:00 to 19:00. The shift from amine scrubber to water scrubber during 

Wednesday is illustrated in Figure 22. 
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Both methods are associated with uncertainties. The tracer dispersion method is 

sensitive to the simulation of the source – accurate placement of the tracer release 

bottle. In this study correct simulation of the source is not considered to be a problem 

as the area of the source is relatively small especially in comparison to the measuring 

distance. Also the good match of the tracer and the methane plume indicated a good 

simulation of the methane emission from the plant. If methane is emitted from elevated 

heights such as the top of the anaerobic digesters this could lead to an underestimation 

of the measured emission. However, an evaluation using a Gaussian plume model 

shows that this effect will be minor (<1% of the emission rate, assuming a Pasquill 

stability class B – slight insolation) due to the long distance between the plant and the 

plume transect. The tracer dispersion method is also sensitive to interference of other 

local methane areas especially if these are located between the methane source and the 

transect used for plume traversing. Methane emissions from an area with water canals 

west-southwest to the facility were observed when working with the TDLAS. The 

amount of methane emitted from a part of this area was simulated to about 1 kg h-1 by 

adding an additional source area located between the two paths in the South-

Southwest of the plant to the inverse dispersion model. Such a small emission would 

have a negligible effect on the emission rate measured using the tracer dispersion 

method. However, if other areas also emit methane and potentially at higher rates or 

located closer to the transect this would lead to an overestimation of the measured 

methane emission. No indications of a significant additional methane source close to 

the measuring transect was seen as this would result in additional sharp peaks in the 

methane plume profile.  

The bLs modelling is sensitive to the determination of the atmospheric stability. 

Especially if the emission sources are not at ground level knowledge about the 

atmospheric mixing is important to gain reliable results. Results from periods when the 

atmospheric mixing was poor were filtered out. However, the filtering parameter was 

at the close to the lower limit on Thursday which indicates that there might have been a 

slight underestimation of the emission rate on that day. In addition, it is necessary to 

position the measurement paths far enough downwind from the source. A rule of 

thumb is that 5 to 10 times of the source heights are sufficient to neglect the height of 

the source in the dispersion model. With a distance of 80 to 200 meters this was 

ensured. Disturbing structures such as trees may influence the dispersion, too. The 3D 

sonic was always placed as good as possible to ensure the correct depiction of the 

turbulences.  

The resolution of the TDLAS device is 1 ppm·m, which corresponds e.g. to 5 ppb 

average on a 200 m path. This adds a minor uncertainty to the results. Furthermore, it is 

essential to resolve the emission plume from the natural methane background and to 

determine this background as careful as possible. Changes of the background 

concentration during the downwind measurements can influence the result of the 

inverse dispersion model. During this campaign this could have been a large 

uncertainty for the bLs method. The background was measured before and after the 

downwind measurements, and when one of the paths was not touched by the emission 

plume. But due to several other emission sources in the close environment, such as the 

landfill and the waste water treatment plant, the background concentration might have 

varied during the campaign. 

However, if all measurements are carried out carefully and averaged, the uncertainty of 

the model is estimated to be approximately 10 % [33]. The bigger challenge is to find 
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out if deviations in the results correlate with changes in the operational conditions at 

the plant.  

 
Figure 21. Methane emission rates measured on Wednesday 10th. DBFZ data referred to simulations 
performed with concentration data of both measurement paths. 

 

 
Figure 22. Upgraded biogas production during Wednesday 10th. 

 

Table 25. Average emission rates measured on Wednesday, using the tracer dispersion method (TDM) and the 
Backward Stochastic Lagrangian Model (BSLM). BSLM data are based on values from both paths. 

 
Emission rates on Wednesday 10

th
 

 
(kg CH4 h

-1
) 

 
DTU-TDM DBFZ-BSLM 

Measuring time interval 17:00-19:30 10:00-15:00 

Average 24.5 18.9 

SD 3.4 4.2 

Counts 18 19 
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4.5 COMPARISON OF ON-SITE AND REMOTE SENSING RESULTS 

The results of the two remote sensing methods could only be compared on the 

Wednesday (see above), and during this day the water scrubber unit was running, 

which makes comparison with the on-site methods impossible for this day. In addition, 

the remote sensing results have shown that there are strong diurnal variations in the 

emission rates in addition to the operational changes from day to day.  

Two individual comparisons can however be made between on-site and remote sensing 

methods. The DTU remote sensing (tracer dispersion method) reported values for 

Tuesday evening and the DBFZ remote sensing (the backward Lagrangian stochastic 

method) reported values for Thursday (its most reliable values) are taken for 

comparison. These results can be compared with the on-site methods since the water 

scrubber was not in operation during these periods. An important difference between 

the days is however that the pressure relief vent on the left compressor building was 

emitting methane on Tuesday, and instead the pressure relief vent between the 

compressor buildings was emitting methane on the Thursday. 

For the comparison we use the following values from the on-site methods: 

 Homogenization tank, 6 g CH4/h (DGC) 

 Hygienization tank, 67 g CH4/h (mean value AgroTech, DBFZ, DGC) 

 Biofilter, 178 g CH4/h (mean value DBFZ, SP) 

 Activated carbon filter building, 136 g CH4/h (mean value DBFZ, DGC) 

 Chemical scrubber, CO2 release, 85 g CH4/h (SP) 

 Chemical scrubber, compressor buildings, 340 g CH4/h (mean value all teams) 

 Analysis instruments, 41 g CH4/h (SP) 

 Total 0.85 kg CH4/h 

For the pressure relief vents we use the DGC reported value of 9.2 kg CH4/h for the left 

building and the DBFZ reported value of 0.32 kg CH4/h for the vent between the 

buildings. 

The reasoning behind choosing these values can be found in the discussions in sections 

4.3.1 to 4.3.8. 

For the digestate storage tank it is hard to choose one value, comparisons are therefore 

made with both the DBFZ reported value 4.4 kg CH4/h and the mean value of all 

individual measurement points by DBFZ and SP which is 6.5 kg CH4/h. 

Results from the comparisons are presented in Table 26 and Table 27. 

Table 26. Comparison of on-site and remote sensing results, Tuesday. 

Emission source  Value (kg CH4/h) 

Sum of sources of low magnitude 0.85 

Chemical scrubber, pressure relief vent, left building 9.2 

Digestate storage 4.4 / 6.5 

Sum on-site methods 14.4 / 16.5 

DTU remote sensing method (with std. deviation) 17.9 ± 3.1 
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Table 27. Comparison of on-site and remote sensing results, Thursday. 

Emission source  Value (kg CH4/h) 

Sum of sources of low magnitude 0.85 

Chemical scrubber, pressure relief vent, between buildings 0.32 

Digestate storage 4.4 / 6.5 

Sum on-site methods 5.6 / 7.6 

DBFZ remote sensing method (with std. deviation) 4.9 ± 1.5 

 

The comparisons in Table 26 and Table 27 indicate a fair agreement between on-site 

and remote sensing methods, given that there are high and unknown uncertainties in 

all measurements. The remote sensing methods are affected by other emission sources 

that are not included in the on-site measurements (landfill, waste water treatment plant 

etc..). On Thursday, the weather was mostly sunny with light wind only. Although the 

DBFZ results during periods with too pure wind conditions were filtered out, a slight 

underestimation of the emission rates on that day cannot be ruled out completely. For 

the on-site methods there is a large uncertainty in the emission from the digestate 

storage tank. 
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5 Conclusion 

From the literature study it can be concluded that a number of studies of the methane 

emissions from biogas plants have been performed in different countries, using 

different methods and approaches. The large variation in methods makes it hard to 

draw general conclusions from the existing data. A rather large variation between 

typical plants in different countries makes the comparison even harder. 

The conclusion of the comparative measurements in Linköping is that the general 

results from different methods and approaches are comparable. The studied plant is 

large in size and the overall emissions are comparably low. There are high and 

unknown uncertainties in all measurement results and they are due to both analytical 

uncertainties and time variation in emission sources. 

5.1 CONTINUED WORK 

A few lessons were learned from the comparative measurements in Linköping. When 

the time schedule for the measurements was set it was purposely set up to not have the 

measuring teams influencing or disturbing each other. Due to the large time variation 

in emission sources, this however made strict comparison of the results impossible. 

Variations in plant operation during the week occurred which made it even more hard 

to compare results. For a future measurement campaign it is strongly recommended to 

have as many measurements as possible performed in parallel, and measurements 

should be complemented with intercalibrations with gas bottles with known methane 

content. 

A suggested next step would be the production of a handbook on methane emission 

measurements from biogas installations. This handbook should aid the user in 

choosing a suitable measurement method and approach depending on the purpose of 

the measurement task. It should list advantages and disadvantages of the respective 

methods and approaches. Further, it should guide the user in analyzing and 

understanding reported values using different methods and approaches. The handbook 

would serve as an important reference to future work on standardization of methane 

emission measurements from biogas installations. 
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A. AgroTech
Identi�ication and quanti�ication of methane emission 
from leaks at biogas plants
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B. DBFZ - on-site method
Methane emissions from a biogas production site 
in Linköping
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Abbreviations  

Chemical symbols and formula 

Symbol Explanation 

∂c

∂t
 Linear slope of gas concentration 

V̇ Volume flow 

A Surface area 

CH4 Methane 

cin Background concentration 

cout Exhaust concentration 

E Emission mass flow 

m3 STP m3 at 0°C and 101.325 kPa 

N2O Nitrous oxide 

NH4-N Ammonia nitrogen 

Abbreviation Explanation 

DBFZ Deutsches Biomasseforschungszentrum 

FM Fresh matter 

TDLAS Tunable Diode Laser Absorption Spectroscopy 

TIC Total inorganic carbonate buffer 

TS Total solids 

VOA Volatile organic acids 

VS Volatile solids 

GC Gas chromatograph 

FID Flame ionization detector 

ECD Electron capture detector 

IR Infrared 
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V Volume 

ρ Density of the target gas 

EF Emission factor 
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1 Introduction 

From 8th until 12th September 2014 methane emission measurements were performed by using 

different methods at a bio-waste treatment plant located in Linköping, Sweden. This preliminary report 

presents the available results of the onsite method up to now. The measurements were performed by 

Torsten Reinelt and Martin Apelt from DBFZ. 

2 Plant description 

The investigated biogas plant is a bio-waste treatment plant upgrading the produced biogas to 

biomethane. The provided biomethane is used as transportation fuel. The plant features are listed in 

the following. 

Biogas plant features 

General description:  

Plant operator: Swedish Biogas in Linköping AB 

Location: Linköping, Sweden 

Construction year: 1996 

Substrate input in 2013: Slaughterhouse waste cat. 3 20 % by weight 

 Food industry 35 % by weight 

 Alcohol 0.5 % by weight 

 Thin stillage 1.5 % by weight 

 Fat  2 % by weight 

 Glycerol 1 % by weight 

 Food waste 40 % by weight 

Annual biogas production in 2013: 17 169 600 m3 STP raw biogas 

Annual average methane content in 2013: 64 % by volume 

 

Plant technology:  

Fermentation system: Wet fermentation 

Fermentation stages: 
Three parallel 1st stage digesters and one 2nd stage 

digester 

Digestate storage: Open storage 

Biogas storage: External tank 

Biogas upgrading technology: 
Basically chemical scrubbing and water scrubbing on 

demand 

Miscellaneous: 
Biofilter which treats the ducted exhaust air from the 

pretreatment hall 

 Hygienization tanks (70 °C for one hour) 
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Operating conditions during the measurement period 

The plant has three known methane emissions sources, including the off-gas from the biogas upgrading 

as well as the diffuse emissions from the open digestate storage and the biofilter. 

During the measurement campaign the methane content of raw biogas amounted to 62 % on Tuesday 

and Wednesday, and 60 % on Thursday. The methane content of the upgraded biogas was 96.4 % on 

Tuesday, 97.1 % on Wednesday and 96.6 % on Thursday.  

The production rates are listed in Table 1 according to the values from the flowmeters of the biogas 

plant. The values on Tuesday the 9th led to a loss of methane in the upgrading process of 54 m3 h-1 STP 

during the upgrading process. This high value representing 4.7 % of the produced methane might have 

slipped through an open safety valve at the upgrading unit. Alternatively it might be due to the 

uncertainty of the flow meters. Nevertheless on the following days the deviation between the methane 

rate of the raw biogas and the methane rate of the upgraded biogas was less than 10 m3 h-1 STP. 

On Wednesday the chemical scrubber was operated in turndown (50 % capacity). In addition, the water 

scrubber was in operation. 

Table 1: Production rates during measurement period 

 Unit Tue 09/09/2014 Wed 10/09/2014 Thu 11/09/2014 

Type of upgrading  Chemical scrubber Water scrubber, 

Chemical scrubber 

Chemical scrubber 

Raw biogas production 

m3 h-1 STP 

1 922 1 830 1 990 

Upgraded biogas production 1 180 1 160 1 230 

Methane production 1 138 1 126 1 188 

Methane loss during upgrading  54 9 6 

3 Method and material 

The on-site method is based on two working steps. First a survey on the biogas plant was carried out 

looking for spots with increased methane concentrations indicating leakages from biogas-bearing plant 

components. The next step was the quantification of the emission mass flow from the discovered 

leakages and from already known emissions sources. Depending on the source a measurement method 

was applied and gas samples were taken and analyzed in the lab. 

