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HPC FSI SIMULATION OF A ROD SUBJECTED TO AXIAL TURBULENT FLOW

Foreword

In a previous project, experiments have been conducted in a set up with a
geometry equivalent to the neutron detector housing tube and consists of
four fuel box corners and the housing tube. The geometry used has then
been implemented into a fluid structure interaction (FSI) software, to
investigate if the calculated and experimental results are consistent.

The FSI calculations have been carried out as a master thesis project at The Royal
Insititute of Technology/Stockholm University in cooperation Vattenfall R&D. In this
thesis work, an open source software was used.

In a parallel master thesis, performed at Chalmers/Onsala Ingenjorsbyra (Energiforsk
report 2016:238), the same modelling problem is studied using a commercial software
was used. The results using the two softwares will also be compared both to each other
and to the experimental results in a separate summarizing report.

This project has been carried out within the Energiforsk Vibrations research program.
The stakeholders of the Vibrations program are Vattenfall, E.ON, Fortum, TVO,
Skelleftea Kraft and Karlstads Energi.
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HPC simulation of fluid-structure in-
teraction for an in-core neutron flux
detector housing tube

Vasileios Papadimitriou

Abstract

The study of flow-induced vibrations on slender structures is a relatively new subject, with in-
creasing interest in recent years. In the present work the axial turbulent flow past a cylindrical
object is simulated, by using an open source CFD code (OpenFOAM) with a Large Eddy Sim-
ulation (LES) approach. High Performance Computing (HPC) resources were available and a
detailed approach has been accomplished, with several computational meshes scaling up to 20
million cells. Spectral and spatial analysis has been performed on the numerical results and val-
idation with the experimental data provided (by the projects contributors) has been carried out.
Additionally, an FSI simulation has been achieved for the same geometry, with a partitioned ap-
proach, coupling two separate flow and structural solvers and a comparison has been performed
with the experiment here as well, in order to examine the ability of the software to predict the be-
havior of the FSI and how the numerical approximations affect the results in turbulent cases. The
turbulent velocity frequencies showed a good correspondence with the natural vibration modes
of the rod and the software was shown capable to simulate the FSI behavior, but had room for
improvement in several sectors, especially HPC.
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1. Introduction

The study of flow-induced vibrations of slender structures subjected to axial flow is a
relatively new subject, the study of which has been gradually intensified in the past few
decades. The ever growing power generating industry, as well as other engineering in-
dustrial fields, has found itself in need of stability and equipment reliability. Repeated
equipment failures, that have the possibility to cause unwanted effects with a severe im-
pact, sometimes, in their natural habitat, have evidenced the inadequate state of the art
repeatedly [2]. It has thus become important to understand and predict the dynamical
behavior of such structures, which can be found in many mechanical equipment, a few
primary examples being nuclear reactors [3] [4], steam generators and heat exchangers.
Most failures are associated with cases of cross-flow, however lately, vibrations due to
axial flow have been shown to be of great importance as well [5]. It is expected that the
dynamical behavior of slender structures subjected to external axial flow should be dif-
ferent than slender structures conveying fluid or being subjected to cross-flow [6]. With
this as a motivation, the current study attempts to analyze and understand the dynamic
behavior of a beam subjected to axial external flow, using as a base existing studies in
similar cases, with an emphasis on industrial applications.

1.1 Problem Description

This study focuses on the simulation of the external axial flow surrounding a slender
cylindrical structure and the vibrations induced due to the interaction between the struc-
ture and the fluid flow. The geometry considered in the experimental setup is a part of a
nuclear in-core neutron flux monitoring system. This system, which is called the Average
Power Range Monitoring (APRM) system, consists of several in-core neutron flux de-
tectors that are positioned axially inside guide tubes that are located in between the fuel
bundles of the reactor [1]. Approximately 13-15% of the total flow of the water in the re-
actors main recirculation loop flows axially in the cross shaped channel formed between
four fuel bundles. In the middle of that channel, the guide tube containing the neutron
flux detectors is located and is subjected to this flow on its outer surface. Due to the guide
tubes structure, which is only 19 mm in diameter but 4040 mm long, it is susceptible to
deformation due to the fluid forces, and thus a Fluid Structure Interaction (FSI) is created.
The bottom end of the guide tube is fixed in the core support plate while the top end is
supported on the core grid with a spring. This gives the system a fundamental frequency
of 2-3 Hz.

The experimental geometry, that is simulated, had to be scaled down due to the limited
length of the available test section and can be seen on figure 1.1 [1]. The length of the test
tube is only 1500 mm long, made of stainless steel and has a diameter of 8mm. In order to
scale the whole geometry to match the characteristics of the guide tube, a channel width
between the fuel bundles of 6.4 mm and rounded corners with a corner radius of 5.4 mm
was obtained, leaving a circular area of 13.4 mm for the test tube. Thus the available flow
channel between the guide tube and the fuel bundles is a small annular passage of 5.4
mm in diameter. The inflow region is defined by the corners of the fuel bundles with a
mass flow ranging from O to 15 m> /s. The outflow boundary and piping is connected to
a reservoir at constant pressure. The mechanical properties of the geometry have been
summarized on table 1.1.
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Property Value

Rod Length 1.486m
Rod diameter 0.008m
Rod wall thickness 0.0006m
Rod density 7863 kg/m>
Young’s modulus 193 GPa
Water density 998 kg/m?

Table 1.1: Mechanical properties of experimental geometry.
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Figure 1.1: Experimental geometry.

The main issue with this setup is the fact that the tube in question is susceptible to FIV
due to the flow surrounding it and its effects and causes have to be well understood and
controlled in order to be allowed to exist.

According to studies concerning FIV in cylindrical structures subjected to axial flow [7]
and reactor components specifically [3], there are 3 reasons for such vibrations to occur.
First, fluid elastic instabilities like buckling and fluttering are said to occur when there is
a high velocity flow field (™ > 1.5). Next, vibrations due to flow periodicity are possible,
if there are sizable perturbations in the mean velocity flow field which can cause para-
metric resonances if that perturbation frequency lies in the neighborhood 2f, /k, k=1,2...
Finally, FIV due to turbulent buffeting is a possibility, where the cylinder acts as a band-
absorption filter, extracting energies from the flow field in narrow windows about the
natural frequencies of the cylinder, especially the first mode.
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1.2 Objective of this study

The objectives of this study have been set as follows:

e Investigation of the turbulent flow characteristics through the geometry of interest,
without FSI coupling at first, using a Large Eddy Simulation (LES) turbulence model,
to understand the inner workings of the flow, study its cause and effects on the structure
as a whole and try to understand the cause of the Flow Induced Vibrations(FIV) of the
guide tube using a spectral analysis on the simulation basic components and comparing
with experimental data provided.

e Strongly coupled simulation of the FSI between fluid and solid domain, benchmarking
of the solvers with comparison to the experimental geometry and the effectiveness of
OpenFOAM as a software capable of industrial FSI applications and High Performance
Computing (HPC) simulations.

1.3 Materials used for this thesis

The software used for this study is called OpenFOAM (Field Operation and Manipu-
lation). OpenFOAM is a free, open-source Computational Fluid Dynamics (CFD) soft-
ware package. It is given as a set of libraries, written in C++, used to create executable
files. These libraries have files with shared functionality for easier categorization. There
are two groups of applications: solvers, with the purpose of handling the numerics and
the solution of the mechanical problem at hand, and utilities, that are tasked with per-
forming non-essential tasks that involve data manipulation, meshing or visualization [8].
Additionally, a community-extended version of the software is going to be used, named
foam-extend [9] that has a solid mechanics branch with implemented structural and FSI
solvers, alongside the original OpenFOAM release for meshing, pre/post-processing tools
and a turbulence study. Furthermore, the open-source software Salome has been used for
generation of the Computer Aided Design (CAD) model used for the mesh generation
of this work [10]. Finally, the open-source software Octave has been used for graphi-
cal representations and data analysis. GNU Octave is a high-level interpreted language,
with capabilities for numerical procedures and extensive graphical capabilities for data
visualization and manipulation [11].

1.4 Acknowledgements

This thesis, as well as the experiments it is based on, are financed by Energiforsk AB. An
active collaborator is Vattenfall and its R&D department that contributed to the realization
of the experiment, as well as part of the supervision of this study and provision of a
detailed report to the experimental data and structure, which acted as a basis for this study.
The thesis itself was conducted at the PDC center for High Performance Computing at
the KTH Royal Institute of Technology [12]. PDC provides HPC services to Swedish
academia, as part of the Swedish National Infrastructure for Computing (SNIC) as well as
internationally via PRACE infrastructure. Their computer systems have been used for the
computations, specifically the cluster Beskow. Beskow is a Cray XC40 system with 1676
compute nodes and 26 service nodes. Each node consists of 32 processing units (cores)
and 64GB of computing memory. It has a peak performance of of 1973 TFLOPS (floating
points per second) and was ranked in the 32nd position in the November 2014 Top 500
list worldwide.
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1.

5 Thesis outline

The rest of this report is structured as following:

14

Chapter 2 provides the background information and any previous knowledge required
to proceed on understanding the content of this study. First it briefly describes CFD
and the equations describing the fluid flow. Then it proceeds to describe the idea of
turbulence and its characteristics and finally delves into FSI and its required theoretical
background.

Chapter 3 explains the implementation of a simulation in OpenFOAM, both in the
turbulent and the FSI case.It provides the setup as well as the specific properties defined
(boundary and initial conditions, constant values) and finally dives into the strategy for
obtaining and analyzing the data from these simulations.

Chapter 4 provides the results obtained from the study with tables and graphical rep-
resentations along with a brief explanation of them. It also lists the reasons they were
collected, as well as any necessary information for their interpretation and a discussion
of their meaning and importance.

Finally, chapter 5 provides a conclusion for this work and discusses any future work
that could be carried out on the same subject, along with final thoughts and entries that
did not fit in the rest of the report.