3.1 Identification of leakages 

The localization of leakages was investigated by three measurement techniques, an infrared (IR) 

camera, a portable methane laser and a portable biogas monitor. The single systems are listed and 

shortly described in the following. 
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The IR camera uses the specific characteristic from volatile organic compounds to absorb much 

infrared radiation at certain wave lengths. Methane has different absorption maximums in the infrared 

spectrum. The camera uses the wavelength range from 3.2 to 3.4 µm. The camera is shown in Figure 1. 

 

Figure 1: Infrared camera during use on the exploratory biogas plant of the DBFZ 

The incoming radiation is filtered to the wave length range specified above. If the radiation 

subsequently encounters the detector, a photon flux is induced. A gas cloud between background and 

lens changes the energy flux. The cloud has to have a different temperature compared to the 

background, but it is not crucial if the temperature of the cloud is higher or lower than the background 

temperature. The detector consists of a cooled Focal-Plane-Array that is a layout of light sensitive 

detector elements registering the photon flux based on the photoelectrical effect. By means of a special 

image overlay technique (HSM mode) the gas from a leakage is visualized as a visible gas cloud on the 

camera display. The visualized gas cloud can be documented as movie or picture.  

Features of the IR camera: 

Device: Imaging IR camera 

Producer: FLIR 

Type: GF 320 

Measurement principle: Passive infrared 

Measurable gases: Methane, Ethane, Propane, Butane, Ethylene and others 

Temperature range: -40 – 350 °C 

Temperature uncertainty: 
±1 °C for temperature range 0 – 100 °C 

and ±2 % of the reading for the range > 100 °C 

Leakage range: Depending on temperature difference/distance to source; detection 

limit for methane: 6 l h-1 (3 m distance and no wind) 

Last calibration: Manufacturer's calibration 

Explosion protection: Not protected 
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Like the IR camera the portable methane laser is a remote sensing measurement technique, too. In 

contrast to the camera the laser is based on an active IR measurement principle. From the device an IR 

laser beam with a certain wave length (1 653 nm) is emitted and reflected back from a surface to the 

detector in the device. The intensity of the reflected laser light decreases exponentially with raised 

distance from laser source to reflection surface. Due to the installed laser diode the device is sensitive 

for methane. From the measured absorption the device calculates path integrated methane 

concentration stated in ppm m. The measured value has to be divided by the distance to the reflection 

surface to get path averaged concentration in ppm. This principle is schematically shown in Figure 2. 

 

Figure 2: Use of a portable methane laser to detect leakages 

Features of the methane laser: 

Device: Portable methane laser  

Producer: GROWCON 

Type: LaserMethane® mini Gen2 

Measurement principle: TDLAS (Tunable Diode Laser Absorption Spectroscopy) 

Measurement range: 1 – 50.000 ppm m (depending on distance/reflection surface) 

Measurement uncertainty: ± 10 % (1000 ppm m and 2 m distance) 

Last calibration: Self-calibrating by integrated gas measuring cell 

explosive protection: II 2G Ex ib IIA T1 

The determination of the methane concentration at the direct leakage spot was done by a portable 

biogas monitor shown in Figure 3. 
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Figure 3: Available biogas monitors [DBFZ, Torsten Reinelt] 

Features of the biogas monitor: 

Device: Portable biogas monitor 

Producer: Geotech GmbH 

Type: BM 2000 (cp. left device in Figure 3) 

Volume flow of integrated pump: 0.3 l min-1 

Integrated air pressure sensor: 900 … 1 100 mbar (± 5 mbar) 

Last calibration 2014 

Explosion protection: Ex II 2G EEx ibd IIA T1 Gb 

The measurement uncertainties of the BM 2000 are shown in Table 2. 

Table 2: Measurement range and uncertainties of the BM 2000 

 
CH4 CO2 O2 

in Vol. % in Vol. % in Vol. % 

Measurement range 0 – 100 (IR) 0 – 100 (IR) 0 – 25 (Electrochemical) 

Uncertainty 

0 – 5 Vol. % ± 0.5 ± 0.5 ± 1.0 

5 – 15 Vol. % ± 1.0 ± 1.0 ± 1.0 

> 15 Vol. % ± 3.0 ± 3.0 ± 1.0 
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3.2 Quantification measurements 

3.2.1 Basic measurements 

Measurement of the gas concentration: 

The directly acting greenhouse gases methane and nitrous oxide were determined. The used methods 

are listed in Table 3. 

Table 3: Analytical measurement methods 

Gas Sampling Measurement method Measurement device Standard 

Methane 

(CH4) Evacuated vials 

(less than 10 mbar 

absolute pressure) 

Gas chromatograph with 

an auto sampler and 

flame ionization 

detector (FID) for CH4 

and electron capture 

detector (ECD) for N2O 

Agilent 7890A GC System 

VDI 2466 sheet 1 

(Verein Deutscher 

Ingenieure, 2008) 

Nitrous 

oxide 

(N2O) 

VDI 2469 sheet 1 

(Verein Deutscher 

Ingenieure, 2005) 

Measurement of the volume flow: 

The volume flow was determined by measuring the flow velocity by means of vane anemometers. The 

determined flow velocities were referred to the inner cross-sectional area of the pipes. Furthermore the 

temperature and the relative air humidity and the pressure were determined. The used measurement 

devices are listed in Table 4. The volume flow under normal conditions was determined by Equation 1. 

V̇STP = 

(pAir - ((
rH

100
)  ∙ 0.6112 kPa ∙ e

17.62 ∙ ϑ
243.12 + ϑ))  ∙ 273.15 K

101.325 kPa ∙ (273.15 + ϑ) K
 ∙ V̇ 

Equation 1 

 

   
V̇STP Volume flow at 0°C and 101.325 kPa m3 h-1 STP 

V̇ Volume flow m3 h-1 

pAir Air pressure kPa 

ϑ Temperature °C 

rH Relative air humidity % 
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Table 4: Used measurement equipment 

Device Measurement range Accuracy 

PCE 007 0 – 45  

0 – 45  

m s-1 

°C 

±3 % from upper range value and 0.1 m s-1 

±1 °C 

Ahlborn FVAD 15 S120 0.6 – 20 m s-1 ±1 % from upper range value and 

±1.5 % from measurement value 

Testo 416 0.6 – 40 m s-1 0.2 m s-1 and ±1.5 % from measurement 

value 

Ahlborn pressure sensor FDA 612 SA 700 – 1 050 mbar ±0.5 % from upper range value 

Ahlborn temperature sensor FPA 32 P - 40 – 500 °C ± 0.3 K (at 0°C) 

Extech SD 700 0 – 50 

700 – 1 100 

 

10 – 90 

 

 

°C 

hPa 

 

% RH 

 

 

± 0.8 °C 

± 2 hPa  (0010.0 – 1 000.0 hPa) 

± 3 hPa  (1000.1 – 1 100.0 hPa) 

± 4 % RH (10 – 70 % RH) 

± 4 % from measurement value and 

± 1 % RH (70 – 90 % RH) 

The volume flow of the used ATEX classified blowers was measured by the anemometers PCE 007 (PCE 

Deutschland GmbH, Meschede, Germany) and S120 (Ahlborn Mess- und Regelungstechnik GmbH, 

Holzkirchen, Germany). The PCE anemometer was calibrated by the Testo 416 anemometer in the 

laboratory and the measured volume flows were corrected with a linear regression. The calibration of 

the PCE anemometer is shown in Figure 4. 

The measurement of the flow velocity from the ventilation pits was carried out with the PCE 

anemometer and from the inlet air to the biofilter with the Testo anemometer. 
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Figure 4: Linear calibration of PCE anemometer for measurement of the volume flow of the ATEX blower 

Calculation of the emission mass flow and the emission factor: 

By measuring the volume flow and the gas concentration of the target gas, the emission mass flow can 

be calculated according to Equation 2.  

 

E = 
c ∙ V̇STP

1 000
  

Equation 2 

E Emission mass flow g h-1 

c Mass concentration mg m-3 

V̇STP Volume flow under normal conditions m3 h-1 STP 

The emission factor that relates the emission mass flow from a source to the methane production of the 

biogas plant is determined according to Equation 3. 

EF = 
E

ρCH4 ∙ V̇methane ∙ 1 000
  

Equation 3 

EF Methane emission factor % CH4 loss 

E Emission mass flow g h-1 

ρCH4 Density of methane kg m-3 

y = 0,8002x + 0,2763
R² = 0,999
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V̇methane Methane production of the plant m3 h-1 STP 

V̇STP Volume flow under normal conditions m3 h-1 STP 

3.2.2 Ventilation pits from buildings 

The ventilation pits of buildings were investigated directly at the exhaust duct. In case of the 

compressor buildings running ventilators were installed, venting the whole building. There the flow 

velocity was measured at twelve and the emitting gas concentration at four points of the exhaust duct, 

which are shown in Figure 5. The background concentration sampling was done in front of the air supply 

duct of the building. 

  

Figure 5: Measurement points of flow velocity (left) and points of concentration measurements (right) 

In case of the building which was connected to the activated carbon filter the ventilator was out of 

operation. Consequently the exhaust duct was encapsulated and ventilated with the ATEX classified 

blowers. In this case the measurement of the gas concentration and the volume flow were carried out 

like the determination of leakages (cp. section 3.2.4).   

3.2.3 Digestate storage and homogenization tank 

To determine the methane emissions from the open digestate storage and two emission sources from 

the homogenization tank, the closed chamber method (Rochette and Mc Ginn, 2005) was used. 

The measuring principle is based on the measurement of an increasing gas concentration inside the 

chamber volume. After putting the closed chamber on the emission surface a gradually increasing gas 

concentration was determined. The chamber is shown in Figure 6.  
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Figure 6: Use of the closed chamber (left: on a hole of the homogenization tank; right: on the surface of the open digestate 

storage) 

Samples were taken after certain time intervals (0, 3, 6, 9, 12, 15, 20, 25, 30 min). The emission rate 

was calculated from the slope of the gas concentration, the chamber volume and the encapsulated 

surface area according to Equation 4. 

ESpec = 
∂c

∂t
 ∙ 

V

A
 ∙ 0.06 

Equation 4 

ESpec Surface specific emission mass flow g m-2 h-1 

∂c

∂t
 Linear slope of gas concentration mg m-3 min-1 

V Volume inside the chamber m3 

A Encapsulated surface area m2 

In case of a pipe bend on the homogenization tank the volume of this pipe bend had to be subtracted 

from the volume of the chamber. 

3.2.4 Leakages 

Identified leakages were quantified by means of an open chamber system. The encapsulation of gas- 

bearing plant components was done by a flexible enclosure made of foil. The open chamber had an 

input and output pipe and two connected blowers which produced an air flow through the chamber. The 

methane from the leakage and the fresh air were mixed inside the chamber. Gas samples were taken in 

the in- and output stream of the chamber. Finally the emission mass flow of the leakage was calculated 

from the concentration difference and the flow rate of the blower according to Equation 5. 

E = 
V̇ ∙ ρ ∙ (cout - cin)

1 000
 

Equation 5 

E Emission mass flow g h-1 

V̇ Volume flow m-3 h-1 STP, dry 

ρ Density of the target gas kg m-3 

cout Exhaust concentration ppm (mg kg-1) 

cin Background concentration ppm (mg kg-1) 
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The measurement method is schematically shown in Figure 7 and field-tested at a leakage on a 

compressor in Figure 8. 

 

Figure 7: Schematic of the measurement setup to quantify diffuse leakages 

 

Figure 8: Measurement setup at a leakage on the 1st compressor besides the active carbon filter 

Sample point 

Fresh air 

Exhaust air 

Leakage 
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3.2.5 Biofilter 

The gas sampling at open biofilters occurred in the exhaust after the polluted gas stream passed 

through the material of the biofilter. To grasp the exhaust stream, a foil was laid on the surface and 

fixed at the sides. The foil was arched by the air flow through the biofilter. A heated sample line was 

placed underneath the foil. The sample method is described by Cuhls and Liebetrau (2013) in a 

German biogas method collection. The volume flow was measured in the raw gas pipe to the biofilter. 

 

Figure 9: Measurement setup at an open biofilter 

3.2.6 Exhaust from the chemical scrubber 

The measurement of the methane gas concentration was directly sampled from the exhaust pipe 

according to VDI 2466 Sheet 1 (VDI, 2008). The sample point did not allow volume flow measurements 

by a vane anemometer.  

4 Results 
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4.1 Plant survey 

 

Figure 10: Overview of discovered methane emission sources from the plant survey (figure is based on the plan view from SvenskBiogas)
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Figure 10 shows the discovered and already known emission sources. The sources are marked in terms 

of color. Red marked leakages showed more than 10 vol. % methane at the direct emission spot 

(determined by biogas monitor). Green marked leakages showed less than 1 vol. % methane at the 

direct emission spot. The emission source with number 6 is grey marked, because a methane 

concentration wasn’t measured, but the methane emission from the source was quantified by an open 

chamber. Yellow marked source have been already known. 

4.2 Emission rates and emission factors 

4.2.1 Ventilation pits from buildings 

Inside the right compressor unit a leakage on a measurement device was located which is shown in 

Figure 11. The methane concentration was up to 10 vol. % at the direct leakage spot. Due to the 

complicated casing around the device, it was decided that the leakage wouldn’t be encapsulated. The 

methane emission was measured at the ventilation pit of the building. In the left compressor building 

no leakages were identified. But a limiting factor was that the left building was only temporary 

amenable for leakage detection. 

 

Figure 11: Leakage at measurement device flanged to biogas pipe 

Consequently the methane emissions from the right compressor building were higher than from the left 

one. The measured values are listed in Table 5. However, methane emissions occurred evidently in both 

buildings. 
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Table 5: Methane emissions from the ventilation of the compressor units (right compressor unit includes the leakage shown in 

Figure 11) 

 Unit Left compressor unit Right compressor unit 

Dimensions 

exhaust duct 

Height m 0.58 

Length m 0.785 

Surface area m2 0.46 

Flow velocity m s-1 3.9 ± 10 % 3.0 ± 15 % 

Volume flow m3 h-1
STPD 5 751 4 476 

Mass concentration 

(without background) 

mg m-3 12 ± 15 % 44 ± 8 % 

E g CH4 h-1 66 198 

EF % CH4 loss 0.008 0.024 

4.2.2 Digestate storage  

Determination by Closed Chamber method: 

As described in chapter 3.2.3 the closed chamber method determines the slope of the gas 

concentration inside the chamber volume. This is exemplified in Figure 12. The determined slope is 

emphasized in bold font.  

 

Figure 12: Concentration gradient determined by a closed chamber (sample point 4, cracked surface layer, cp. Figure 6) 
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In some cases the measured slope was not linear, but exponential which is shown in Figure 13. If the 

coefficient of determination was below 0.95, the slope was corrected by sorting the outlier (cp. Figure 

14). 

 

Figure 13: Concentration gradient determined by a closed chamber (sample point 1) 

 

Figure 14: Corrected concentration gradient (sample point 1) 
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Table 6: Measurement results from the open digestate storage 

 
Surface layer Cracked surface layer 

Overall storage (50 % cracked 

and 50 % thick surface layer) 

CH4 N2O CH4 N2O CH4 N2O 

n  1 1 3 3 ---- ---- 

∂c

∂t
 

mg m-3 min-1 52.70 1.15 220.46 2.30 ---- ---- 

Espec g m-2 h-1 1.92 0.04 6.23 0.07 4.08 0.05 

σEspec g m-2 h-1 ---- ---- 0.75 0.05 ---- ---- 

E g h-1 ---- ---- ---- ---- 4 382 58 

EF % CH4-loss 

g N2O m-3
CH4 

---- ---- ---- ---- 0.53  

5 

If the emitted mass flows of methane and nitrous oxide are converted into CO2-eq by using the GWP’s 

from Myhre et al. (2013), it results that 11 % of the overall CO2-eq emissions of the digestate storage 

arise from nitrous oxide and 89 % from methane. In a digestate sample from the post digester was 

measured a high ammonium nitrogen content about 3 g l-1 and a high pH about 8.18 (cp. Table 7). 

These digestate conditions and the surface layer promote the production and emission of nitrous oxide, 

because the denitrification is promoted by more oxygen input and the high nitrogen content. 

Residual gas potential from the digestate: 

For the modelling of the diffuse methane emissions from the open digestate storage the digestate 

temperature and the residual biogas potential from the digestate of the 2nd stage digester was 

determined experimentally. The results are listed in the following. Figure 15 shows altogether three 

temperatures (air temperature and digestate temperature in two depths). It is known that the 

temperature of the digestate has great influence on the residual methane production (O´ROURKE, 

1968). The digestate characteristics from the post digester shown in Table 7 suggest that besides 

methane the emission of nitrous oxide is possible. 
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Figure 15: Digestate and air temperature during the investigation period (declared values are average ± standard deviation) 

Table 7: Digestate characteristics 
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Sample number BK 14-1155  

TS 3.66 %FM 

VS 69.24 %TS 

pH 8.18  

VOA 1.01 g l-1 

VOA/TAC 0.14 gVOA gCaCO3
-1 

NH4-N 3.02 g l-1 
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Figure 16: Specific biogas production at 37 °C after 60 days (error bars indicate standard deviation, n = 3) 

The residual biogas potential amounted to 262 m3STP MgVS-1. The used method is described in VDI 4630 

(VDI, 2006). By using Equation 6 to Equation 8, the overall methane emission potential (EFdigestate at 37 °C) 

of the digestate was calculated. The results are shown in Table 8. 

Mass loss factor = 1 - 
V̇raw biogas ∙ ρraw biogas

1000 ∙ ṁsubstrate

 
Equation 6 

   
V̇raw biogas Raw biogas production in 2013 m-3 d-1 STP 

ρraw biogas Density of raw biogas (at 64 % methane content  data of 2013) 1.17 kg m-3 

ṁsubstrate Substrate input Mg d-1 

 

ṁdigestate = Mass loss factor ∙ ṁsubstrate Equation 7 

   
ṁdigestate Digestate input to the storage Mg d-1 

ṁsubstrate Substrate input Mg d-1 

 

EFdigestate at 37°C= 
YCH4, digestate ∙ ṁdigestate

V̇methane

 ∙ 100 Equation 8 

   
YCH4, digestate Methane potential from digestate m3 CH4 Mg-1FM 
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V̇methane Methane production from the biogas plant m3 d-1 STP 

ṁdigestate Digestate input to the storage Mg d-1 

Table 8: Estimation of the residual methane potential (37 °C) in comparison to the methane production of the biogas plant 

Input 

 

2013 

Raw biogas and 

methane 

production 2013 

VS 

(diges-

tate) 

Methane potential from 

digestate 

(digested at 37 °C) 

Mass 

loss 

factor  

Digestate 

mass 

EFdigestate at 37°C 

Mg d-1 m3 d-1 % m3 CH4 Mg-1
VS m3 CH4 Mg-1

FM  Mg d-1 % CH4 

257.5 47 040 30 106 2.5 157.2 4.0 0.79 202.5 2.7 

Compared with the results from the chamber measurements, the digestate storage emitted a methane 

amount about 20 % from the residual methane potential determined at 37 °C. 

4.2.3 Leakages 

4.2.3.1 Activated carbon filter 

The building next to the activated carbon filter showed a total of three leakages. Every single leakage 

and the whole building were investigated separately. The results are listed in Table 9.  

Table 9: Summary of methane emissions from the activated carbon filter 

Component Determination Mass concentration 

without background 

E EF 

  mg CH4 m-3 g CH4 h-1 % CH4 loss 

Overall Container measured 722 ± 5 % 138 0.017 

Overall Container calculated1 ---- 135 0.016 

Leakage 1 (1st compressor) measured 600 ± 5 % 068 0.008 

Leakage 2 (2nd compressor) measured 660 ± 3 % 063 0.008 

Leakage 3 (flange) measured 54 ± 8 % 004 < 0.001 

Hose calculated2 ---- 003 < 0.001 

1 … Sum of leakage 1, 2 and 3 
2 … Difference of overall container (measured) and overall container (calculated) 

The results show a good match between the measurement and summation of single leakages and the 

measurement of the exhaust air from the whole building. 
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4.2.3.2 Hygienization tank 

The hygienization tank showed two leakage spots. The first one was a not gastight closed flange and the 

second one an open pipe connected between homogenization and hygienization tank. The results are 

shown in Table 10.  

Table 10: Summary of methane emissions from the hygienization tank 

Component of the 

hygienization tank 

Mass concentration 

without background 

E EF 

 mg CH4 m-3 g CH4 h-1 % CH4 loss 

Flange 101 ± 5 % 10 0.001 

Pipe 58 ± 19 % 6 0.001 

During the investigation of the pipe a stirrer was active led to a short rise of the measured methane 

concentration. This shows the effect of stirring periods.  

 

Figure 17: Concentration run during encapsulation of the pipe of the hygienization tank 

4.2.3.3 Pressure relief vents from the compressor units 

Two activated pressure relief vents connected to the compressor units were detected (see Figure 18 
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an open chamber and the first one was calculated to compare the result with the measurements from 

the other institutes. The results from these pressure relief vents are shown in Table 11. 

 

Figure 18: First pressure relief vent (08 and 09/09/2014, 80 vol. % CH4) 

 

Figure 19: Second pressure relief vent (11/09/2014, 20 vol. % CH4) 

Table 11: Methane emissions from the pressure relief vent of the compressor unit 

Pressure relief vent  Mass concentration 

without background 

E EF 

  mg CH4 m-3 g CH4 h-1 % CH4 loss 

Small one (20 % CH4) measured 4 972 ± 5 % 317 0.038 

High one (80 % CH4) calculated 19 888* 1 269 0.154 

* … Mass concentration was calculated by multiplying the ratio of 80 vol. %/20 vol. % with the mass concentration 

of the measured one assuming that the volume flows are equal 
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4.2.3.4 Homogenisation tank 

The both leakages from the homogenisation tank were measured by a closed chamber like the 

digestate storage. The results are shown in Table 12. The emitted methane volumes were very low 

compared to the other leakages.  

Table 12: Measurement results from the open digestate storage 

 Hole Pipe Overall tank 

CH4 N2O CH4 N2O CH4 N2O 

∂c

∂t
 

mg m-3 min-1 43.53 6.15 1.71 0.28 ---- ---- 

Espec g m-2 h-1 1.59 0.22 0.05 0.01 ---- ---- 

E g h-1 0.45 < 0.01 0.01 0.06 0.46 0.07 

EF % CH4-loss 

g N2O m-3
CH4 

---- ---- ---- ---- 0.6 · 10-4  

0.6 · 10-4 

4.2.4 Biofilter 

The biofilter showed emissions of methane and nitrous oxide. The concentration runs from both gases 

are shown in Figure 20 and the results in Table 13. 

 

Figure 20: Mass concentration of methane and nitrous oxide from the biofilter 
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Table 13: Methane and nitrous oxide emissions from the biofilter 

Gas Mass concentration  Volume flow (raw gas) E EF 

 mg m-3 m-3
STPD h-1 g h-1 % CH4 loss/g N2O m-3

CH4  

CH4 126 ± 32 % 
1 209 

152 0.018 

N2O 8 ± 19 % 10 0.01 

4.2.5 Chemical scrubber 

Because the sample point of the off-gas pipe did not allow a volume flow measurement, the flow should 

be determined from operational data of the plant. According to the operator at that time of the emission 

measurement the chemical scrubber was operated in turndown (50 % capacity only). Furthermore it 

was determined that the concentration of carbon dioxide in the off-gas was less than 40 vol. %. A 

leakage in the sample line was excluded, because the concentration was checked directly at the 

sample point with the biogas monitor. Because of the unclear composition from the off-gas it is resigned 

to calculate an off-gas volume flow from operational data. The measured mass concentration of 

methane (half hour average) is 273 mg m-3 ± 58 %. 

4.2.6 Overall methane emission 

The addition from each investigated emission source leads to an overall methane emission about 

0.64 CH4-loss from the whole plant. The results are summarized in Table 14. 

Table 14: Overall methane emissions from the whole biogas plant 

Component of the biogas plant E EF 

 g CH4 h-1 % CH4 loss 

Activated carbon filter 1381 0.0171 

Biofilter 1521 0.0181 

Compressor units (including ventilation pits and pressure relief vent) 264 

317 

0.032 

0.038 

Digestate storage 4 382 0.53 

Homogenization tank 0.5 0.6 · 10-4 

Hygienization tank 16 0.002 

Off-gas chemical scrubber ---- ---- 

Overall methane emission 5 269.5 0.64 
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1 Introduction 

From 8th until 12th September 2014 measurements were performed at the Linköping Biogas Plant to 

compare different methods to estimate methane emissions from biogas plants. This report presents the 

results of the indirect measurement with Tunable Diode Laser Absorption Spectrometry (TDLAS) and 

inverse dispersion modelling using the software Windtrax. The measurements were performed by Tanja 

Westerkamp and Carsten Tilch from DBFZ. The resulting emission rates are summarized in Table 4-3. 

2 Site description 

Important information about the biomethane production site in general, during the measurement period 

and about the surroundings is given here to be able to rank the results of the emission measurements. 