2. Background

Computational Fluid Dynamics (CFD) is a discipline that belongs to the field of mechan-
ics that involves using numerical methods and computational schemes to obtain approx-
imate solutions to the complicated Navier - Stokes equations, that describe fluid motion.
These equations, in order to be solved, have to be discretized by some method (for ex-
ample with finite volumes or finite elements) for the specific geometry of interest, which
represents an approximation for the differential equations by a system of algebraic equa-
tions. Using this system to solve for the fluid motion equations in space and/or time, you
can create a numerical solution and thus, provide results at distinct (and small) locations
in space and/or time [13].

2.1 The Finite Volume Method

In the Finite Volume method, the computational domain is split into very small cubical
segments, called control volumes (CVs) to form a mesh surrounding the computational
nodes instead of being defined by them. These are considered to be either at the center
of the control volumes (first approach) or be considered first, with the control volumes
constructed afterwards around them, in such a way that the CV faces lie midway between
nodes (second approach). The first approach has the advantage that the values of different
quantities on the CV represent the mean of that quantity on the CV to a higher accuracy,
since the node is located exactly at the center of the CV. On the other hand, the second
approach provides higher accuracy during linear interpolation of values on the CV faces
since the face lies midway between two nodes [13].

2.2 The governing equations of fluid flow

The governing equations of fluid flow are called the Navier-Stokes equations. These were
derived in the mid 18th century by Claude Navier and George Stokes and are based on
the three fundamental governing equations of fluid dynamics. These equations are called
the continuity, momentum and energy equations which represent the conservation laws of
physics. The continuity or mass-conservation equation demands that the "rate of increase
of mass in a fluid element" is equal to the "net rate of mass flow into the fluid element"
[14]. The rate of increase of mass in a fluid element is [14]

d _dp
E(p3x3y5z) = E(5x5y5z) (2.1

Here, p refers to the fluid density field, x,y and z correspond to a Cartesian coordinate
system and t is the time variable.
Furthermore, considering the CVs, this simplifies to :

Jdp  dpu;

W—'— ox =0 (2.2)
p
5 +div(pu) =0 (2.3)
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This is the "three dimensional, unsteady continuity equation for a point in a compress-
ible fluid" [14]. For incompressible fluids, the density p is constant, so the time derivative
in respect to the density is zero and thus [14]

8 u;
P 0 2.4)
is all that’s needed for the continuity equation.

The momentum equation, which is based on Newton’s law of motion, correlates the
acceleration of the fluid’s unit mass to the forces that act on the fluid. The rate of increase
of momentum on a unit mass should be equal to the summation of the forces on said mass
[15]. The rate of increase of momentum per unit volume is given by p % while the sum of
the forces is given by the derivative of the stress tensor #;; for the surface forces, which are
of molecular origin and symmetric, and gravity. Given the gravitational potential ¥, the
body force per unit mass is g = —div(¥) [15]. Putting all these together in one equation,
we derive the momentum equation [15]

8pu,~ n c9pu,-uj o _o'?p +%_ 0¥

o ox; | ox  ox; Pox

(2.5)

2.2.1 Navier-Stokes equations for a Newtonian fluid

To obtain a more suitable form of the momentum equations, we introduce a suitable model
for the stress tensor f;; [15].This is achieved by considering a specific class of fluids,
called "constant property Newtonian fluids" [15]. As stated by the Boussinesq hypothesis,
in most fluid flows the viscous turbulent stresses are functions of the mean deformation
rate or strain rate and in Newtonian fluids they should be linearly proportional to each
other. When working in three dimensions, this rate can be distinguished in the linear and
volumetric deformation rate [14].

Newtonian fluids are the simplest mathematical models which account for viscosity
and while no fluids are perfectly Newtonian, the most common ones, water and air exhibit
Newtonian behavior under ordinary conditions. In this case the stress tensor is given by
[15]

o | 9u; ) 2.6)

tij:“<8xj S

where U is the (constant) coefficient of viscosity.

By substituting this expression for the stress tensor into the general momentum equa-
tion derived earlier and using the fact that p and p are uniform as well as the continuity
equation div(u) = 0, we obtain the Navier-Stokes equations (the gravitational forces are
ignored due to their low significance) [15]

8pu,~+8pu,~uj_ 8p+ ) <u(8u,- 8uj>>

dx; ax]' + 8xl~

o " Tox, o ox, 7

2.3 Turbulence

Turbulence is a property in fluid flow where, unlike the normal steady flow, chaotic effects
take place, specifically rapid fluctuations in velocity and pressure in space and time [15].
For instance, measurement of the velocity component v at some stationary point in the

16



flow may produce a plot as shown in the figure 2.1. The velocity can be regarded as
consisting of an average, mean, value (red line) and a randomly fluctuating value (blue
line).

— Uvar

— Umean
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il 00 w‘

Figure 2.1: Example of turbulent velocity over time.

In turbulent flows momentum effects dominate over viscous effects and a characteris-
tic quantity that is used as a qualitative measure of existence of turbulent effects is the
Reynolds number Re = uL/v where u and L are the characteristic velocity and length
scale of the flow respectively and v is the kinematic viscosity [15]. In pipe flow the char-
acteristic velocity is considered the mean flow velocity through the body of the pipe and
the characteristic length is the diameter of the pipe D, leading to typical values of the
Reynolds number of Rep < 2100 for laminar flow and Rep > 4000 for turbulent flow.
In the interval between these two limits, laminar and turbulent flows are both possible
and are called transition flows, which depend on the geometry being examined [15]. Tur-
bulence becomes visible in the flow field in the form of "eddies" [14][15]. There is a
large range of scales for the size of the eddies where the biggest ones are in similar size
to the flow geometry. Turbulent flows make the task of obtaining direct solutions to the
Navier-Stokes equations extremely difficult with its wide range of lengths and sizes.

2.3.1 Turbulence Models

Turbulent flows are characterized by fields that vary highly over time both in time and
space. Since these variations occur in both the large and small scales of the flow, it is
computationally expensive to directly simulate everything for more complex problems
that have practical engineering significance. There are two methods commonly used to
eliminate this need of direct simulation of every different scale of the numerical problem,
filtering and time averaging [15].

Space filtering is used to filter out the small scale fluctuations in the velocity, leaving
only the large scale eddies for direct simulation, which is computationally feasible with

17



modern hardware. A simulation using this approach is known as a Large Eddy Simulation
(LES) [13]. When the Navier-Stokes equations for an incompressible flow are filtered, one
obtains the following set of equations [13]:

o(pm)  dpwa;) _ p | 0 [ (om 9%
o o, oxn ox|Max T om 5
and, for the continuity equation [13]:
I(pm) _ (2.9)
8x,-

Filtering the Navier-Stokes equations leaves the equations incomplete, demanding ad-
ditional terms that must be explicitly modeled to acquire a closed set of equations, which
are called the sub-grid scale Reynolds stresses nomenclatureSGSSub-Grid Scale (SGS)
[13]:

5 = —p (wgt; — idyii) (2.10)

t
Approximation of these SGS stresses leads to specific numerical models, the most
common being the so called eddy-viscocity models. In these models, the turbulent effects
are considered to be caused by an artificial quantity, called eddy-viscosity which, along
with eddy-diffusivity, are quantities used to successfully model the turbulence effects,
like momentum and energy transfer [13].
Equation 2.10 requires a closure for the unknown coefficients. "Following the Boussi-
nesq approximation, the relationship between the anisotropic part of the SGS stress tensor
and the strain tensor can be given as" [16] :

¢ 1

£ — §6,~jt,§k = —2vrS;; (2.11)
- 1/0u; OJdu;
P J 2.12
Y 2 (3xj + 8x,- ) ( )
The SGS eddy-viscocity vr is obtained from the kinetic energy [16] :
VT = CkA\/ kSGS (2.13)
where the kinetic energy ksgs is calculated out of the velocity field as [16] :
1 1, _ o
ksGs = >tk = §<uk”k — Tijiy.) (2.14)

Finally, the grid filter length A is based on the cell volume [16]

A= (A1AA3)3 (2.15)
and the coefficient Cy is a flow-dependent quantity which can be computed as a scalar
function of the vorticity and the resolved strain rates [16].

In time averaging all flow components are divided into a mean component and a fluctu-
ating component which are then averaged over time to remove the effect of the fluctuation
in the equations, called Reynolds averaged Navier-Stokes equations (RANS). These mod-
els should be regarded as engineering approximations rather than scientific laws and are
of no further concern to this study.
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2.4 Fluid Structure Interaction

Fluid Structure Interaction (abbreviated as FSI) is the interaction of some movable or
deformable structure with an internal or surrounding fluid flow. Usually the structure’s
dislocation and/or deformation occurs due to the effect of this interaction between itself
and the fluid flow which, in turn, causes the boundary of the fluid system to move. Thus,
an FSI simulation is a problem of both fluid and solid mechanics. In many engineering
applications. this dynamic interaction plays a key role in the efficiency and sometimes
even in the safety of the design. An example of the importance of this interaction is
the well-known catastrophic collapse of the Tacoma Narrows Bridge in 1940 due to an
aeroelastic flutter effect from the interaction between the bridge (structure) and the airflow
(fluid) around it [2].

FSI phenomena occur in many engineering applications, including reactors, aerospace
applications, civil engineering as well as biomedical applications, such as arteries and
artificial heart valves. Due to the advancement of computational power, as well as the
booming increase of interest in research on the field and thus the advancement in the
numerical algorithms available to the researchers, we are able to simulate increasingly
complex problems.