Plant parameters 

Table 2-1: Biogas plant parameters 

Plant operator Swedish Biogas in Linköping AB 

Location Linköping 

Construction year 1996 

Substrates Food waste, slaughterhouse waste 

Annual production 2013 16 206 000 m3 STP raw biogas (flowmeter value) 

Biogas treatment Chemical scrubber, water scrubber 

Operating conditions during the measurement period 

The three relevant days of the measurement period for the calculation of emission factors are from 

Tuesday, 09/09/2014 until Thursday, 11/09/2014. These were the days where TDLAS data for inverse 

dispersion modeling was successfully generated. The raw biogas had a methane content of 62% on 

Tuesday and Wednesday, and 60% on Thursday. The methane content of the upgraded biogas was 

96.4% on Tuesday, 97.1% on Wednesday and 96.6% on Thursday.  

The production rates for the three days for raw and upgraded biogas are listed in Table 2-2 according to 

the values from the flowmeters of the biogas plant. Using the given methane content of the gases, the 

methane production rate is calculated for raw biogas and upgraded biogas, respectively. The values for 

Tuesday the 9th lead to a methane loss in the upgrading process of 54 m3 h-1 STP. This high value 

representing 4.7% of the produced methane might have slipped through a permanent open safety valve 

at the upgrading unit. Alternatively, it might be due to the uncertainty of the flowmeters. But the two 

other days the deviation between the methane rate of the raw biogas and the methane rate of the 

upgraded biogas is less than 10 m3 h-1 STP. It is of interest if the measurements can shed light on this 

issue.  

On Wednesday the chemical scrubber was operated in turndown (50% capacity). In addition, the water 

scrubber was in use. Tuesday and Thursday the chemical scrubber was operated under full load. 
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Table 2-2: Production rates during measurement period according to the flowmeters at the plant (Lines with * are calculated 

using the methane contents of the gases.) 

 Unit Tue 09/09/2014 Wed 10/09/2014 Thu 11/09/2014 

Raw biogas production 

m3 h-1 STP 

1 922 1 830 1 990 

Methane in raw biogas* 1 192 1 135 1 194 

Upgraded biogas production 1 180 1 160 1 230 

Methane in upgraded biogas* 1 138 1 126 1 188 

Calculated methane loss during 

upgrading according to 

flowmeters* 54 9 6 

Surrounding area 

In the north east a landfill is situated, while wastewater treatment is performed in the south-west of the 

plant. In the west of the plant were some ditches and ponds. All these sites might influence the results 

of the remote sensing measurements. North of the biogas plant, there were several short rotation 

coppices with heights of 4 to 5 meters making measurements during south wind periods a challenge. 

All these “obstacles” in the surrounding area are shown on the map in Figure 2-1. 

 

Figure 2-1: Map of the surrounding area (based on www.openstreetmap.org) 
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3 Method and material 

The method whose results are presented here is optical remote sensing with a tunable diode laser 

absorption spectrometer (TDLAS) followed by an inverse dispersion simulation to determine the whole 

plant’s methane emission rate. Remote sensing was carried out with a GasFinder 2.0 (Boreal Laser Inc.) 

and a weather station with 3D sonic anemometer (RM Young), shown in Figure 3-3-1. The spectrometer 

measures the path integrated concentration of methane between the device and a reflector on a path 

of a few hundred meters. The concentration readings are sensitive to ambient temperature and were 

calibrated accordingly. The spectrometer in use has a regression slope of -9.2x10-3 per Kelvin. The 

paths downwind of the plant were placed at a height of about 1.5 m in distances of 80 to 200 m from 

the emission area depending on surroundings and wind conditions. Lengths were measured with a laser 

rangefinder with an accuracy of 1 m. Concentration and weather condition data were sampled with a 

frequency of 1 Hz. To determine the emission rate of the whole site the software WindTrax (Version 

2.0.8.8) was used. The underlying backward Lagrangian stochastic (bLs) model is based on the Monin-

Obukhov similarity theory. The input data for the simulation is filtered for invalid data and condensed to 

mean values in intervals of a quarter of an hour. The software calculates emission rates for the input 

intervals. For each data set 50 000 air parcels were simulated backward in time starting from the 

measurement path. Depending on the concentration readings and the meteorological conditions the 

emission rate of the source area is calculated. The model assumes that the source area is 

homogeneous and close to the ground. This simplification is possible when the measurement paths are 

placed behind the disturbances of the wind field in the downwind plume of the source. The output of 

Windtrax was filtered using the following criteria. The friction velocity had to be larger than 0.15 m s-1. 

The absolute value of the Obukhov length had to be larger than 10 m and the fraction of the emission 

source area that had to be covered by air parcels touching the ground had to be higher than 90%. 

 

  

Figure 3-3-1: TDLAS back view (left) and in the downwind plume of the biogas plant together with the weather station (right). 

(Photos: DBFZ/Carsten Tilch) 
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4 Results 

4.1 Measuring conditions and setup 

Table 4-1 gives an overview on weather conditions and the setup of the measurement paths including 

some remarks on the daily observations. Measurements were performed on two or three paths each 

day. For this purpose the spectrometer was mounted on a pan-and-tilt unit scanning two or three 

reflectors subsequently in 2 to 3 min intervals. 

Table 4-1: Measurement conditions and setup 

Date Wind conditions Weather Measurements Comments 

08/09/2014 SE changing to 
SW, 1-2 m s

-1
 

rainy and 
misty/hazy, 15°C 

background in the 
south on two paths 

Path close to the solid residuals of 
the wastewater treatment plant 
had slightly higher concentrations 

09/09/2014 S-SE, 2 m s
-1

 Cloudy/rainy, 13°C two paths in the 
north with 320 m 
and 106 m 

Measurement north of highway, 
slightly above background, few 
peaks in the morning, enhanced 
values from 11am on 

10/09/2014 N-NE, 4-5 m s
-1

 several times from 
rainy to sunny,  
12- 16°C 

two paths in the 
south with 217 m 
and 134 m, 
background in the 
afternoon in the 
northeast 

Signals well above background, 
ammonia emissions not 
detectable 

11/09/2014 N-NE, 1-2 m s
-1

 sunny, 16°C three paths in the 
south-southwest 

Additional methane emissions 
from ponds and ditches in the 
southwest 

12/09/2014 low wind speed, 
various 
directions 

sunny, 16 to 20°C one path in the 
south 

No reliable simulation was 
possible. 

Inverse dispersion modeling was carried out for three days of the measurement period. The results are 

shown in Table 4-3. The path setup for these three days and some remarks on the emission simulations 

are given in Table 4-2. 
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Table 4-2: Path setup and description. Measurement paths are marked by red dotted lines and the sonic anemometer by a red 

star. The source area is marked in green. (Based on www.openstreetmap.org) 

 

09/09/2014 

The measurement took place on two paths in 

the north of the short rotation coppice at a 

large distance to the emission source. In 

addition wind was low from volatile directions. 

This is not a perfect situation for the inverse 

dispersion modelling. Looking at the result this 

should be considered. 

 

10/09/2014 

Two paths were set up. Simulations were 

performed using data of both paths and using 

only data of path 2. Results were higher when 

using both paths. Regarding the results of 

11/09/2014 only the simulation results of the 

latter simulations were used to calculate the 

emission factor for the day. 

 

11/09/2014 

Three paths were set up. Concentration 

readings on path 1 were higher than on path 2 

despite the larger distance to the source area. 

Simulations were carried out using data of 

path 3 in combination with data of path 1 or 

path 2, and using all paths’ data. It is probable 

that ponds and ditches between path 1 and 2 

caused the higher values on path 1 (see also 

Subsection 4.2). Only simulation results using 

data of path 2 and 3 were taken for the 

calculation of the emission factor of the biogas 

plant.  
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4.2 Discussion of uncertainties 

Several methane emission sources in the surrounding area of the biogas plant influence the methane 

background concentration. Changing wind direction could show that the concentration readings on the 

measurement paths could be influenced by the residual storage site of the wastewater treatment plant. 

Unless the background concentrations for the simulations were carefully chosen there is an uncertainty 

because background and downwind concentrations could not be measured simultaneously. But the 

largest uncertainty during the measurements was caused by ditches and ponds in the south-west of the 

plant. Figure 4-1 shows upcoming gas bubbles of one of these ditches. As described in Table 4-2 there 

were higher methane concentration readings on the path downwind of this area than closer to the 

biogas plant. The reason could be that methane is emitted by the ditches.  

 

Figure 4-1: Ditch in the south-west of the biogas plant close to the southern gate. The black spots indicate places where gas 

bubbled up (Photo: DBFZ/Carsten Tilch). 

Another explanation for higher readings on the path further away from the biogas plant might be that 

emissions from high or hot emission spots situated at the biogas plant could descend further away from 

the plant. But the simulations using the data from 10/09/2014 indicate that this is probably not the 

case. Using both paths 19 valid simulation intervals could be calculated. Using only path 2, only nine 

intervals gave valid results due to unfavorable wind directions during the other intervals leading to a 

covering of the source area lower than 90%. Figure 4-2 shows the results of both simulations in 

comparison. It strongly suggests that the simulations with the data of both paths overestimate the 

emission rate of the biogas plant by about 2 kg h-1 in average compared to the simulations using only 

path 2. For this day’s average emission rate only those intervals were taken where the use of path 2 

only was sufficient to calculate the emission rate with a covering of over 90% of the source area (cp. 2nd 

row of Table 4-2). 
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Figure 4-2: Results of the inverse dispersion modelling in intervals of 15min using one or two measurement paths. Error bars 

indicate the standard deviation within each model run.  

The idea to analyze the influence of the bubbling ditches rose on the 11/09/2014 when methane 

concentrations were measured on three different paths. The wind was unstable from varying directions. 

It turned out that the measured concentrations on path 1 were higher than on path 2 which was closer 

to the biogas plant (cp. 3rd row of Table 4-2). Simulations were performed using different combinations 

of path concentration data. Apart from the simulation where the data of path 1 was used all 

calculations came to results of the same magnitude. Path 2 alone was sufficient for five simulation 

intervals in the morning when the wind came from northeast. Path 3 alone was sufficient for eight 

simulation intervals in the afternoon when the wind came from north-northwest. That the results of 

path 2 only and path 3 only are comparable gives a good indication that the simulation results are 

reliable. 

 

Figure 4-3: 15min interval emission rates calculated with several combinations of path concentration data 

In addition, a simulation was performed where the data of all paths was used and a second source area 

was added at the location of the bubbling ditches. For each path the program simulates 50 000 air 

parcels loaded with methane on their way back in time according to the present meteorological 

conditions. The air parcels measured on path 1 were loaded partly when touching the “biogas plant 
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emission area” and partly when touching the “ditch emission area”. This led to similar results for the 

emission rate of the biogas plant as the simulations using paths 2 and/or 3.  

The methane emission rate of the ditches was calculated to be about 1 kg h-1 with 50% uncertainty.  

The strong overestimation of the emissions of the biogas plant, when path 1 is used and a second 

emission area is absent, can be explained by the large distance to the plant compared to the additional 

“ditch source” which is located close to path 1. The overestimation was stronger the more the wind was 

coming from the east because the weight of the calculation shifts to path 1 in that case while path 3 is 

not seeing particles from the whole biogas plant area. Windtrax calculates a least squares solution 

when more measured paths than emission sources are present in the simulation. The rising question is 

whether the bubbling water comes from the biogas plant or from the wastewater treatment site or has 

different origin. 

4.3 Emission rates 

The calculated fugitive methane emission rates of the three days for which simulations were possible 

are given in Table 4-3. Normal conditions were assumed to be at a temperature of 0°C and a pressure 

of 101.3 kPa. The uncertainties are given as standard deviation of the results of the single 15 min 

intervals. For the 09/09/2014 the whole range of values is taken as uncertainty as there were only five 

valid simulation intervals. In addition, the measurement took place behind the short rotation coppice. 

On the 10/09/2014 the chemical scrubber was operating at less than 50% load and the water 

scrubber was additionally operated. For that day the calculated emission rate is higher than on the two 

other days. This is in good agreement with the Swedish measurement program that indicates that water 

scrubbers have a larger methane slip than chemical scrubbers. Emission rates on the other two days 

were in the same range with overlapping uncertainties. The methane loss of 54 m3 h-1 STP according to 

the flowmeters on Tuesday the 9th is not reproduced by the remote method with TDLAS and inverse 

dispersion modelling.  

For Tuesday and Thursday with only chemical scrubbing in operation the estimated emission factor is 

between 0.6 and 0.9 %. For Wednesday when half of the raw biogas was upgraded by water scrubbing 

the estimated emission factor is about 1.7 %. 

Table 4-3: Daily averages of the emission rates and emission factors (m3 STP: m3 at 0°C and 101.3 kPa) determined by TDLAS 

and inverse dispersion technique 

Date Produced 
methane 
(m3 h-1 STP)  

No of 
inter-
vals 

Simulated 
emission 
rate  
(kg h

-1
) 

Uncertainty 
(kg h

-1
) 

Simulated 
emission rate 

 

(m3 h-1 STP) 

Uncertainty 
(m3 h-1 STP) 

Simulated 
emission 
factor 
 (% CH4) 

Uncertainty 
(% CH4) 

09/09 1 138 5 7.0 3.0 9.8 4.2 0.9 0.4 

10/09 1 126 9 13.9 2.0 19.4 2.8 1.7 0.2 

11/09 1 188 17 4.9 1.5 6.8 2.1 0.6 0.2 
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As the upgrading process was different on the 10/09/2014 when the water scrubber was in use it is 

not useful to create an overall average for the whole period. 
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1 Summary and results 

Danish Gas Technology Centre (DGC) performed measurements of methane 

emission from leaks and point sources at the biogas plant “Svensk Biogas i 

Linköping” from 8 September to 10 September 2014. 

 

The measurements were carried out as part of the project Climate impact 

from biogas production, data collection and comparative study of measure-

ment and calculation methods in Europe, see chapter 2. Steen D. Andersen 

and Lars Jørgensen, DGC, performed the measurements. 

 

The main results are presented in Table 1.  

 

Table 1 Measurement results – overview  

Leakage 
ID 

Sample location Sample 
gas flow 

Methane in 
sample gas 

Background 
conc.  

Methane 
emission 

2)
 

Methane 
emission 

2)
 

#  Nm3/h dry ppm, dry ppm, dry Nm3/h dry kg/h 

1 
Upgrading unit –  
ventilation duct 1 

3)
 

6,740 
1)

 35 2.0 0.220 0.159 

2 
Upgrading unit –  
ventilation duct 2 

4)
 

4,944 
1)

 82 2.0 0.396 0.285 

3 
Upgrading unit –  
safety valve pipe at roof 

745 17,067 2.0 12.721 9.159 

4 
Carbon filter house – 
ventilation exit 

604 315 9.0 0.185 0.133 

5 
Carbon filter house –  
gas booster F22 

457 346 9.0 0.154 0.111 

6 
Carbon filter house –  
gas booster F21 

456 181 9.0 0.078 0.0564 

7 
Carbon filter house –  
gas filter 

452 37 9.0 0.013 0.0090 

8 
Hygienisation tank – 
manhole at tank top 

522 19 2.5 0.0086 0.0062 

9 
Hygienisation tank – 
overloading valve 

376 336 2.5 0.126 0.0904 

10 
Homogenisation tank – 
swan neck 

458 11 2.5 0.0038 0.0027 

11 
Homogenisation tank – 
hole in the concrete roof 

449 12 2.5 0.0045 0.0032 

12 
One-hour holding tank – 
swan neck at tank top 

- 
Not 

detected 
- 

Not 
detected 

Not de-
tected 

Sum of leakage 1, 2, 3, 4, 8, 9, 10, 11 and 12 13.7 9.8 
1)

 Grid measurement across the ventilation exit openings 
2)

 Corrected for background concentration 
3)

 Left compressor house 
4)

 Right compressor house 

 

  



DGC-report  4 

 

2 Introduction and background 

Danish Gas Technology Centre (DGC) is participating in the Danish project 

Methane Emission from Danish Biogas Plants together with AgroTech A/S. 

One of the major tasks of this project is to reduce greenhouse gas emission 

from biogas plants in terms of methane losses. This will be done by devel-

oping a method for identification and quantification of leakages from biogas 

plants. The developed method must be evaluated and compared to other 

methods.  

 

This is done by participating in the joint project Climate impact from biogas 

production, data collection and comparative study of measurement and cal-

culation methods in Europe carried out by Sveriges Tekniska Forskningsin-

stitut (SP). The project is financed by the Swedish Energy Agency through 

Swedish Gas Technology Centre (SGC). DGC is one of a number of partici-

pating parties. 

 

The other participants in the comparative measurements are: 

 

- SP Technical Research Institute of Sweden 

- DBFZ Deutsches Biomasseforschungszentrum gemeinnützige 

GmbH 

- Technical University of Denmark, Department of Environmental 

Engineering 

- AgroTech A/S 

 

The measurements presented in this report are DGC's contribution to the 

European project.  
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3 Plant description 

“Svensk Biogas i Linköping” is Sweden’s largest biogas plant. It is situated 

in Linköping 200 km south west of Stockholm and has been in operation 

since 1996. The plant has an annually permit of treating 100,000 tonnes of 

waste, and the annual production of raw biogas was 15 m Nm
3
 in 2012. Be-

sides biogas the plant produces 80,000 tonnes of wet bio fertilizer, which is 

sold to farmers. 

 

 Waste from slaughterhouse cattle/chicken/swine (e.g. production 

waste, blood) 

 Food waste from supermarkets 

 Organic waste from households 

 Ethanol/residuals from ethanol production 

 Main substrate feed is slaughterhouse waste (2012 ≈ 80,000 tonnes) 

 Other types of substrates 

o Sewage sludge 

o Silage from grass 

o Grains 

 

Table 2 indicates the distribution of the substrates. 

Table 2 Distribution of substrates 

Type Proportion (% weight) 

Slaughterhouse cat. 3 27 

Food Industry 37 

Alcohol 1 

Thin stillage 3 

Fat 2 

Glycerol 2 

Food waste 28 

 

The plant production layout comprises receiving and pre-treatment facilities, 

four digesters, gas storage/upgrading and bio filter. The layout is shown in 

Figure 1. 
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1 Pre-treatment of household waste 5 Digesters, 4 units 9 Manure well 

2 Receiving hall 6 Gas storage 10 Control room and office 

3 Receiving/homogenisation tank 7 Gas upgrading system 11 Office 

4 Hygienisation tank 8 Flare 12 Bio filter 

Figure 1 Layout Swedish Biogas in Linköping AB 

 

 

 

  

1 

2 

3 

4 

5 
6 7 

8 

9 

10 

11 

12 



DGC-report  7 

 

4 Measuring method applied by DGC 

Methane emissions from known point sources and leakages at biogas plants 

are detected by an IR camera and subsequently quantified by measuring 

coherent values of a sample volume flow and methane concentration giving 

the possibility to calculate methane volume flow and mass flow from the 

point source. 

 

A high volume sampler evacuates leaking biogas from crevices and holes 

and the sample flow (leaking biogas diluted in air) is measured by an orifice 

placed in the exit duct of the blower. The high volume sample system con-

sists of a customized suction hood or custom built enclosure (bagging), ven-

tilation hose and a high volume blower. See Figure 2. 

 

 

Figure 2 High volume sampler 
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The methane concentration in the sample flow is measured by an FID hy-

drocarbon analyser. To ensure that only methane is detected, a non-methane 

hydrocarbon cutter is placed upstream the FID analyser.  

 

If the source is a ventilation opening in a building, the flow is determined by 

a vane anemometer in grid pattern.  
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5 Equipment and instruments 

5.1 Optical IR camera 

- FLIR GF320 

The IR camera was operated by AgroTech. 

 

5.2 Volume flow 

Ventilation openings 

- TSI Air Velocity Meter, Model 9555 Series 

- Temperature measurement (Thermocouple type K) 

 

Leakages and holes 

Custom built high volume sampler including: 

- Customized sample hoods for evacuating methane from leakages 

- ATEX air blower for evacuating gas leaks 

- Calibrated orifice (Lindab FMU 200-160) 

- Temperature measurement (Thermocouple type K) 

 

The physical conditions (relative humidity, temperature and atmospheric 

pressure) of the surrounding air were measured by Testo 511, Testo 174H 

and Elpro Ecolog TH1. 

 

5.3 Methane concentration 

In order to measure only methane a heated non-methane hydrocarbon cutter 

were used before analysing the sample gas with an FID instrument. 

 

Methane cutter 

- Model 320 heated non-methane hydrocarbon cutter from The Signal 

Instrument Company Limited. 

 

FID analyser 

- Thermo FID from M&A Analysentechnik GmbH 

- Range: 0 – 1000000 ppm (selectable range) 

- Reproducibility:  1 % of range 

- Linearity:  1 % of range 

 

The analyser is calibrated with certified and traceable reference gasses be-

fore and after the measurements. 
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6 Uncertainty 

The main constituents of the combined uncertainty of the methane emission 

measurements are related to: 

 

- Determination of volume flow or sample flow 

- Determination of methane concentration 

- Sample conditions  

o Weather 

o Physical characteristics of the sample location 

o Steadiness of the methane emission 

 

DGC estimates an overall uncertainty of 15-25 % of measured values de-

pending on above mentioned conditions. 
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7 Performed measurements 

7.1 Approach and purpose of the comparative measuring 

campaign 

Prior to the measurement campaign the participating companies and labora-

tories discussed and agreed on a procedure to carry out the measurements. 

 

1. Each and every participant performs a survey of the biogas plant in 

order to detect methane leakages and emissions. 

2. The found leakages are presented at a meeting, and a gross list of 

leakages is produced. 

3. Every participant performs quantification of all methane leakages on 

the gross list. 

4. If the method permits, each participant presents the following re-

sults: 

a. Quantification of each leakage. 

b. Sum of leaks found by the company itself.  

c. Sum of all leakages. 

 

7.2 Detected methane mission sources 

12 sources of methane emission were detected by the participants. Figure 3 

shows an overview based on a list prepared by AgroTech and DGC and sub-

sequently submitted to all the teams.  

 

DGC and AgroTech performed a joint effort in detecting leakages and did 

find all of the 12 leakages shown in Figure 3. For some of the leakages, 

however, it was hard to determine whether the observation was actually me-

thane or flicker on the camera screen caused by hot and damp air. 
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Leakage # 1 

Upgrading unit – ventilation duct 1  

(facing north – away from the biogas plant) 

 
 

Leakage # 5 

Carbon filter house – gas booster F22  

 

 

Leakage # 9 

Hygienisation tank –  

overloading valve  

 

Leakage # 2 

Upgrading unit – ventilation duct 2  

(facing east towards digester 4) 

 
 

Leakage # 6 

Carbon filter house – gas booster F21 

 

 

Leakage # 10 

Homogenisation tank –  

swan neck 

 

Leakage # 3 

Upgrading unit – safety valve pipe leading 

above the container  

 
 

Leakage # 7 

Carbon filter house – gas filter  

 

 

Leakage # 11 

Homogenisation tank –  

hole in the concrete roof  

 

Leakage # 4 

Carbon filter house –  

ventilation duct leading from the container 

 

 

Leakage # 8 

Hygienisation tank –  

man hole at the top of the tank  

 

Leakage # 12 

Hygienisation tank (one-hour holding tank) 

– swan neck at the top of the tank  

 

Figure 3 Overview of detected leakages (arrows indicate precise location of the leakages) 

Ventilation exit 

Swan neck exit placed 
in moisture collector 
 

Swan neck exit 

Holes at flange of electric motor 

Ventilation exit 
Holes at flange of electric motor 

Vent pipe exit Gas filter flange Hole in concrete roof 

Ventilation exit 

Man hole flange  
and bolt/nut 
assembly 

Swan neck exit 
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7.3 Measurement periods 

DGC performed measurements in the period 8 September to 10 September 

2014. Table 3 shows the measuring periods in detail. 

Table 3 Measurement periods 

Date Time Leakage # Activity or sample location 

8 Sep. 14:00-18:00 - Scanning for leaks 

9 Sep. 12:10-12:51 1 Upgrading unit – ventilation duct 2 

 11:30-12:02 2 Upgrading unit – ventilation duct 1 

 14:22-15:03 3 Upgrading unit – safety valve pipe at roof 

 18:50-19:15 4 Carbon filter house – ventilation exit 

 15:55-16:35 5 Carbon filter house – gas booster F22 

 16:45-17:15 6 Carbon filter house – gas booster F21 

 17:38-18:08 7 Carbon filter house – gas filter 

10 Sep. 15:25-16:20 8 Hygienisation tank – man hole at tank top 

 17:15-18:15 9 Hygienisation tank – overloading valve 

 10:30-11:10 10 Homogenisation tank – swan neck 

 11:25-12:05 11 Homogenisation tank – hole in the concrete roof 

 Approx. 14:00 12 One-hour holding tank – swan neck at tank top 

 

7.4 Operating conditions 

Production data from Linköping biogas plant was provided by process engi-

neer Sören Nilsson Påledal, Tekniska Verken FoU Biogas.  

 

The production data is attached in Appendix 2 and 3. 
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8 Result of the methane emission quantification 

measurements 

8.1 Overview 

An overview of the results is shown in Table 4.  

 

The individual measurements are described in Chapter 8.2 – 8.10.  

Table 4 Measurement results – overview  

Leakage 
ID 

Sample location Sample 
gas flow 

Methane in 
sample gas 

Background 
conc.  