2.4.1 Monolithic and Partitioned Solvers

There is a broad selection of available algorithms and methodologies to approach an FSI
problem. One of the first choices that need to be made is whether to develop a monolithic
or a partitioned solver [17]. For loosely coupled problems, the partitioned approach is
the default choice but for strongly coupled problems and strong interaction between the
two solvers a monolithic approach may be a consideration. A monolithic scheme is one
that aims at putting all the necessary components needed for the simulation into a single
solver. Although it has been used in the past, most researchers agree that monolithic ap-
proaches are impractical since they are not only hard to implement but keeping the solver
up-to-date with the latest developments in every different research field is a challenging
task [17] [18]. Therefore, the most popular approach is to develop a partitioned solver.
A partitioned scheme aims at separating the multiphysics problem that the user wants to
solve in two (or more) separate "black-box" solvers defined by the physical properties of
the simulation. For a fluid - structure interaction, we would require a solver for the fluid,
a solver for the structure and a coupling algorithm that couples the solvers at the fluid -
structure interface both in space and time by transferring data between the 2 solvers by
the use of some interpolation technique. All of these separate solvers can be developed,
maintained and improved independently from each other, making this approach much
more simple and agile.

2.4.2 Definition of the flow and structural solvers

A definition of the functions F and S that represent the flow and structural solvers re-
spectively has to be given [19]. Because we are talking of a partitioned approach and
black-box solvers, the exact Jacobians of these functions are not available. First, the dis-
cretized position x € R¥ of the fluid-structure interface is given to the flow solver and the
grid of the fluid domain in contact with the interface is moved accordingly. Afterwards,
the flow equations are solved for the whole fluid mesh which results in a distribution of
stresses on the interface y € R". Thus, we have an interaction of the form y = F(x). Sub-
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sequently, this stress on the interface y is given to the structural solver which, in turn,
solve the structural equations for the whole structural mesh and returns the new position
of the fluid-structure interface x, creating an interaction of the form y = S(y). Using the
definitions of these two functions, the FSI problem can be represented as

R(x) =SoF(x)—x=0 (2.16)

with R the residual operator of the coupled problem, creating a sequence of solution of
each solver and variable passing until the residual becomes small enough for the solution
to be considered convergent.

2.4.3 Weak and strong coupling

As mentioned earlier, there are two forms of coupling between the fluid and solid solvers
for an FSI simulation. You can either have a loosely or a strongly coupled problem [17].
When studying problems that the deformations are small and the interactions are a sec-
ondary issue, an explicit (weak) coupling method may be applied. On the other hand, for
big deformations, with a primary interest in their effect on the total simulation, an ex-
plicit (strong) coupled method may be required. The main difference between these two
methods is the addition of an external (outer) loop at every time step that ensures that the
mesh deformation is consistent with the cinematic and dynamic conditions at the interface
between the two solvers. This outer looping is called fixed-point or sub-iterating.

2.4.4 Fixed point iterations (sub-iterations)

When faced with instationary problems and moving grids, additional measures need to be
taken into consideration during the development of a partitioned solver for a fully coupled
problem. While in a normal algorithm you only have the main iteration, which represents
the passage of time during the simulation, in fully coupled FSI problems a sub-iteration
has to be set for every time step in order to achieve the strong coupling and have a conver-
gent solution. These sub-iterations are referred to as fixed point iterations [20]. At each
iteration an approximation to the exact solution is obtained. When the exact solution is
not reached, a residual is introduced. Thus, this solution has to be sub-iterated until this
residual is zero. Perfect convergence is not actually possible but setting a convergence
criterion (a really small value), below which we consider the solution converged, is suf-
ficient and is the common solution. Considering these fixed-point iterations as equations,
the iteration can be thought as a function f of the approximate solution x,

x = f(x) (2.17)

This is then iterated until the convergence criterion is reached,

X = f() (2.18)

+1

Like mentioned above, when the solution x**! is not reached but only an approximation

of that &1, a residual r is introduced

=t fO+r ="+ (2.19)

n+1 _

Equation 2.19 can be then iterated until ¥ ¥"*1 and the residual is zero.
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2.4.5 Stability - Under-relaxation

However, fixed point iterations are expensive computationally and the convergence is not
guaranteed to be stable. A way to treat this instability is to apply an under-relaxation
method, but at the cost of even slower convergence [20]. Under-relaxation is effective in
the case of overestimation of the coupling variables. Like already explained, in fixed point
iterations a new value is approximated for the solution at each sub-iteration and a residual
is introduced. When under-relaxation is applied the new input variable is a combination
of the approximate solution and the previous solution.

= 4 (1-0)x" (2.20)

The combination of these two variables depends on the under-relaxation factor 6. This
parameter takes values in the interval [0, 1] with 6 = 1 representing the approximation
without applying any under-relaxation at all and 6 = 0 giving the old solution, thus not
allowing the process to progress at all (stationary solution).

2.4.6 Aitken under-relaxation

If the under-relaxation parameter remains fixed during the iterations, a fixed
under-relaxation scheme 1is achieved. It can, however, change between each
sub-iteration, which results in an adaptive under-relaxation scheme. A popular adaptive
under-relaxation scheme is the Aitken under-relaxation [21]. The Aitken method varies
the under-relaxation parameter between each sub-iteration. For the first iteration a fixed
under-relaxation factor 0 is chosen. Then for future iterations this parameter is changed
based on the increment from the residual on the last and second to last iterations. Thus if
the residual is denoted with the letter » and an index [ representing the sub-iterations, the
updated under-relaxation factor is given by

el“:el(— = ) (2.21)

(= A= DT (A = /-1

In fixed under-relaxation, sometimes too much relaxation can be employed to make
the scheme seem more stable, which slows down the computation unnecessarily. This
weakness is overcome in the Aitken method since it finds the perfect balance between
stability and computational efficiency.

2.4.7 1QN-ILS

With the FSI problem reformulated as a residual function, there can be several methods
by which it is solved. If the Jacobian matrix dR/dx was known, Newton iterations could
be applied to find a solution [19]

dR )
<a>anxn — (2.22)
= A (2.23)

This line of thinking leads us to the current state of the art coupling scheme for fluid-
structure interaction called Interface Quasi-Newton iterations based on the Inverse Least
Squares approximation of the Jacobian (IQN-ILS). The first problem is that the exact
Jacobian of the residual is not known, as F and S are not available and a huge system
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of equations has to be solved in every iteration [19]. This is already an improvement
compared to under-relaxation methods that apply to the entire fluid domain, calculating
the complete Jacobian matrix can be computationally expensive. This leads to the ap-
proximation part, where instead of calculating the complete Jacobian, we approximate
the inverse Jacobian, which is actually all that’s required, using a least squares technique.
Then, quasi-Newton iterations can be used, for solving the system of equations and obtain
a numerical solution [19]

dRy 17!

O =g {(E)x] (=" (2.24)

and these iterations solve the FSI problem for the fluid-structures interface position. The
initial guess for the quasi-Newton iterations is obtained by extrapolating the position of
the interface on previous steps [19]

0o

KO = E(xk) —2(x N+ %(xk_z) (2.25)

The residual 7" for every inner iteration is calculated as [19]

" =R(X") =SoF(x") —x"=3""1 _x (2.26)

and the solution for this time step has converged when the second norm of this residual is
smaller than a convergence criterion €.

It is apparent from 2.26 that like the complete Jacobian matrix, neither the inverse has
to be explicitly calculated. It is possible to simply calculate the product of Ar =0 — (")
with this matrix, which can be obtained from previous iterations [19].

The inner residual calculation equation shows that the solution of the two domains in
each quasi-Newton equation provides as with two vectors, 7! and r*. These two, along
with the data from all the previous iterations create two a set of vectors and then each
point’s difference from the previous step can be calculated as [19]

A =7 — " (2.27)

AFt! = gt _grtl i=0,...,n—1 (2.28)

These two corresponding vectors are stored as the columns of two matrices W and V"
along with information from the previous time steps. The vector Ar is approximated as a
linear combination of the known Ar' [19]

Ar=V"c" (2.29)

with ¢”* the coefficients of the following decomposition. "The above system of linear
equations is an overdetermined system and a least squares solution to this system can
then be calculated by using the so called economy size QR decomposition of V" using
Householder transformations" [19]

V'=Q"R" (2.30)

and from these calculating a coefficient vector ¢”* by solving the triangular system [19]
R = Q" Ar (2.31)
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using back substitution.

In some cases the corresponding equation will have no solution, because the Ar' vec-
tor will be (approximately) linearly dependent in the relevant matrix. In that case, the
corresponding ¢” is set to zero. Similarly [19]

AR = W"c" (2.32)

Ar = AX — Ax (2.33)

and by merging these two equations we obtain [19]

Ax=W"c"— Ar (2.34)

Therefore we have obtained the solution we required [19].

~1
Ax = ([d—R} ) Ar=W"c"+ /" (2.35)
dx Xn

thus getting finally a relation between Ax and Ar by means of the intermediate AX values.
This information reuse from previous time steps accelerates the coupling convergence
remarkably. The optimal number of previous time steps k that can be reused this way
is problem dependent but the change in the rate of convergence near the optimum is
insignificant and the method is robust.

2.5 ALE formulation

In fluid mechanics, there are two widely used approaches for describing the fluid particle
motion, the Lagrangian and the Eulerian formulation.

Lagrangian algorithms are those in which each computational node of the mesh is
associated with one or more particles from the simulated fluid and continuously follows
the motion of said particle(s) during runtime. This formulation provides the possibility to
actively track free surfaces or moving interfaces during runtime. It is unable, however, to
follow large distortions in the computational domain [22].

Eulerian algorithms, on the other hand, employ a computational mesh that is fixed in
space and where large distortions in the motion can be handled with ease, at the expense
of precise interface and boundary tracking, as well as the resolution of details in the flow
[22].