Methane 
emission 

2)
 

Methane 
emission 

2)
 

#  Nm3/h dry ppm, dry ppm, dry Nm3/h dry kg/h 

1 
Upgrading unit –  
ventilation duct 1 

3)
 

6,740 
1)

 35 2.0 0.220 0.159 

2 
Upgrading unit –  
ventilation duct 2 

4)
 

4,944 
1)

 82 2.0 0.396 0.285 

3 
Upgrading unit –  
safety valve pipe at roof 

745 17,067 2.0 12.721 9.159 

4 
Carbon filter house – 
ventilation exit 

604 315 9.0 0.185 0.133 

5 
Carbon filter house –  
gas booster F22 

457 346 9.0 0.154 0.111 

6 
Carbon filter house –  
gas booster F21 

456 181 9.0 0.078 0.0564 

7 
Carbon filter house –  
gas filter 

452 37 9.0 0.013 0.0090 

8 
Hygienisation tank – 
manhole at tank top 

522 19 2.5 0.0086 0.0062 

9 
Hygienisation tank – 
overloading valve 

376 336 2.5 0.126 0.0904 

10 
Homogenisation tank – 
swan neck 

458 11 2.5 0.0038 0.0027 

11 
Homogenisation tank – 
hole in the concrete roof 

449 12 2.5 0.0045 0.0032 

12 
One-hour holding tank – 
swan neck at tank top 

- 
Not 

detected 
- 

Not 
detected 

Not de-
tected 

Sum of leakage 1, 2, 3, 4, 8, 9, 10, 11 and 12 13.7 9.8 
1)

 Grid measurement across the ventilation exit openings 
2)

 Corrected for background concentration 
3)

 Left compressor house 
4)

 Right compressor house 
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8.2 Upgrading unit – ventilation duct 1 

 

  

 

Flow measurement: 

- 4 x 4 grid, i.e. 16 points, vane anemometer 

 

Concentration: 

- Uniform distribution over grid section, one point measurement 

 

Methane emission:  0.159 kg/h 

 

 

8.3 Upgrading unit – ventilation duct 2 

 

   

 

Flow measurement: 

- 4 x 4 grid, i.e. 16 points, vane anemometer 

 

Concentration: 

- Uniform distribution over grid section, one point measurement 

 

Methane emission:  0.285 kg/h 
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8.4 Upgrading unit – safety valve pipe leading above the con-

tainer  

  

 

Methane emission from the vent pipe was evacuated together with dilu-

tion/excess air by placing the ventilation suction hose directly over the vent 

pipe exit. This was later changed to a suction hood supported by plastic 

wrapping allowing for more dilution air and less vacuum at the vent pipe 

exit. However, the subsequent calculation of the methane mass flow showed 

equivalent results of the two sample techniques. 

 

Methane emission:  9.159 kg/h 

 

 

8.5 Carbon filter house – Ventilation exit  

   

 

A suction hood was placed over the vent exit. Dilution air was secured by 

the ventilation intake grid of the building placed in the opposite wall. The 

methane concentration was steady after approx. 15 minutes. 

 

Methane emission:  0.133 kg/h 
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8.6 Carbon filter house – gas booster F22 

  

 

A plastic tub/container supported by additional plastic wrapping was used to 

encapsulate the gas booster. A large opening for sufficient dilution air was 

at the bottom of the line-up. 

 

Methane emission:  0.111 kg/h 

 

 

8.7 Carbon filter house – gas booster F21 

  

 

A plastic tub/container supported by additional plastic wrapping was used to 

encapsulate the gas booster. A large opening for sufficient dilution air was 

at the bottom of the line-up. 

 

Methane emission:  0.0564 kg/h 
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8.8 Carbon filter house – gas filter 

  

 

The gas filter was encapsulated in the same way as for the gas boosters (no 

picture of the actual encapsulation line-up).  

 

Methane emission:  0.0090 kg/h 

 

 

8.9 Hygienisation tank – manhole at the top of the tank 

 

 

The manhole flange was covered by a suction hood and additional plastic 

wrapping (no picture of encapsulation). 

 

Methane emission:  0.0062 kg/h 

 

0

20

40

60

80

100

17:30 17:40 17:50 18:00 18:10

C
H

4
   

p
p

m
, v

o
l.

0

5

10

15

20

25

30

35

40

15:20 15:30 15:40 15:50 16:00 16:10 16:20

C
H

4
   

p
p

m
, v

o
l.



DGC-report  19 

 

8.10 Hygienisation tank – overloading valve 

   

 

The top of the moisture collection overflow container was covered by a suc-

tion hood and plastic wrapping. To ensure sufficient dilution air a hole was 

cut in the suction hood.  

 

The emitted gas was very damp and did subjectively vary a lot in flow. Oc-

casionally, small amounts of gas escaped the sampling hood, but this is not 

considered to have significant impact on the outcome of the measurement. 

 

DGC observed that other components than methane must have been present 

in the gas. Looking at the trend curve, a steady emission of approx. 200 ppm 

was observed in the period 18:05-18:20. The peak of approx. 400 ppm 

18:20-18:25 is reflecting the FID analyzer with by-passed non-methane cut-

ter. 

 

Methane emission:  0.0904 kg/h 
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8.11 Homogenisation tank – swan neck 

     

 

In order to minimize the potential influence of sucking biogas from the 

tank/swan neck a large encapsulation was built to cover the entire swan 

neck. The sample flow was adjusted to an average flow of approx. 0.5 m/s 

across the neck at the concrete roof (measured perpendicular to the flow 

direction by a vane anemometer).  

 

Methane emission:  0.0027 kg/h 

 

 

8.12 Homogenisation tank – Hole in the concrete roof 

   

 

In order to minimize the potential influence of sucking biogas from the tank 

a large encapsulation was built to cover the hole. The sample flow was ad-

justed to an average flow of approx. 0.5 m/s across the hole in the concrete 

roof (measured perpendicular to the flow direction by a vane anemometer).   

 

Methane emission:  0.0032 kg/h 
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8.13 Hygienisation tank (one-hour holding tank) – swan neck 

at the top of the tank 

No emission detected. 
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9 Appendices 

 

Appendix 1 – Linköping Biogas Plant layout 

 

Appendix 2 – Data from Linköping biogas plant 8-9 September 

 

Appendix 3 – Data from Linköping biogas plant 10-11 September 

 

Appendix 4 – Registration of ambient air conditions 
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Appendix 1 – Linköping Biogas Plant layout 
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Appendix 2 – Data from Linköping biogas plant 8-9 

September 

 

Copy of e-mail from process engineer Sören Nilsson Påledal, Tekniska 

Verken FoU Biogas. 

 

 

  

The diameter of the manure well is approx. 37 m. 
 
Production at the chemical scrubber between  9-17 Tuesday 9 september 
Raw biogas 1922 Nm3/h according to flowmeters  
Methane content Raw biogas 62 vol% 
Upgraded biogas 1180 Nm3/h 
Methane content Upgraded biogas 96,4 vol% 
  
Produktion 8 september 1200 – 9 september 1200 
Raw biogas 1615 Nm3/h according to flowmeters 
Methane content Raw biogas 62 vol% 
  
  
Production for 2013 for the chemical scrubber (except waterscrubbers) 
Raw biogas 1850 Nm3/h according to flowmeters (16 206 000 Nm3 for whole year) 
Methane content Raw biogas 64 vol% 
Upgraded biogas  1215 Nm3/h (10 643 400 Nm3 for whole year) 
Methane content Upgraded biogas  96,6 vol%  
  
The water scrubbers were only used from Wednesday 10/9 09:45 to Thursday 11/9 
09:00 during the week. During this time the chemical scrubber was used for less than 50 
% (one compressor and dryer not in use) and there were no leakages from the security 
valve pipe. 
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Appendix 3 – Data from Linköping biogas plant 10-11 

September 

 

Copy of e-mail from process engineer Sören Nilsson Påledal, Tekniska 

Verken FoU Biogas. 

 

 

 

 

 

 

  

Production at the chemical scrubber between  9-17 Wednesday 10 september 
Raw biogas 1830 Nm3/h according to flowmeters  
Methane content Raw biogas 62 vol% 
Upgraded biogas 1160 Nm3/h 
Methane content Upgraded biogas 97,1 vol% 
 
 
Production at the chemical scrubber between  9-17 Thursday 11 september 
Raw biogas 1990 Nm3/h according to flowmeters  
Methane content Raw biogas 60 vol% 
Upgraded biogas 1230 Nm3/h 
Methane content Upgraded biogas 96,6 vol% 
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Appendix 4 – Registration of ambient air conditions 

 

Date Time Air humidity Atmospheric 
pressure 

Air  
temperature 

yyyy-mm-dd hh:mm RH % hPa °C 

2014-09-09 11:30 76.0 1001.8 18.8 

2014-09-09 12:25 65.1 1001.9 17.5 

2014-09-09 12:50 62.2 1002.0 17.0 

2014-09-09 13:21 74.7 1001.9 16.8 

2014-09-09 15:00 97.4 1002.9 13.3 

2014-09-09 17:09 94.6 1001.7 15.8 

2014-09-09 17:44 85.2 1001.9 16.4 

2014-09-09 18:01 81.1 1001.9 16.3 

2014-09-09 19:21 93.3 1002.4 13.1 

2014-09-10 10:42 79.5 1008.8 16.3 

2014-09-10 10:59 82.0 1009.0 15.6 

2014-09-10 11:39 76.1 1009.4 17.3 

2014-09-10 11:53 70.3 1009.5 18.5 

2014-09-10 12:07 73.4 1009.6 17.6 

2014-09-10 15:28 73.3 1011.4 18.6 

2014-09-10 15:48 76.1 1011.4 17.8 

2014-09-10 16:00 77.6 1011.7 17.2 

2014-09-10 16:12 77.7 1011.8 17.4 

2014-09-10 17:08 69.6 1012.0 17.6 

2014-09-10 17:30 71.4 1012.2 17.4 

2014-09-10 17:39 71.1 1012.2 17.6 

2014-09-10 17:58 68.0 1012.4 17.7 

2014-09-10 18:12 69.5 1012.6 17.4 

2014-09-10 18:28 69.3 1012.8 16.8 
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1. Introduction and purpose 

Greenhouse gas (GHG) emissions from facilities treating organic waste are often difficult to 

quantify due to the diffusive nature of the emissions combined with large temporal variation and 

the challenging physical structure of the facility. Only over the last few years, the scientific 

community has developed methodologies and strategies of GHG quantifications from biogas 

facilities. However, there is no single measurement method that has been recognized as a 

standard method yet. The Technical University of Denmark has recently implemented a novel 

analytical setup enabling mobile measurements of small (ppb level) changes in atmospheric 

methane concentrations. This enables detection and quantification of methane emission 

sources by performing measurements downwind from the source in combination with release 

and measurement of a tracer gas. The analytical setup and the dynamic tracer dispersion 

method have been tested at a number of landfills and wastewater treatment plants since 

November 2011 (Mønster et al., 2014b; Yoshida et al., 2014), building up a sound knowledge 

on quantification of fugitive methane emissions from full-scale facilities. 

 

The objective of this study was to quantify the methane emission from a Swedish biogas plant 

using the tracer dispersion method. The study was part of a large comparison study where other 

groups performed parallel methane detections and emission quantification using a range of 

different technologies including on-site measurements and remote sensing approach coupled to 

backward Lagrangian Stochastic inverse modelling. 

 

 

2. Description of the measurement method 

Total methane emissions were quantified using a mobile tracer dispersion method that 

combines a controlled release of tracer gas from the biogas facility with concentration 

measurements downwind of the facility, by using a mobile high-resolution analytical instrument 

(Mønster et al., 2014a; Yoshida et al., 2014). 

 

Figure 1. The principle of the dynamic plume method for quantifying GHG emissions from area sources 
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The tracer dispersion method, shown in Figure 1, is based on the principle that a tracer gas 

released at a source area, in this case a biogas facility, disperses into the atmosphere likewise 

the methane emitted from the same area. Since the ratio of their concentrations remains 

constant along their atmospheric dispersion, the methane emission rate can be calculated using 

the following expression when the tracer gas release rate is known: 

 

𝐸𝐶𝐻4
= 𝑄𝑡𝑟 ∗

∫ (𝐶𝐶𝐻4
)𝑑𝑥

𝑝𝑙𝑢𝑚𝑒 𝑒𝑛𝑑

𝑝𝑙𝑢𝑚𝑒 𝑠𝑡𝑎𝑟𝑡

∫ (𝐶𝑡𝑟)𝑑𝑥
𝑝𝑙𝑢𝑚𝑒 𝑒𝑛𝑑

𝑝𝑙𝑢𝑚𝑒 𝑠𝑡𝑎𝑟𝑡

𝑀𝑊𝐶𝐻4

𝑀𝑊𝑡𝑟

 

 

where 𝐸𝐶𝐻4
 is the methane emission in mass per time, 𝑄𝑡𝑟 is the tracer release in mass per time, 

𝐶𝐶𝐻4
 and 𝐶𝑡𝑟 are the measured downwind concentrations in parts per billion (ppb) subtracted of 

their background concentrations and 𝑀𝑊𝐶𝐻4
 and 𝑀𝑊𝑡𝑟 are the molar weights of methane and 

tracer gas, respectively (Mønster et al., 2014a). In this study, acetylene (C2H2) was used as 

tracer due to its long atmospheric lifetime. Downwind plume concentrations were measured 

driving along transects with a cavity ring down spectrometer (CRDS) from Picarro (model 

G2203), which is a fast and high sensitive gas analyzer capable to detect methane and 

acetylene concentrations down to ppb level every second (Mønster et al, 2014a; Yoshida et al., 

2014). A GPS was connected to the instrument for logging the measured concentrations to their 

geographical location. In order to obtain the best possible simulation of the source area, the 

tracer gas was released from the part of the plant where the most elevated methane 

concentration was seen and/or expected. 

 

 

3. Description of the measurement campaign. 

Measurements were performed from September 9
th
 to September 12

th
, 2014. During the first 

two days, area and plant methane screenings were performed, followed by tracer release and 

methane emission quantification. The absence of favourable wind direction and speed during 

11
th
 and 12

th
 allowed only a further confirmation of the plant screening. Different tracer gas 

release rates were tried out to have sufficient tracer gas for quantification in the downwind 

plume, but also to have tracer gas release for enough time to perform several plume traverses. 

Successful quantifications were done in the afternoon on Tuesday 9
th
 and Wednesday 10

th
 with 

a total tracer gas release of 0.44 kg h
-1

. The tracer gas was released in one point from one gas 

bottle placed next to the gasholder in the digesters area. Figure 2 shows the securing of the 

acetylene cylinder, while Figure 3 shows its location. 
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Figure 2. Acetylene cylinder secured at the digesters area 

 

 

Figure 3. Acetylene cylinder placement close to digester tanks marked with red circle 
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The measurements were performed during a period with stable weather conditions. On Tuesday 

9
th
 the sky was cloudy with light rain, the atmospheric pressure was around 1003 mbar and the 

air temperature was about 13 C. On Wednesday 10
th
 the sky was partly cloudy, the 

atmospheric pressure was around 1014 mbar and the air temperature was about 17 C. On 

both days the wind blew from east with an average velocity of 1 m/s. While on Tuesday 9
th
 

twenty-one plume traverses were completed, on Wednesday 10
th
 twenty-four plume traverses 

were carried out. The following two days the calm (no wind), sunny and warm weather resulted 

in a fast plume rising, which made methane measurements of downwind plumes at ground level 

far from the plant impossible. 

 

 

4. Results and discussion 

4.1 Biogas plant layout and gas production 

The biogas plant in Linköping processes source separated household waste (≈50%), industrial 

food waste (≈25%), like dairy wastewater, and slaughterhouse waste (≈25%). After pre-

treatment such as screening, grinding, watering and mixing, the substrate undergoes 

pasteurization followed by anaerobic digestion. The biogas plant has two digester tanks and 

one tank for biogas storage. 95% of the biogas is upgraded by a chemical scrubber, which 

sometimes is supported by a water scrubber that processes only about 5% of the upgraded 

biogas over one year. The digestate is stored in an open tank for 15-20 days before being 

delivered to farmers for land application. Figure 4 and Figure 5 give a visual overview of some 

of the process units. Notice that even though Figure 5 dates back to September 2011, it gives a 

very good understanding about the main units’ locations in the plant. 

 

 

Figure 4. Linköping biogas plant. From left to right: a) Food waste receiving area and pretreatment unit and thermal 

process tank, b) Main process units including digester tanks and biogas upgrading systems, and c. Digestate storage in 

open tank. 
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Figure 5 - Linköping biogas plant layout; a) Food waste pretreatment unit and thermal process tank, b) Substrate inlet 

and pasteurization tank, c) Digesters, gasholder and flare, d) Digestate storage in an open tank, e) Chemical scrubber 

and f) Water scrubber 

 

Table 1 and Table 2 report biogas production during the days when the methane emissions 

quantifications were performed. Table 1 and Table 2 show the biogas and methane production 

before and after upgrading, respectively. 

 

Table 1. Methane production before biogas upgrading process 

Lapse of time 
Raw Biogas 

(Nm
3
 h

-1
) 

CH4 content 

(%) 

CH4 production before 

upgrading 

(Nm
3
 h

-1
) 

Tuesday 9
th
 from 15:30 to 16:00 1910 60.0 1146 

Wednesday 10
th
 from 17:00 to 19:30 1800 63.0 1134 

 

Table 2. Methane production after biogas upgrading process 

Lapse of time 
Upgraded Biogas 

(Nm
3
 h

-1
) 

CH4 content 

(%) 

CH4 production after upgrading 

(Nm
3
 h

-1
) 

Tuesday 9
th
 from 15:30 to 16:00 1180 96.2 1142 

Wednesday 10
th
 from 17:00 to 

19:30 
1184 96.0 1133 

 

The volume of biogas is expressed according to standard temperature and pressure (STP) i.e. 0 

C and 1 atmosphere (DIN 1343). During measurements conducted on Wednesday 10
th
, biogas 

upgrading occurred with water scrubber support. 
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4.2 Methane screening of the area surrounding the biogas plant 

Figure 6 shows different potential sources known to emit methane into the atmosphere in the 

surroundings of the biogas plant. North of the biogas plant is a sorting facility (receiving non-

organic waste), while Northeast of the biogas plant is a landfill close to an incineration plant. 

The landfill is expected to release significant amounts of methane, whereas no methane 

emissions are expected from the incineration plant. South of the biogas plant is a wastewater 

treatment plant (WWTP), which stores its biosolids in heaps located relatively close to the 

biogas plant. The storage of biosolids could potentially emit methane. 

 

 

Figure 6. Location of treatment facilities in the surroundings of the biogas plant 

 

The methane screening of the area is showed in Figure 7 where methane concentrations above 

background level are marked in red. Measurements were carried out with wind blowing from the 

East. Area screening upwind and downwind the biogas plant allowed distinguishing atmospheric 

methane plumes from different sources. Figure 7 shows methane concentrations measured at 

two different distances downwind the landfill. The lower concentrations measured at a further 

distance from the landfill underlines the atmospheric gas dispersion. Furthermore, methane 

plumes from the biogas plant, the biosolids storage and WWTP were observed. Notice that 

upwind of the three sources, the methane concentration was close to background. Emissions 

from the biogas plant are depicted in yellow. The distinction between emission from the WWTP 

biosolids storage and biogas plant was carried out making sure that the tracer release simulated 

the biogas plant well and that good mixing between methane and acetylene (C2H2) was 

obtained. Screening inside the sorting facility did not highlight any relevant methane releases. 
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Figure 7. Methane screening of biogas plant surroundings with wind blowing from east. 

 

4.3 Initial on-site methane screening of the biogas plant 

A plant methane screening is usually used for identification of hotspots emission areas for 

optimal placement of the tracer gas cylinder to obtain the best methane source simulation. 

Methane might be released from the top of the digester tanks, which will be difficult to see 

based on on-site measurements due to the elevated release height in comparison to the 

measuring height (2m). Therefore in addition, information about the biogas plant and the 

methane plumes were used as support to identify the tracer gas placement. 

 

Figure 8 shows methane concentrations measured during the plant screening at two different 

screening campaigns during calm and warm weather conditions with vertical plume rise from the 

area. Therefore, the detected methane concentrations are related to releases from the closest 

process units. The on-site screening indicated methane emissions from the open digestate 

storage tank, from the food waste pre-treatment area, from the biogas upgrading units and from 

the digester tanks. 
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Figure 8. Biogas plant screening during calm and warm weather with plume vertical mixing. The maximum methane 

concentration above background was 9.0 ppm and 12.8 ppm during the two screenings, respectively. 

 

4.4 Whole plant fugitive emissions 

The placement of the tracer gas release was chosen in order to match biogas plant emissions 

and to distinguish methane released from the close WWTP biosolids storage. One tracer 

cylinder was chained up at the digesters area as reported in section ‎3. Figure 9 shows an 

example of downwind plumes, which was detected at 17:34 on Wednesday 10
th
 along a road 

800-900 m away from the plant, distant enough to consider the plant as point source. The tracer 

location is marked with a yellow triangle, while methane and acetylene plumes are showed in 

red and yellow, respectively. Peak concentrations above background level were 0.2 ppm of CH4 

and 3.1 ppb of C2H2. The tracer and the methane plume from the biogas plant follow each other 

nicely indicating a good simulation of the methane emission from the biogas plant. It should be 

noted that the way plumes follow each other underlines their good mixing. The figure also 

shows the adjacent methane plume coming from WWTP biosolids storage in southern direction. 

With wind from the East, it is possible to distinguish the two plumes from the biogas plant and 

the biosolids storage area from each other. However, if the wind shifts more to the North the 

plumes will blend together. 
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Figure 9. Atmospheric concentrations of methane and tracer gas above background level at approximately 900 meters 

downwind from the biogas plant measured on September 10th, 2014 at 17:34. The yellow triangle marks the placement 

of the C2H2 tracer gas release on the facility. 

 

Further confirmation of correct tracer placement and emission source simulation is showed in 

Figure 10b by calculation of the coefficient of determination (R^2). The R^2 coefficient is 

obtained by plotting the plume concentrations of methane and acetylene to each other, and is 

an indicator of the degree of plume mixing. In this case, the R^2 was very high (0.94) indicating 

a good simulation of the methane plume. 

 

For plume integration, the methane plumes form the biogas plant and the biosolids storage area 

have to be separated from each other. For most of the plume traverses, this was possible as 

there was very little overlap of the plumes. The methane plume separation was done using the 

tracer gas plume and tracking back the methane and tracer gas plume to the biogas plant using 

the wind direction. An example of methane plume separation is shown in Figure 10a. It is 

evident that the methane and the tracer gas plume from the biogas plant follows each other very 

nicely. However, it is also clear that there is another methane plume to the left, which comes 

from another source (the biosolids storage area) as there is no sign of the tracer. As the overlap 

of the plumes in this case was very little it is valid to separate the two plumes as shown in 

Figure 10a and b. 
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Figure 10. Data elaboration and confirmation of tracer placement; a) Concentrations over time b) Coefficient Of 

Determination (R^2) calculation. 

 

Out of the more than forty plume transects performed on September 9
th

 and 10
th
, 21 transects 

were useful for calculating the whole biogas plant methane emission. Plume transects where 

methane plumes were overlapping when the wind shifted more to North were thus not included. 

Single emission rates for each individual plume transects are listed in Table 3 and expressed 

both in kg CH4 h
-1

 and Nm
3
 CH4 h

-1
 (STP: 1 atm, 0C). Furthermore, emission factors (EF) 

related to raw biogas production and to upgraded biogas are reported. The EF is calculated as 

the ratio between the methane emission and the methane production for the specific measuring 

hours – both expressed in Nm
3
 CH4 h

-1
. 

 

The average methane emission rate from the biogas plant was found to be 23.6±1.8 kg CH4 h
-1

, 

which corresponds to 33.0±2.6 Nm
3
 CH4 h

-1
. The confidence interval was calculated considering 

a t-distribution at significance level (𝛼) of 5%, giving a confidence interval of 95% (1 − 𝛼). This 

means that there is 95% probability that the right value falls within the confidence interval1. The 

smaller the confidence interval (Conf.) is, the higher is the accuracy of the methane 

quantification. In this case, the good accuracy was reached due to the high number of 

transverses included in the calculation (Mønster et al., 2014a). The plant emission factors, both 

referred to raw produced biogas (see Table 1) and upgraded biogas (see Table 2), were 

2.9±0.2%, which is in the range of what was seen at other Swedish plants (Holmgren, 2014). 

 
  

                                                                                                                                                            
1
 The confidence interval was calculated as following:  𝑦̅ ± 𝑆𝐸𝑀 ∗ 𝑡𝜈,𝛼 2⁄  

where 𝑦̅ is the average value; SEM is the standard error of means (𝑆𝐸𝑀 = 𝑆𝐷 √𝐶𝑜𝑢𝑛𝑡⁄ ); SD is the standard deviation of 

the sample; Count is the number of transverses. 𝑡𝜈,𝛼 2⁄  is the probability point of t distribution with 𝜈 degrees of freedom 

and significance level 𝛼 as known as tail area probability. Therefore, such as confidence interval provides the range of 

values within the right value falls with (1 − 𝛼) probability. 
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Table 3. Methane emission rates and Emission Factors (EF) measured at the biogas plant. 

Day 

Peak time Emission Emission EF Raw biogas EF Upgraded biogas 

(hh:mm) (kg CH4 h
-1

) (Nm
3
 CH4 h

-1
) (%) (%) 

Tuesday 9
th
 

15:36 20.8 29.1 2.5 2.6 

15:46 18.4 25.8 2.3 2.3 

15:59 14.6 20.4 1.8 1.8 

Wednesday 10
th
 

17:11 22.6 31.7 2.8 2.8 

17:22 22.7 31.8 2.8 2.8 

17:26 24.8 34.7 3.1 3.1 

17:34 16.6 23.2 2.0 2.0 

17:40 19.6 27.5 2.4 2.4 

17:49 23.2 32.5 2.9 2.9 

18:01 25.9 36.3 3.2 3.2 

18:06 26.9 37.6 3.3 3.3 

18:33 28.4 39.7 3.5 3.5 

18:39 20.2 28.3 2.5 2.5 

18:44 23.7 33.2 2.9 2.9 

18:50 26.0 36.4 3.2 3.2 

18:55 26.0 36.4 3.2 3.2 

19:03 24.7 34.6 3.0 3.1 

19:06 29.8 41.7 3.7 3.7 

19:09 25.9 36.3 3.2 3.2 

19:16 25.3 35.4 3.1 3.1 

19:22 29.4 41.2 3.6 3.6 

Average 23.6 33.0 2.9 2.9 

Conf.* 1.8 2.6 0.2 0.2 

SD 4.1 5.7 0.5 0.5 

Count 21 21 21 21 

SEM 0.9 1.2 0.1 0.1 

Conf.: Confidence Interval calculated with t distribution at significance level α=5% 

SD: standard deviation, Count: number of transects (dimensionless value), SEM: standard error of means. 