For a wide range of applications, both formulations have their advantages and disad-
vantages since it is frequent that the situation demands positive characteristics from both
formulations to be present in a single computational problem. In this case, working with
FSI, there is a structural domain, with a displacement field as a function of the original
grid while the fluid has a solution with respect to the current grid, the Euler description. A
no-slip condition (similar to a Dirichlet boundary condition) is applied to the deformable
domain, which gives the additional condition that the fluid cells near the boundary, that
share a face with the solid cells, have the same velocity as the solid cells they share a face
with. This implies that the grid points of the fluid move coherently with the points of the
solid on the coupling boundary.

There are also static pressure and drag issues in the thin layer surface between the
fluid and the solid. To overcome this problem, a technique has been developed known
as the Arbitrary Lagrangian - Eulerian (ALE) formulation. When using this method, the
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computational mesh is able to move and try to preserve its positive characteristics, such
as orthogonality of the cells, while keeping track of the movement of boundaries and free
surfaces [23]. One can say that this formulation enables the fluid mesh to be deformed
in response to structural deformation. Thus, first apply the traction vector on the solid
state and impose the displacement of the fluid boundary on the fluid, re-mesh the grid and
interpolate the velocity and pressure on the new grid.

2.6 Motion for the bending vibration of a slender
homogeneous beam

The differential equation for the bending of a homogeneous beam with length L is given
by equation 2.36 [24].
o ’w

El g +pA—s =0 (2.36)

where @ stands for the eigen-frequencies, p is the mass density, A is the area of the
beam and ET is a quantitative measure of the material’s stiffness, comprising of the iner-
tial moment and young’s modulus, which is a quantitative measure of the elasticity of a
material.

With separation of variables, assuming that the solution is of the form
o(x,t) = X (x)T () equation 2.36 can be written as

—=____3 (2.37)
which is an eigenvalue problem with A the eigenvalues. This formulation leads to

XW_ptx =0, put=2 (2.38)

Solving this gives solutions of the form:

X, = cn((sin, L+ sinhp,L)(costyx — coshily,x)—
(cospy L+ coshu, L) (sintly,x — sinhl,x)) (2.39)

For each eigenvalue A there is a differential equation for T from 2.37

T"+®,°T =0, o,°= )L"p_A (2.40)
The general solution is of the form
T, = 0 cos@yut + Businw,t (2.41)

Using 2.39 and 2.41 we can get the solution to 2.36 as

o(x,1) =Y X,T, (2.42)

These eigen-frequencies are also called the natural frequencies of the beam. Addition-
ally, the natural or normal modes of the beam can be calculated by finding the roots
of equation 2.39 and the natural frequencies correspond to the solution of the eigen-
frequency equation for X,, = 0.
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3. Implementation

3.1 Meshing

The first and most important thing when it comes to CFD applications is having a cor-
rect and well-structured mesh. For this study, the OpenFOAM tool snappyHexMesh has
been used for the mesh generation [8]. "SnappyHexMesh is an utility that generates 3-
dimensional meshes containing hexahedra and split-hexahedra automatically from trian-
gulated surface geometries in Stereolithography (STL) format" [25]. The mesh is gener-
ated in an iterative way, creating a rough block mesh, bigger and coarser than the one
we want to achieve. Then, using repeated morphing iterations, the mesh slowly conforms
to the surface. There are additional optional phases for adding cell layers near the wall
boundaries and the final quality of the mesh can be defined precicely by the user. It also
has support for parallel execution [25]. The STL geometry files where exported from the
open-source software Salome, which was used to create the original CAD model of the
computational domain.
In order to run SnappyHexMesh the following are required [25]:

e Surface data files in STL format.

e A background hex mesh, which defines the extend of the computational domain and a
base level mesh density. This can be easily generated using another OpenFOAM utility
called blockMesh.

o A snappyHexMeshDict with appropriate entries which will define the properties of the
created mesh.

The utility automatically follows the instructions specified in the dictionary file and
handles the mesh generation, starting from the initial background hex mesh and repeat-
edly splitting the cells in the locality of the provided surfaces. Then, a cell removal stage
follows, where the cells in the regions that are not needed are removed (either the inner
or the outer region in relation to the surfaces) depending on the properties defined. Af-
terwards, a further refinement step follows, where the remaining cells (in the region of
interest) are further split in relation to one of the surfaces or an externally provided vol-
ume or surface. The mode of refinement is modifiable and the refinement step can happen
either inside, outside or at a specified distance from the volume/surface.

The next step is more sophisticated, and includes a surface "snapping" process. This
step handles cells that "cut" into the surfaces by removing a part of them or moving the
mesh in such a way that does not alter its edge/vertex features.

Finally, the last step is optional, and it provides the possibility to add additional layers
of hexahedral cells aligned to the boundary surfaces by shrinking the existing mesh from
the boundary and inserting layers of cells. This is a useful feature to make sure that we
have the proper "wall treatment" for the viscous sub-layers near the flow boundaries.

As seen in figure 3.1, multiple cell layers have been added in the viscous sub-layer near
both the outer walls and the tube, to guarantee a correct solution due to viscosity near the
boundaries. A further cell splitting step has been performed in a cylindrical area around
the housing tube in regards to the rest of the computational mesh, for better results.
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Figure 3.1: Computational mesh seen from a plane cut in the flow normal direction.

Figure 3.2: Computational mesh as seen from the outside.

3.2 Turbulence

The first thing that requires an evaluation is how the geometry is going to behave against
a developed turbulent flow, without considering any vibrations or added deformations
caused by the structural response. This will allow examination of the velocity and pressure
fields, assumptions about the cause of the behavior of the structural mesh and comparison
of the results to the experimental setup and a validation of the flow field. Finally, it will
provide data for the initial and boundary conditions of the various numerical fields in a
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developed flow. These data can be re-used, by means of a "mapping" technique, on the
second part of the study, that will include the FSI, as a way to accelerate the process.

Figure 3.3: Computational mesh as seen from the inside.

There are extensive methods to approach turbulence when working with OpenFOAM.

OpenFOAM has implemented available solvers for a high variety of situations, including

(DNS). This study is going to focus solely on high accuracy models (DNS and LES).

DNS is not computationally feasible (at least in the time frame of this project), since
this study examines a high turbulence flow field with Reynolds number Re > 10000 and

RANS models are not physically acceptable and are mostly used for engineering appli-
cations where the interest lies in the calculation of specific values and not on the flow
field itself. Thus, the best course of action is to use an LES model. OpenFOAM offers a

RANS, LES, DES (Detached Eddy Simulations) and even Direct Numerical Simulations

- Lilly SGS

which is an implementation of an
equation models like this, a Partial

including the common and oldest Smagorinsky
Differential Equation (PDE) is derived for the turbulent kinetic energy and the unknowns

model. For this study, the oneEqEddy model is used

eddy-viscosity model for the k-equation [16]. In one

high variety of LES models

fact that the one equation model is based solely on how the turbulent kinetic energy is
modeled , which comes with an equation for the transport of the turbulent kinetic energy

difference between the one equation model and the Smagorinsky - Lilly model lies in the
implemented.

(turbulent viscocity and conduction coefficient) are expressed as a function of the tur-
bulent kinetic energy, along with models for any additional unknown correlations. The

Turbulence with OpenFOAM
Setting up a simulation with OpenFOAM is pretty straightforward [26]. The software is

3.2.1
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are 3 common directories that are required to setup most (if not all) common OpenFOAM

terminal-based with the necessary files organized in entry files in a case directory. There
simulations. First, a 0 directory is required, that includes entry-files for all scalar and



vector fields necessary for the computations containing boundary conditions for all the
boundary surfaces and initial conditions for the inner domain. Next, a constant directory
is required that includes necessary files with properties that remain constant throughout
the simulation, like transport properties, the computational mesh etc. Finally, a system
folder should be present that includes files with information about the schemes and solu-
tions used in the simulation, as well as dictionaries for additional utilities that indirectly
influence the case and a controlDict dictionary file that includes all the basic user defined
controls needed, like the time step, the output interval, the data write format etc. Almost
all solvers in OpenFOAM are based on the Finite Volume (FV) method. The solver used
in this study for turbulence is the pisoFoam solver. PisoFoam is a transient solver for in-
compressible flow, including generic turbulence modelling and using the PISO algorithm
(Pressure Implicit with Splitting of Operator) for solving the Navier-Stokes equations [8].

Start

!

Step 1: Predict pressure and
welogity field components

l

Stop 2 Sobve discretized 3 Step 3: Selve prossure
mamentum equation correction equation

l

Step 4: Correct pressure amd
velocities

l

Step 5: Solve all other
discretized ransport
equations

l

End

Figure 3.4: PISO algorithm flow chart.

This algorithm was proposed by Issa in 1986 without iterations and with large time
steps and less computing effort [27]. It is designed to work as seen on the flowchart of
figure 3.4. It is a pressure-velocity calculation procedure for the Navier-Stokes equations.

28



PISO involves one predictor step (step 1 - see figure) and two corrector steps for 2nd
order accuracy (step 4 - see figure) and is designed to satisfy mass conservation using
predictor-corrector steps.

Next, we have to consider the boundary conditions. We need to define a boundary
condition for every boundary surface of the geometry that we want to differentiate in
some way from the rest. Thus, we need separate boundary conditions for the inlet, outlet
and one the rest of the walls. For this case, the boundary conditions have been set as
follows.

For the velocity:

e First, a constant velocity flow rate has been set at the bottom surface of the geometry,
named inlet. The experimental setup had provided measurements for 5,10 and 15 m> /s.
For validation purposes and simplification only the case of 10 m> /s has been simulated.
This boundary condition is called flowRatelnletVelocity in OpenFOAM.

e An inlet/outlet boundary condition has been defined for the velocity of the top sur-
face of the geometry, named outlet, which specifies free flow at this surface, allowing
negative flow rate (and thus backtrack of flow through this surface).

e The rest of the boundaries (walls) have been fixed at a constant velocity of zero.