 

Using information about the plant layout and the wind direction during measurements, 

quantification of emissions coming from digesters and gasholder area could be estimated. Wind 

blowing from East, as showed in. Figure 11, generates a downwind plume whose northern part 

(marked in green) describes emissions coming from digesters and gasholder area, whereas the 

southern part (marked in light blue) shows emissions coming from other process units. 
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Therefore, the calculation for emissions generated from digesters and gasholder area was 

carried out integrating only the green part of the acetylene and methane plumes. 

 

 

Figure 11. Estimation of methane emissions from digesters and gasholder area. Only the green part of the plume was 

used for this calculation. Downwind plume measured on September 10th, 2014 at 18:49. 

 

Table 4 lists the methane emission estimated from the area with the digesters and the 

gasholder for each successful transect. The values are compared with the whole plant methane 

emissions in order to estimate the percentage of methane emissions coming from this area. The 

average emission from the area with the digester tanks and the gasholder was 14.9±0.9 kg CH4 

h
-1

, which corresponds to 65±6% of the total emission of the biogas plant. The standard 

deviation of 14% (see Table 4) underlines the high uncertainty of this value, which therefore can 

be used only for a rough estimation.  
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Table 4. Estimation of CH4 fugitive emissions from digesters area 

Day of 

September 2014 

Peak time 

(hh:mm) 

Whole plant Emission 

(kg CH4 h
-1

) 

Emission estimation 

from Digesters Area 

(kg CH4 h
-1

) 

Emission share 

from Digesters Area 

(%) 

Tuesday 9
th
 

15:36 20.8 18.1 87 

15:46 18.4 15.4 83 

15:59 14.6 11.7 80 

Wednesday 10
th
 

17:11 22.6 16.2 72 

17:22 22.7 16.7 74 

17:26 24.8 17.8 72 

17:34 16.6 14.4 87 

17:40 19.6 15.5 79 

17:49 23.2 14.7 63 

18:01 25.9 16.2 62 

18:06 26.9 13.3 49 

18:33 28.4 13.5 48 

18:39 20.2 10.5 52 

18:44 23.7 17.0 72 

18:50 26.0 17.8 68 

18:55 26.0 12.4 48 

19:03 24.7 14.5 59 

19:06 29.8 13.5 45 

19:09 25.9 15.3 59 

19:16 25.3 13.7 54 

19:22 29.4 14.3 49 

Average 23.6 14.9 65 

Conf. 1.8 0.9 6 

SD 4.1 2.0 14 

Count 21 21 21 

SEM 0.88 0.45 3 

Conf.: Confidence Interval calculated with t distribution at significance level α=5% 

SD: standard deviation, Count: number of transects (dimensionless value), SEM: standard error of means. 

 

More information can be drawn comparing results from different days. Table 5 reports these 

calculations from data listed in Table 3. The average emission rate measured on Tuesday 9
th
 

was 17.9±7.8 kg CH4 h
-1

, which corresponds to 25.1±10.9 Nm
3
 CH4 h

-1
, and on Wednesday 10

th
 

24.5±1.7 kg CH4 h
-1

, which corresponds to 34.4±2.4 Nm
3
 CH4 h

-1
. 

 

EFs calculated for data collected on Tuesday 9
th
 are 0.8% smaller than those calculated for data 

collected on Wednesday 10
th
. The different number of transects between the two quantification 

days, 3 on 9
th
 vs 18 on 10

th
, involves different confidence interval underlining a more accurate 

value on Wednesday (0.2%) than Tuesday (1.0%). Nevertheless, the higher fugitive methane 

emissions on Wednesday 10
th
 compared to Tuesday 9

th
 could be explained by the additional 

use of water scrubber in the second day (see introduction to section ‎4), which is a technology 

known to release more CH4 to the atmosphere than chemical scrubber (Petersson, 2012). 

Notice that also in this case the two EFs have the same value. 
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Table 5. Whole plant fugitive emissions in two different measurements days 

 
Whole plant emissions Whole plant emissions Emission Factor (%) Emission Factor (%) 

(kg CH4 h
-1

) (Nm
3 

h
-1

) Raw biogas Upgraded biogas 

Day of Tue Wed Tue Wed Tue Wed Tue Wed 
sep-14 9

th
 10

th
 9

th
 10

th
 9

th
 10

th
 9

th
 10

th
 

Average 17.9 24.5 25.1 34.4 2.2 3.0 2.2 3.0 

Conf. 7.8 1.7 10.9 2.4 1.0 0.2 1.0 0.2 

SD 3.1 3.4 4.4 4.8 0.4 0.4 0.4 0.4 

Count 3 18 3 18 3 18 3 18 

SEM 1.8 0.8 2.5 1.1 0.2 0.1 0.2 0.1 

Conf.: Confidence Interval calculated with t distribution at significance level α=5% 

SD: standard deviation, Count: number of transects (dimensionless value), SEM: standard error of means. 

 

5.  Conclusion 

Off-site and on-site methane screenings indicated methane releases from digesters, biogas 

upgrading units, digestate storage tank and pre-treatment area. Methane emission from 

Linköping biogas plant, during the afternoons of September 9
th
 and September 10

th
, was 

successfully quantified using the tracer dispersion method. The emission rate measured was 

23.6±1.8 kg CH4 h
-1

 (corresponding to 33.0±2.6 Nm
3
 CH4 h

-1
). Plant emission factors (EFs) 

referred to raw produced biogas and upgraded biogas were 2.9±0.2%. The methane emission 

from the area with the digester tanks were estimated to account for approximately 65±6% of the 

total emission from the plant. The remaining part of the methane emission came from the pre-

treatment area and the digestate storage in an open tank. 

 

On Wednesday 10
th
 the methane emission was higher (24.5±1.7 kg CH4 h

-1
, which corresponds 

to 34.4±2.4 Nm
3
 CH4 h

-1
) than the emission measured on Tuesday 9

th
 (17.9±7.8 kg CH4 h

-1
, 

which corresponds to 25.1±10.9 Nm
3
 CH4 h

-1
). This might be explained by the additional use of 

water scrubber during the second day, which is a technology known to release more CH4 in the 

atmosphere than chemical scrubber. 

 

Stable weather conditions characterized each methane quantification day during 

measurements. In both days, wind blew from East with an average velocity of 1 m/s. The 

following two days (September 11
th
 and 12

th
) the calm, sunny and warm weather resulted in a 

fast plume rising, which made impossible methane measurements of downwind plumes at 

ground level far from the plant. 
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Introduction 

Measurements were performed by 4 different teams on site and 2 different teams with remote 

sensing. This report gives the results from the measurements performed on site by SP 

Technical Research Institute of Sweden. Measurements were mainly performed by Magnus 

Andreas Holmgren, partly with assistance from Johan Yngvesson. 

Equipment and execution 

Leak detection and measurements on the biofilter were performed on the 8
th
 of September. All 

other measurements were performed on the 9
th
 of September. 

Methane concentration was analysed on site with a FID analyser equipped with a Non 

Methane Hydrocarbon Cutter (JUM). The FID was calibrated with 900 ppm or 8000 ppm CH4 

in synthetic air. 

Methods and results 

The methods used follow the Swedish handbook on methane measurements (SGC report no 

227) and the limitations and recommendations given by the Swedish Voluntary Agreement 

system (Avfall Sverige report no 2007:02 rev. 2009). 

Homogenisation tank 

Minor methane emissions were identified with the portable leak detector, but the levels were 

so low that given by recommendations in AS report 2007:02 rev. 2009 it was decided to 

disregard measurements. 

Hygenization tank 

A minor methane emission was identified with the portable leak detector at the pipe coming 

from the homogenisation tank, but the levels were so low that given by recommendations in 

AS report 2007:02 rev. 2009 it was decided to disregard measurements. 

A minor leak was detected with the portable leak detector at a manhole. Leaks are not 

quantified in the Swedish system and hence SP has no equipment to measure the mass flow 

from this leak. 
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Biofilter 

In the Swedish system biofilters are regarded as having no effect on the methane concentration 

in the treated gas. Hence measurements were performed in the pipe directly before the 

biofilter. The methane concentration was analysed to be 80 ppm with the FID (with NMHC). 

The gas flow was measured with a pitot tube and a differential pressure sensor as 3 564 Nm3/h 

(with correction for pressure and temperature). The resulting emission mass flow is 204 g 

CH4/h. 

Digestate storage 

The emission was quantified with an open chamber technique using a VDI-hood manufactured 

by OdourNet in Germany (according to specifications given in VDI 3880). The FID was used 

to analyse the methane concentration of the offgas from the VDI-hood. Measurements were 

performed on 4 different points on the large surface area of the storage tank. The resulting 

mean emission mass flow rate is 7 335 g CH4/h. 

Activated carbon filter (building) 

Measurements were performed in the 2 air ventilation openings in the building. The methane 

concentration was analysed to be 1 400 ppm with the FID (without NMHC) using a pump to 

take a gas sample in a sample bag. Flow was measured with a hot-wire anemometer in the 

ventilation openings giving the result 81 Nm
3
/h. The resulting emission mass flow is 80 g 

CH4/h. 

Chemical scrubber 

The methane concentration was analysed with the FID, with a mean value of 169 ppm. It is not 

possible to measure the flow at the sampling point, instead the flow is calculated from the 

product gas flow and methane concentration (given by the plant). This gives an emission mass 

flow of 85 g CH4/h. 

Right compressor building 

The methane concentration was analysed with the FID, with a mean value of 113 ppm. Gas 

flow was given by fan data found to be 1,375 m
3
/s. With correction of the gas flow with 

temperature, this gives an emission mass flow of 363 g CH4/h. 

Left compressor building 

The methane concentration was analysed with the FID, with a mean value of 30 ppm. Gas flow 

was given by fan data found to be 1,375 m
3
/s. With correction of the gas flow with 

temperature, this gives an emission mass flow of 98 g CH4/h. 

Pressure relief vents 

These leaks were not identified by SP. When being informed by the other teams about one 

major leak it was decided to perform measurements, but unfortunately when we tried to 

perform measurements on the Wednesday, the machine was not in operation and hence there 

was no leak at this time. 

Analysis instruments on site 

Four gasflows through different analysis instruments were identified. The flows were read on 

the rotameters and the methane concentrations were given by the analysis instruments on site, 

resulting in an emission flow rate of 41 g CH4/h. 
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Overall emission 

The overall emission from the points measured is 8 206 g CH4/h. 
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MEASUREMENTS OF METHANE 
EMISSIONS FROM BIOGAS  
PRODUCTION
Metanutsläpp från biogasproduktion, hur stora är de? Och hur kan vi hitta och 
mäta dem? Biogas är ett klimatneutralt bränsle eftersom det produceras från 
biomassa som bundit atmosfärisk koldioxid. Men eftersom dess huvudsakliga 
beståndsdel, som är metan, är en kraftfull växthusgas är det viktigt att så lite 
som möjligt av biogasen kommer ut i atmosfären. 

Här redovisas resultaten av ett projekt, som med stöd av den europeiska gas-
branschens forskningsorganisation GERG, har låtit några av Europas mest er-
farna organisationer och experter jämföra olika metoder och angreppssätt för 
mätning av metanutsläpp. 

Mätningarna på biogasanläggningen i Linköping visade till exempel att resul-
taten av olika metoder är jämförbara även om osäkerheten i alla typer av mät-
ningar är stor. Ungefär en procent av all producerad metan visade sig gå förlorad 
till atmosfären. Nästa steg är att ta fram en handbok som kan hjälpa använda-
ren att jämföra och välja mellan olika mätmetoder.

Another step forward in Swedish energy research
Energiforsk – Swedish Energy Research Centre is a research and knowledge based organization 
that brings together large parts of Swedish research and development on energy. The goal is 
to increase the efficiency and implementation of scientific results to meet future challenges 
in the energy sector. We work in a number of research areas such as hydropower, energy gases 
and liquid automotive fuels, fuel based combined heat and power generation, and energy 
management in the forest industry. Our mission also includes the generation of knowledge 
about resource-efficient sourcing of energy in an overall perspective, via its transformation and 
transmission to its end-use. Read more: www.energiforsk.se	