For the pressure and turbulent kinetic energy:

e A zeroGradient boundary condition has been specified for the pressure for all boundary
surfaces. This is the equivalent of a Neumann boundary condition in OpenFOAM. An
exception is the outlet boundary surface that has been fixed at a zero total pressure, to
act as a reference for the total pressure in the computational domain.

e Additionally, a fixed value of 0.4 m? /s> has been set for the kinetic turbulent energy
at the inlet. This is a reference approximate value, that has been roughly calculated
from the mechanical properties of the geometry to help the kinetic energy stabilize to
its final value faster and has no physical meaning.

e All other fixed values are set to zero.

All the boundary condition information have been summarized in table 3.1. A kine-
matic viscosity value of 10> m? /s has been specified for the whole computational do-
main as a fluid property in the constant directory as well as a variable that specifies that
the transport model is Newtonian and the necessary constant variables for the turbulence
model. Additionally, the computational schemes have been assigned in the fvSchemes file
in the system directory to appropriate schemes. A backward first order scheme has been
chosen for the d/dt discretization and a Gauss general linear method for the divergence,
gradient and laplacian discretizations. Finally, a sufficiently small time step (107>) has
been defined in the control dictionary, in order for the Courant-Friedrichs-Lewy (CFL)
condition to be satisfied throughout the computational domain during the simulation. This
is a necessary mathematical condition in order for convergence to be guaranteed when
solving certain partial differential equations (PDE).

The solver has been set to run and collect data at a fixed interval of 1 second, for
3 separate cases with varying mesh size. The first one had a low refinement rate with
a computational mesh of approximately 1,5 million cells, the second case had a higher
refinement rate with 7 million cells and the last one had an extremely accurate mesh of
20 million cells. A spectral analysis has been performed on all 3 separate cases, in order
to examine how the size of the computational mesh affects the results.
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Quantity Inlet Outlet Walls

U flowRatelnletVelocity inletOutlet fixedValue
p zeroGradient totalPressure  zeroGradient
k fixedValue inletOutlet fixedValue
nuSgs zeroGradient zeroGradient zeroGradient

Table 3.1: Boundary condition specification for the turbulence study.

3.3 Sampling

The next thing that requires a consideration is the strategy used to sample data during
the simulations. The strategy used needs to be adjusted to match the experimental data
collected in order to have the ability to perform a validation of the simulation against the
experiment afterwards. Thus, knowledge of the existing experimental sampling strategy
is required.

3.3.1 Experimental setup sampling

The main numerical fields of interest are velocity and pressure in this kind of simula-
tions. For pressure measurements, pressure transducers have been placed in the narrow
flow path between the tube and the plates forming the corners of the fuel bundles. The
differential pressure transducers have a range of 100 mbar, an uncertainty of + 0.5%
FSO (Full Scale Output) (corresponding to 0.5 mbar) and a response time of < 5 ms. The
transducers are coupled to a common pressure tap with a valve, at the level of the transient
pressure measurements. The valve is kept open until the flow rate and static pressure is
stabilized and then closed while the measurements are made. This way, it is made possible
to use sensitive differential pressure transducers like this although the ambient pressure
at some points was way too high for their physical tolerance. The sampling rate was at
a rate of 1 kHz. Velocity on the other hand was measured using electromagnetic mass
flow measurements. The water flow rate is between 0 and 15 /s which corresponds to
a bulk velocity of approximately 0-15 m/s in the testing section. Multiple measurement
locations have been chosen throughout the geometry for pressure, at the same position
described but at different heights throughout the flow channel. The height positions cho-
sen were at 100, 500, 900 and 1300 mm from the beginning of the flow channel, as shown
in figure 3.5 [1].

3.3.2 Sampling with OpenFOAM

Sampling in OpenFOAM can be done in various ways [8]. Important vector and scalar
fields that are calculated during run-time and are required on the next time step, are writ-
ten out at regular time intervals during the simulation, specified by the user in the control
properties. This category includes fields like velocity, pressure, turbulent kinetic energy
and sub-grid scale viscosity, for a turbulence simulation like this case. However, fields
that are not calculated by default during run-time have to be explicitly specified to be cal-
culated and written out. OpenFOAM provides the possibility for a large scale of optional
field calculations. Some of them can be calculated after the end of the simulation, from
other fields (already calculated during runtime) with utility functions created for this pur-
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Figure 3.5: Location of pressure transducers for pressure measurements in experimental setup.

pose. For example, the field «’ can be approximately calculated from the turbulent kinetic
energy as 1/ 2k/3. Others can be marked for calculation by the user with external function
objects, located in the control dictionary file. Possible sampling methods include:

e Surface sampling, providing different field values on the cells adjacent to boundary
surfaces

e Probe sampling, where probes are placed at specified locations throughout the com-
putational domain and fields of choice are calculated and written out in data files for
specified intervals

e Field averaging, where mean and fluctuating values are calculated for specified fields.

Our interest lies in the last two methods. Probes can be set in various locations to
calculate the velocity and pressure there, as well as at the corner of the fuel bundles
where the experimental measurements took place, so that proper comparison can take
place between the two cases. Also root mean squared (RMS) and prime values for the
velocity and pressure are of interest, thus a field averaging function will be specified as
well for these two fields.

3.3.3 Field Averages

Field averages are of interest along lines, contours or volumes within the computational
domain rather than on specific points. For easier analysis, specific lines at multiple heights
throughout the flow channel have been chosen for calculation and plotting of the velocity
and pressure average values. These lines can be seen on the figure 3.6 and measurements
have been taken at the same heights as the transient pressure measurements of the exper-
imental setup.

3.3.4 Probe sampling

Probe sampling is important for obtaining time data series, specifically velocity and pres-
sure, at specific points, which are necessary for spectral analysis of the results. Having
measurements at a constant sampling rate throughout the duration of the simulation, the
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Figure 3.6: Line locations for RMS and variance plotting.

possibility to transform the data to the frequency domain, by use of Fourier transforms,
arises and obtain Power Spectral Density (PSD) plots that allow examination of vibration
frequencies inside the flow channel and give further insight about the circumstances under
which those FIV occur. Probe locations are shown with red dots in figure 3.7 for a specific
height and have been placed in the same manner with other monitoring locations at mul-
tiple heights, coinciding with the heights at which the transient pressure measurements
have been taken for the experimental setup. Of course, the way the data are sampled for
the velocity that is a vector field, it is possible to only analyze the spectrum of one of the
three vector components at a time, so seperate frequency spectrums for each direction.
Pressure, however, is a scalar field defining the whole control volume in all directions,
making it able to visualize the frequency spectrum for it in one representation. The sam-
pling happens at every time step ¢, thus there is a sampling rate (frequency) of f; = 1/1,,
which represents half of the maximum possible frequency value our analysis is sensitive
to (considering the symmetry of the Fourier space). A high enough sampling frequency
(low time step) is required in order to be able to get an acceptable frequency range. In
these cases, a time step in the order of 10~ has been taken thus a sampling frequency in
the range of 10 to 100 kHz is obtained.
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Figure 3.7: Locations of probes inside the computational domain for sampling of time-series.

3.4 Fluid Structure Interaction

The next step involves creating a structural mesh for the deformable domain of the geom-
etry, namely the housing tube in the center of the computational domain. This will allow
the activation of the FSI on the interface between the two meshes.

3.4.1  FSI with OpenFOAM

Fluid-Structure Interaction in foam-extend is implemented with a partitioned approach, in
the form of black-box fluid and structural solvers that are coupled on the fluid-structure
interface. Two separate solvers are used, one for each domain and then a General Grid
Interface (GGI) interpolation technique is used between the two solvers to map the shared
interface to each other and handle the dynamic mesh motion [18]. GGI is used to couple
interfaces in the computational domain where the nodes on each side of the interface do
not match exactly for every moment during the simulation. This is a result of the mesh
motion and weight factors are used to decide how much information should be transferred
from one side of the interface to the other.

Two FSI solvers included in the latest foam-extend-3.1 version have been tested, one
of them being the older icoFsiNonElasticLinULSolidFoam that came with the release of
the software and the other one of them being offered externally in an additional package
called extend-bazaar and named fsiFoam. The second solver was chosen in the end for
obtaining the final results of this study. It is more advanced, being the predecessor of the
older one and had higher functionality, including pre-implemented turbulence modeling
for the fluid domain, in the form of a solver based on the pisoFoam solver of the standard
OpenFoam release. A general algorithm for fsiFoam is underlined in figure 3.8.

The first course of action is generating the structural mesh required for the FSI simu-
lation. This can be achieved in OpenFOAM by use of an utility tool called extrudeMesh.
What this tool does is to extrude the mesh in a specified fashion (linearly in the surface
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Figure 3.8: FsiFoam algorithm flow chart.

normal direction, linearly in a specified direction, radially etc) from a specified surface
patch. By using this tool on the existing fluid mesh and extruding linearly inwards for
a specified length for the tube patch, a cylindrical mesh can be created that conforms
perfectly on the existing fluid mesh and thus on the fluid-structure interface and can be
used as a structural mesh for the FSI simulation. Having a perfectly conformal mesh is
a really nice property, since we are dealing with an unstructured mesh and it is normally
impossible to create a perfectly conformal structural mesh in such a case. The extrusion
was specified to happen for 0.6mm since that’s the actual thickness of the test tube in
the experimental setup, with a minimum of three layers of cells created to ensure correct
motion in all three dimensions.

Having created the structural mesh, the next step requires to set the case folder for the
simulation. Two separate folders are required inside the original case folder, named fluid
and solid for the two meshes respectively, as the name suggests. Both folders require all
the files and folders a normal simulation would need, like two separate cases. Addition-
ally, a few extra property files are required in the fluid domain, that contain the necessary
information the mesh motion algorithm and FSI need. Additionally, the faces that belong
to the fluid-structure interface need to be explicitly specified for both meshes, so that the
GGI utility knows which cell faces to try to interpolate and to where. This is possible
with the use of an additional utility tool, called setSet, which allows the massive selec-
tion, manipulation and handling of surfaces, cells and points within the computational
domain.

For the mesh motion, a dynamic mesh motion solver for a finite volume mesh has
been used. The solver is called velocityLaplacian and the way it works is to calculate the
displacement of the points in the computational mesh with velocity specified as the initial
and boundary condition of the laplacian equation. The diffusivity model is specified to
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Fluid Mesh

Quantity Inlet Outlet Tube Walls
U flowRatelnletVelocity  inletOutlet movingWallBC fixedValue
p zeroGradient totalPressure  extrapolatedPressure  zeroGradient
k fixedValue inletOutlet fixedValue fixedValue
nuSgs zeroGradient zeroGradient zeroGradient zeroGradient

Table 3.2: Fluid mesh boundary conditions for FSI simulation.

calculate the "stiffness" of the mesh to the motion solver based on the inverse distance
from the fluid-structure interface. This means that the further you get from the interface,
the weaker the coupling becomes, in order to be able to provide a physically correct
motion. Both Aitkens under-relaxation and IQN-ILS coupling have been tested, with the
latter providing better results as convergence is achieved in fewer outer correction steps.

Finally, additional properties had to be modified compared to the turbulent case due
to the FSI both for optimization and correctness. Specifically, the boundary conditions
had to be modified. The boundary patch corresponding to the housing tube have to be
separately explained from the rest of the wall boundaries, and split in 3 different patches.
For the solid domain:

e The bottom and top edges of the cylindrical structure had to be cut off the rest of it and
the correct boundary conditions had to be defined. The bottom patch, named tube-inlet
had to be fixed in place, using a fixedDisplacent velocity value of zero.

e The top patch, named tube-outlet, on the other hand, had to be "pinned", a boundary
condition which approximately has the same behavior as if a spring kept it attached to
the core grid. This is achieved with an implemented in foam-extend boundary condi-
tion called fixedNormalDisplacement, and set initially to zero as well. This will allow
vibration on the face normal direction of the top patch but confined by the flow field.

e Finally the rest of the tube had to be set as tractionDisplacement which calculates the
displacement of the cells based on the traction force due to the pressure and velocity
of the flow field on the cells adjacent to the tube.

For the flow domain:

e The pressure field for the patches corresponding to the tube had to be changed from
zeroGradient which corresponds to an inner extrapolation of the fluid field to extrapo-
latedPressure which corresponds to a boundary condition that performs both an inner
extrapolation of the flow field and an outer calculation depending on the values of the
solid field calculation, depending on the step of the calculation.

e Additionally, the velocity field for the free part of the tube had to be switched to mov-
ingWallBC which corresponds to the boundary condition for a patch that is allowed to
move freely based on the traction force on it.

The boundary conditions explained in detailed above are summarized in tables 3.2 and
3.3.

3.4.2 Fundamental frequencies of structural domain

The fundamental frequency of a beam with uniformly distributed mass, fyo, [28] [24] is
given by equation 3.1
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Solid Mesh

Quantity Tube-inlet Tube-outlet Tube-moving
DD fixedDisplacement fixedNormalDisplacement tractionDisplacementIncrement
pointDD fixedDisplacement calculated calculated

Table 3.3: Solid mesh boundary conditions for FSI simulation.

1 K, |EI
2 == (3.1)

fs0= Eﬁ Ds

where E is Young’s modulus, L is the tube length, 7 is the area moment of inertia and p;
is the mass density (mass/length). K, is a constant depending on the boundary conditions
of the beam. They can be calculated by solving the eigenvalue problem for the differential
equation for the bending of a slender beam. For "fixed-free" and "fixed-pinned" boundary
conditions this constant is K; = 3.5156 and K; = 15.418 respectively. These boundary
conditions are those used for the simulations, meaning that the bottom end of the beam
will always be fixed on the grid in its initial position while the top end will either be
"free", meaning it is free to move in any direction, or "pinned", meaning it is restricted in
the x and y directions but it is allowed to vibrate in the z direction, as if supported by a
spring, which is the actual physical behavior that this study wants to represent. The ex-
periment itself involved a pinned top boundary condition, which will be the main interest
of this study. The area moment of inertia for a thin wall tube is I = 7 /4(r? )

uter — "inner
With 7yyzer jinner the outer and inner radius respectively. Using a stainless steel tube with

8mm diameter and 0.6mm wall thickness, E = 197GPa, p = 7863kg/m3, ps =0.11kg/m
and L = 1.486m, a fundamental frequency for the "fixed-pinned" boundary conditions of
14.6Hz for air flow and 10.1Hz for water flow 1s obtained. This is calculated experimen-
tally by measurements when the tube is bent and then released and left to vibrate freely
in its natural frequencies. Then the rest of the natural frequencies of the tube can be cal-
culated by using the K, ratio and the correlation equation between the natural modes of
the beam

Ky
fs :fSOE (3.2)

Using the analytical values for the K,, constants, the natural frequencies of the tube are
summarized in table 3.4 for the first 6 natural modes in both air and water flow. Note that
even though the data for air flow are provided and there exist experimental data for such
a flow, in the FSI simulation only water flow have been taken into account.
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mode K, K, ratio  frequency(air)(Hz) frequency(water)(Hz)

Ist 154 - 14.6 10.1

2nd 50  3.246753 47.4026 32.79221
3rd 104 2.08 98.5974 68.20779
4th 178 1.711538 168.7532 116.7403
5th 272 1.52809  257.8701 178.3896
6th 385 1.415441 365 252.5

Table 3.4: Table of the natural frequencies of the housing tube in air and water flow.






4. Results & Discussion

In this section, the results obtained from this study are presented and explained. For the
turbulence study, three computational meshes of different resolution have been tested,
one with 1.5 million cells, a second one with (approximately) 8 million cells and an ex-
tremely fine mesh with 20 million cells. Time data series have been obtained from probe
sampling as explained in chapter 3. These data are going to be used to obtain frequency
spectra of the velocity and pressure fields and compare with the analytical expressions
of the tubes’ natural frequencies [29], in order to find some correlation between them
that will suggest the existence of sub-critical vibrations, flow-periodicity resonance be-
tween the turbulent vibration frequencies and the natural frequencies of the tube or fluid
instabilities, leading to FIV [30] [3] [7]. For the FSI simulation, only one computational
mesh with approximately 4.2 million cells for the fluid and 250 thousand cells for the
solid has been examined. Other computational data and validation methods are going to
be presented and explained. Finally, the HPC capabilities of the software is going to be
examined.

4.1 Turbulence

A representation of the magnitude of the velocity field on a vertical cut in the direction
of the flow inside the computational domain can be seen on figure 4.1. The turbulence
is clearly visible near the outlet, where the flow had developed after passing through
the narrow flow channel between the housing tube and the fuel bundles. The edges of
this narrow flow channel are clearly visible as well where the switch from low to high
velocity and reversed is located. Furthermore velocity flow harmonic perturbations can
be observed around the tube’s surface, which hint the possibility of turbulence buffeting
as a cause for the FIV.

In figure 4.2 a plot of the mean, variance and instantaneous velocity at the time of the
ending of the simulation (after 1 second of real time) across a line parallel to the z axis and
in the middle between two fuel bundles and between the tube and the boundary surface
can be seen. The turbulence is clearly observed by the oscillation of the magnitude of the
velocity about the mean velocity value.

41.1 RMS values and variances

For this part, data were plotted for velocity and pressure across specific lines, as explained
in chapter 3. In figures 4.3 the velocity magnitude can be seen, along with its mean value
and variance profile across all 5 different lines for the same height along the housing tube,
at 900 mm from its base. Since there is a bounded channel flow, its effects can be clearly
seen in the plots [15]. For the first few millimeters, the law of the wall holds, as formulated
by Prandtl in 1925. According to this law, very close to the wall, there is an inner layer
in which the mean velocity profile is determined only by the viscous scales, independent
of the channel width or the bulk velocity of the channel flow. Thus, the dimensionless
velocity:

==Yz (4.1)

Uy
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Figure 4.1: Magnitude of the velocity inside the computational domain after 1 second of simula-
tion.
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Figure 4.2: Velocity profile in flow direction after 1 second of simulation

where < U > is the mean velocity and u; is the friction velocity near the wall, is depen-
dent only on the distance from the wall, measured in viscous lengths (or wall units) and
denoted by:
+_ Wy
o
where y is the channel width and v the kinematic viscosity. For high Reynolds numbers,
the outer part of the inner layer corresponds to high y* values, where it can be supposed

4.2)
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that viscosity has little effect and the velocity profile develops a logarithmic relation with
the distance from the wall, referred to as the logarithmic law of the wall, or simply the
log law and the region is referred to as the outer layer. In mathematical form, this can be
expressed as:

1
ut = %lner +B (4.3)

where B is a constant and k is the von Karman constant.

In the region between these two laws, there exists a smaller layer called the buffer
layer, which is a transition region between the viscosity and turbulent-dominated parts of
the flow. These three regions can be clearly distinguished in the plots on both sides due
to the closed channel flow.
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Figure 4.3: Plots over lines for velocity magnitude, mean and variance for channel flow at 900mm
height. The plots represent lines 1 to 5 from top to bottom in the same order.
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On line 1, it can be seen that the flow space is restricted enough so that the outer layer
is not observable. Lines 2 to 4 exhibit all three layers while line 5 has enough space away
from the wall that the buffer layer is "smoothed" out and is not immediately visible.

4.1.2 Spectral Analysis

Next, the behavior of the simulations data values is going be to examined in the fre-
quency domain. In figures 4.4 the velocity spectra can be seen for the x component of the
turbulent velocity at a height of 900mm inside the computational domain for all 3 com-
putational meshes and all different probe locations, as explained in chapter 3. The first
plot corresponds to the probe on the corner of the fuel bundles, the second is opposite of
the first, next to the housing tube, the third belongs to the probe next to the tube, on the
level of the flow channel and the rest are in the middle of one branch of the flow channel,
at increasing distance from the housing tube, the last one being close to the edge of the
geometry at the maximum possible distance from the tube.
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Figure 4.4: Frequency spectra for turbulent velocity’s x component for all probes and all compu-
tational meshes at a height of 500mm.
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It can be seen that there is some correspondence between the turbulent velocity’s fre-
quencies and the natural frequencies of the tube, especially on higher (4th and higher)
modes for the smaller meshes and the 1st mode away from the narrow flow channel be-
tween the tube and the fuel rods. Meanwhile on the high resolution mesh, the turbulent
effects are strongly detailed, making it harder to recognize the real peaks in the graphs,
but it can be said that there is some characteristic peak in all graphs in the 10Hz region,
corresponding to the 1st natural mode, which is the dominating mode on turbulent buffet-
ing. Therefore, it is plausible that FIV due to turbulent buffeting takes place, considering
the fact that as it can be seen on figure 4.1 there exist mean velocity flow perturbations,
which is the required criterion for such vibrations to take place. The data do not show
some characteristic behavior to conclude with certainty that this is the case or the flow -
periodicity resonance is present.

Still, fluid-elastic instabilities also appear to be a possibility, since the dimensionless
velocity u™ along the tube’s surface appears to be higher than the suggested threshold of
1.5 required for such FIV [3]. The calculations that took place followed Karman’s law
of the wall 4.3, according to which you can obtain an approximation for the dimension-
less flow velocity u™ by using the dimensionless wall distance y* which was calculated
to be around 0.55 for the turbulent case and von Karman’s constant k which is univer-
sally accepted to have a value of 0.4 and C™ is a positive constant which has a value
of approximately 5 for smooth walls. Using these equations and the data produced by
the simulation, a dimensionless velocity of at least u™ ~ 4 was calculated which is high
enough for fluid instabilities to be present.

The figures were taken at the height of 500mm, corresponding to a nodal (normal-
ized) position of X,, = 500/1486 = 0.336. The nodal positions can be calculated from the
differential equation for the bending of a slender beam, following the same idea as the
calculation of the natural frequencies and then solving for the equations for the eigen-
functions to be equal to zero, to find the nodal positions. By doing that, it can be seen
that our calculations are near the 3rd and 6th nodal positions, meaning we will see less
response from those modes on the frequency spectra.

The y component spectra are irrelevant for these probe location, because they were
all placed in a branch of the flow channel, spanning across the x direction, giving no
relevant and significant vibrations along the y axis. Finally, a logarithmic plot showing
the energy spectrum over wavenumber can be seen on figure 4.5. The turbulent layers
can be observed here as well, especially the logarithmic k—5/3 which can be seen as a
declining linear relation in the logarithmic plot.

4.1.3 Matrix solver performance

Optimizing included all the available tools at our disposal, mainly controlling the matrix
solvers and schemes used for the computations. It was quickly shown that the choice of
computational schemes for the different operations made little to no difference, leaving
most of the optimization to an examination of the parallel behavior of the different matrix
solvers available.

The available matrix solvers included the popular, current state of the art GAMG,
or generalised geometric-algebraic multi-grid solver, the preconditioned (bi-) conjugate
gradient solver (PCG or PBiCG) for symmetric and asymmetric matrices respectively, as
well as a smooth (using a smoother) and diagonal solvers. Each solver is generalized with
the ability to have preconditioner and/or a smoother for each solver. The preconditioners
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Figure 4.5: Energy spectrum, calculated from the turbulent velocity on logarithmic axis over
wavenumber.

include the diagonal incomplete-Cholesky (DIC) and diagonal incomplete LU (DILU),
and a GAMG preconditioner. The smoothers include DIC, DILU and Gauss-Seidel; vari-
ants of DIC and DILU exist with additional Gauss-Seidel smoothing.

After a little profiling, it became obvious that the heavy computation part was the solu-
tion of the pressure equations but the velocity and kinetic energy computation appeared
important as well. To show how these solvers behave in general with an increased number
of computational resources, various tests have been performed for the turbulent case and
the results are presented in table 4.1. The names of the solvers are always listed in pairs,
the first corresponding to the pressure equations and the second one to the velocity and
kinetic energy equations.

It can be understood from this table that even though the GAMG solver is often the
optimal choice, for serial applications or small parallel solutions, for larger systems it
immediately became apparent that the conjugate gradient solvers are much more efficient
and scale much better. The smooth solver for the velocity scales also quite well, and has
provided better results than other solvers, as it has been shown from the turbulence study.
It is, however, quite unstable when applied to the pressure equations and thus not a good
choice for them. It appears from these results that the optimal choice, after all, is always
the multi-grid solver considering that even with worse scaling the time required for the
fastest execution time in all solver pairs is comparable, making the more accurate and
less resource-hungry multi-grid solver the matrix solver of choice, often coupled with a
simple iterative smooth solver from the velocity and kinetic energy.

The results summarized in tables 4.1 and 4.2 can been seen in graphical form on figure
4.6 for cells per core, instead of the number of cores. For each solver pair, it can be
seen that there is a characteristic point of cells/core below which the solver stops scaling
with increasing number of cores but actually becomes slower. A special setting for the
multi-grid solver, which allows for processor agglomeration for the coarsest levels, thus
allowing the coarsest grids to be solved directly or iteratively on the master processor only
and then distributed to the rest of the processors, supposedly limiting communications
and improving performance. For our case, however, it immediately becomes apparent
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cores GAMG+smooth GAMG+GAMG GAMG+smooth(p.Aggl) GAMG+GAMG(p.Aggl)

32 346 351 344 353

64 162 168 164 168
128 78 81 83 85
256 52 47 62 63
320 42 44 51 55
384 44 52 92 100
448 42 48 88 94
512 42 46 84 90
640 73 80 91 99
768 106 81 255 269
1024 180 191 455 467
1152 270 222 556 565
1280 244 296 1652 1679

Table 4.1: Table of time (in seconds) required for 100 steps of a developed flow in the turbulence
case for different matrix solvers.Solvers are in pairs of pressure-velocity/kinetic energy.

that this choice has comparable results on fewer processors but immediately becomes
slower, as the scaling increases. This is mainly becomes the geometry studied is simple
and can be easily distributed to processors by cutting it in very thin slices along the tube’s
axis, making communication less important than calculation and processor agglomeration
pointless. These results have been omitted on the graphical representation since they were
not of much interest after all.

4.2 FSI simulation

The final step of this chapter, examines the results obtained from the FSI enabled sim-
ulation. Making this setup work was more challenging than expected, mainly because
of issues with the software. Foam-extend, being a community-driven software had many
minor errors and was lacking proper documentation. After a little work, a running sim-
ulation was able to be created. It was concluded though, that despite the fact that it is
a nice initiative, with perspective and many possibilities, foam-extend is not ready yet
for high performance computing simulations. It lacked severely in the parallelization and
optimization part, struggling to find a balance in performance between the two solvers,
and achieving a realizable in terms of time-consumption result. It is quite possible that
the geometry of this study was not perfect for the solvers available, so as to not be un-
fair against the software and it might work better for different kind of geometries. The
main issue was finding a way to make the simulation realizable in the limited time win-
dow available for the work of this project. Even with all the resources available, getting
the proper results was calculated to require a whole 2 months of constant computations
for a detailed computational mesh. After applying all the possible optimizations at our
disposal and limiting the computational mesh to a medium resolution one, a realizable
computation time of approximately 20 days for 1 second of simulation time was able to
be achieved.
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cores PCG+smooth PCG+PBiCG

32 1602 1512
64 634 750
128 260 273
256 95 121
320 73 85
384 64 74
448 52 61
512 42 53
576 43 52
768 37 45
1024 29 33
1152 37 36
1280 35 28
1536 31 29

Table 4.2: Table of time (in seconds) required for 100 steps of a developed flow in the turbulence
case for different matrix solvers.Solvers are in pairs of pressure-velocity/kinetic energy.
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Figure 4.6: Time over cells/core for different matrix solvers.
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421 Performance

Although, as it can be seen, we can highly improve the computation time required for the
turbulent case simply by choosing the correct matrix solver, things are not so straightfor-
ward with the FSI case. The problem is the imbalance between the size of the fluid and
structural meshes. A size of approximately 4.2 million cells for the fluid mesh is quite
big, compared to the roughly 250 thousand cells of the structural mesh. Due to the form
of the solvers, both meshes need to be split in an equal number of pieces, before dis-
tributed to the different cores. This creates the problem that although the fluid mesh can
scale to quite a lot cores (the PCG solver scales down to approximately 5580 cells/core),
for the same amount of cores the structural mesh will have approximately 300 cells/core.
Therefore, with increasing number of cores the computational time does not only stop
scaling, but it actually becomes increasingly slower, making it necessary to find a balance
between the two meshes.

After some testing, it has been shown that the best results are on 160 cores (5 nodes)
with approximately 26000 cells/core for the fluid mesh and 1500-1600 cells/core for the
structural mesh. These results have been taken with the multigrid solver, since the con-
jugate gradient solver appears to be slower and more inaccurate, leading to instabilities,
making it inefficient for FSI simulations. This is far from a perfect solution, but it is a
better compromise, to make it possible to carry out the computations in a feasible time
window.

Furthermore, choosing the optimal time step can be an issue in this situation. Choosing
a high enough time step can cause instability due to the CFL condition being violated. On
the other hand, a too low time step can cause issues as well due to the so called artificial
mass effect [20], which can induce unphysical pressure oscillations beneath the movable
part of the structure with decreasing time step size, which are accepted as a valid solution,
but could lead to faulty structural displacements and due to the limited space available for
the movement of the tube, render the solver incapable to continue working. The perfect
balance for this situation appeared to be a timestep of 2x10~> seconds.

A simple profiling function was compiled into the source files of the solver and allowed
to run for a complete program loop of approximately 100 steps, which is the time required
for 1 write and 1 interpolation update, in order to understand how the time spent was
distributed along the program’s processes. The data are summarized in table 4.3.

It can be seen from table 4.3 that the time required for solving the fluid equations,
which uses actually the same solver as the previously examined turbulent case, requires
only approximately 20% of the total main loop. We can realize that the biggest bottlenecks
in our simulation’s efficiency is the mesh movement (fluid mesh + displacement update)
as well as the stress solver, each of which takes up over 30% of the total simulation time.

4.2.2 Mesh Displacement

A minor mistake, which was discovered late, made it necessary to restart the process
since it produced unnatural behavior which caused the computational mesh to distort ex-
cessively and non-orthogonality issues to appear and cause the simulation to stall. Thus
the results were taken from a second run which was allowed to develop for approximately
half a second, with a sampling rate of 20 us which was deemed sufficient for a complete
and proper analysis. On figure 4.7 the displacement on a surface vertical to the flow nor-
mal direction can be seen which underlines the fact that the amplitude of the vibrations is
extremely small, however significant when it comes to quality assurance. Another inter-
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Process Time

Main Loop 4438.9 sec
Data initialization 0.0351438 (%)
Interpolation update  3.0494 (%)
Displacement update 11.4197 (%)
Fluid mesh update 22.9352 (%)

Flow solver 19.7578 (%)
Force update 8.56113 (%)
Stress (solid) solver ~ 32.2219 (%)
Residual update 1.96332 (%)
Write data 0.056095 (%)

Table 4.3: Profiling data for a complete loop of the FSI case (100 steps).

esting effect, as shown in figure 4.8 is the vibration of the tube in the flow direction, due
to the pinned upper boundary condition, which shows a high frequency declining forced
vibration which appears in bursts at fixed intervals and increasingly further of the tube
which could suggest that the rod is either bending or is being compressed along the flow
direction, with the former being a more logical explanation and reinforcing the evidence
pointing to FIV due to fluttering/bending from high velocity flow along with a later exam-
ination of the history data of the probe locations on the computational grid that showed
that the tube was, indeed, bent at a height of approximately 950mm, which is normalized
to 950/1486 = 0.6393 which is extremely close to the 3rd and 5th modes of the tube. An
examination of possible ways to decrease these effects is necessary in such a work. Possi-
ble solutions are decreasing the flow velocity or increasing the rigidity of the tube. In case
both of these are impossible, increasing the tension of the tube on the downstream end or
increasing the tube’s length have both been proposed as valid reasons for decreasing the
effect of fluttering/bending [31].

4.2.3 Spectral Analysis

Similar to the turbulent case, an analysis of the computational data in the frequency do-
main has been performed. In this case, the velocity data of the structural mesh have been
examined instead, in order to see their correspondence with the experimental data which
involved the point velocity on the structural domain. On figures 4.9 through 4.13 plots
of the superimposed frequency data at a point on the tube near its edge and at different
heights, specifically at 350mm, 550mm, 750mm, 950mm and 1150mm from the bottom
end of the tube can be seen for the x and y velocities.

The spectra differ from each other due to the fact that each data collection point is
close to a different nodal position(s) of the natural frequencies of the tube, thus seeing
less response from said frequency in the respective spectrum. As explained earlier in
the spectral analysis of the turbulent case that is similar to this one, we can pinpoint
an approximate correspondence between the peaks in the graphs and the theoretically
calculated natural frequencies of the housing tube with total or partial absence of the
frequencies whose nodal positions are close to the point where the data are collected.
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Figure 4.7: Displacement of a point on the structural mesh in a surface vertical to the flow normal
direction.
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Figure 4.8: Displacement of a point on the structural mesh over time in the flow normal direction.
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Additionally, on figure 4.14 a spectrum for the tube’s x axis movement for a stationary
boundary point of the tube at a height of 950mm and on figure 4.15 the spectrum of the
pressure along the x-axis on the tube’s surface can be observed.

Finally, on figure 4.16 we can observe the spectra obtained from the experimental setup
for different inlet mass flows (the 10 kg/m> mass flow used in the simulation is repre-
sented by the red line) and different data sets, including velocity, position, acceleration
etc. The data were collected at a height of 900mm from the core’s grid base so the velocity
data should be close with the velocity frequency spectrum calculated from the simulation
at a height of 950mm. The data represented here are restrict to the x-axis only. From the
data collected and presented, we can deem the attempt for a successful simulation of the
wanted geometry as successful, considering the close resemblance of the experimental
and the calculated results.
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Figure 4.9: Spectrum of the housing tube’s x and y velocities at a height of 350mm.
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Figure 4.10: Spectrum of the housing tube’s x and y velocities at a height of 550mm.
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Figure 4.11: Spectrum of the housing tube’s x and y velocities at a height of 750mm.
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Figure 4.12: Spectrum of the housing tube’s x and y velocities at a height of 950mm.
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Figure 4.13: Spectrum of the housing tube’s x and y velocities at a height of 1150mm.
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Figure 4.14: Spectrum of the housing tube’s x axis displacement at a height of 950mm.
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Figure 4.15: Spectrum of the pressure along the tube’s surface for the x component.
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Figure 4.16: Frequency spectra for experimental setup (provided by the project’s supervisor[1])
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5. Future work & Conclusion

This thesis work presented a validation of an industrial application and experiment with
the use of open-source CFD package OpenFOAM.

Specifically an axial flow induced vibration model was proposed for a rod fixed on the
grid at the lower end and supported by a spring (pinned) on the upper end. The natural
frequencies and bending modes of the tube were calculated by solving the eigen-problem
for a fixed-pinned beam. The vibrations were calculated through the simulation for a
rod with a length of 1486 mm subjected to a flow mass rate of 10 kg/m> as well as the
corresponding turbulent model, for varying flow mass rates.

Additionally, this work was designed to act as a benchmark for similar applications
in regards to the geometry, solver or the CFD software OpenFOAM. The Fluid-Structure
Interaction solver FsiFoam was used, along with the PISOFoam solver for the turbulent
case. FsiFoam contains a specialized form of the PISOFoam solver for the fluid domain
along with the FVM stressFoam for the solid domain.

The validation of the experimental setup involved:

e Statistical representation of the results.

e Spectral analysis of both the turbulent and FSI simulations.

e Performance investigation for the matrix solvers, numerical schemes, mesh motion
handling and other less significant aspects of the simulations.

A reproduction of the experimental data in terms of the amplitude of the FIV as well as
the frequency content of said vibrations was achieved for the FSI simulation, proving the
capability of the CFD package OpenFOAM to provide correct and accurate coupled fluid
and structural simulations. The investigation of the turbulent case for the cause of the
FIV was not as successful. Only partial correspondence to the tube’s natural frequencies
were present and only on the first and higher than 4th modes, suggesting that the FIV
should not have been caused by flow periodical resonance. However, the possibility for
turbulent-buffeting, which is one of the main expected reasons for such vibrations [7],
is present. However the calculated dimensionless velocity appeared to be high enough
which suggested the existence of flow-instabilities like buckling and fluttering due to the
turbulent flow. A future work could search and examine other possible excitation sources
although the most widely accepted causes have already been examined. An examination
of possible ways to decrease these issues would also be useful.

A slight error in the experimental setup was discovered later, causing a misjudge in the
elasticity modulus chosen for the problem in the water domain but should not alter the
expected results. This was discovered due to the efforts of a similar work, with the same
setup but a different CFD package called ANSYS that was performed approximately at the
same time as this work at Chalmers University of Technology and would be interesting
for a reader of this work.

Another possible future examination of this analysis would be to perform the same
simulation for a bigger, more accurate and detailed mesh. This was not achievable in the
time frame of the current work and the original mesh had to be limited in order to get
results in the expected time frame. Examination of different CFD packages would also
be important to consider as an alternative, to increase the acceptance of FSI simulations
as valid industrial analysis of such problems. Finally, in regards to the HPC capability of
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the software, a more detailed and in depth profiling of the solvers and utilities used could
be performed.
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HPC FSI SIMULATION OF AROD
SUBJECTED TO AXIAL TURBULENT
FLOW

The study of flow-induced vibrations on slender structures is a relatively new
subject, with increasing interest in recent years. In the present work the axial
turbulent flow past a cylindrical object is simulated, by using an open source
CFD code (OpenFOAM) with a Large Eddy Simulation (LES) approach. High
Performance Computing (HPC) resources were available and a detailed app-
roach has been accomplished, with several computational meshes scaling up
to 20 million cells. Spectral and spatial analysis has been performed on the
numerical results and validation with the experimental data provided has been
carried out.

Additionally, an FSI simulation has been achieved for the same geometry, with
a partitioned approach, coupling two separate flow and structural solvers and a
comparison has been carried out with the experiment here as well, in order to
examine the ability of the software to predict the behavior of the FSI and how
the numerical approximations affect the results in turbulent cases.

The turbulent velocity frequencies showed a good correspondence with the
natural vibration modes of the rod and the software was shown capable to
simulate the FSI behavior, but had room for improvement in several sectors,
especially HPC. Many possible causes have been considered as possible for the
FIV and numerical calculations of the problem’s variables has shown the exist-
ence of fluid-elastic instabilities as the most probable cause of vibrations in the
current setup.

Another step forward in Swedish energy research

Energiforsk — Swedish Energy Research Centre is a research and knowledge based organization
that brings together large parts of Swedish research and development on energy. The goal is

to increase the efficiency and implementation of scientific results to meet future challenges

in the energy sector. We work in a number of research areas such as hydropower, energy gases
and liquid automotive fuels, fuel based combined heat and power generation, and energy
management in the forest industry. Our mission also includes the generation of knowledge
about resource-efficient sourcing of energy in an overall perspective, via its transformation and
transmission to its end-use. Read more: www.energiforsk.se
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