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Foreword 

Inspired by the findings and conclusions that came forth in an earlier project –  the 
business logic and business models of district heating –  in the research 
programme Fjärrsyn, many district heating companies reviewed and developed 
their price models to better reflect the capacity called for by district heating 
customers and consequently to better mirror the cost structure of the district 
heating companies. In this process the idea of pricing the demand for heat power 
as accurately as possible has gained foothold among district heating suppliers. The 
study presented in this report takes the idea to its extreme and explores the 
possibility of developing a mechanism for a wholly dynamic pricing of the 
demand for heat power. 

The project has been carried out by Hailong Lee, Jingjing Song and Fredrik Wallin 
at the department of energy and environmental engineering at the academy of 
business, society and engineering at Mälardalen University. 

The project been followed by a project reference group including Jan Andhagen 
from Mälarenergi, Emil Berggren from Tekniska Verken i Linköping, Patrik 
Holmström from Energiföretagen Sverige and Tommy Jönsson from Sala-Heby 
Energi. 

The project is part of the research program Fjärrsyn, which is financed by 
Energiföretagen Sverige and the Swedish Energy Agency. The research in Fjärrsyn 
intends to strengthen district heating and cooling, encourage the development of 
competitive businesses and technologies and create resource-efficient solutions for 
the sustainable energy system of the future, for the benefit of the energy industry, 
the customers, the environment and the society at large. 

 

Anders Ericsson 
Chairman of the Market Council at Energiföretagen Sverige 

 

 

 

 

 

 

 

Reported here are the results and conclusions from a project in a research program 
run by Energiforsk. The author / authors are responsible for the content and 
publication which does not mean that Energiforsk has taken a position. 
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Sammanfattning 

Fjärrvärmebranschen står inför flera utmaningar under de kommande åren. En 
kombination av högre driftskostnader, konkurrens från alternativ 
uppvärmningsteknik som gynnas av låga elpriser, samt ett behov av att ge mer 
transparent och tydlig prisinformation till slutanvändarna ställer höga krav på 
många fjärrvärmeföretag. Det generella syftet med detta projekt har varit att 
utveckla och utvärdera en dynamisk prismekanism som fortsatt kan främja 
konkurrenskraftiga leveranser av fjärrvärme. 

En bra prismodell ska kunna spegla den aktuella produktionskostnaden så 
noggrant som möjligt, och därför motivera slutanvändarna att både minska 
effekttopparna och energiförbrukning. Samtidigt ska fjärrvärmepriset vara både 
förutsägbart och transparent. En ny dynamisk prismodell som baseras på 
momentana produktionskostnaden av en kilowattimme (eng. levelized cost of 
energy, LCOE) har utvecklats. Beräkningarna beaktar olika bidragande faktorer 
som kapitalkostnader, drift- och underhållskostnader samt andra övriga 
kostnader. 

Jämfört med de nuvarande prismodellerna så visar den föreslagna 
prismekanismen en potential för att sänka värmepriset. Det dynamiska 
värmepriset varierar med produktionskostnaden, som i sin tur beror av 
värmebehovet i den aktuella drifttimmen. Ett dynamiskt värmepris skulle därför 
kunna öka kundernas motivation att minska värmeförbrukning under systemets 
effekttoppar. Komplexiteten uppstår exempelvis bränslekostnader ska fördelas 
mellan samtidig produktion av el respektive fjärrvärme, vilket kan hindra dess 
praktiska tillämpning och samtidigt göra prissättningen svårare att förstå. 
Varierande och temporär användning av vissa anläggningar i kombination med 
oförutsedda underhållskostnader kan även leda till stora avvikelser då det 
momentana värmepriset (LCOH) beräknas. 

Dynamiska prognoser av värmebehovet ligger till grund för prismodellen. 
Lastprognosen baseras på ett neuralt nätverk (ENN) som har tränats med 
ingångsparametrar som utomhustemperatur, vindhastighet och direkt 
solinstrålning. Det genomsnittliga absoluta procentuella felet uppgår till cirka 6 %.  

Att reformera prismodellerna kan väsentligt bidra till att förändra kundernas 
fjärrvärmekostnader, och samtidigt påverka valet av energibesparande åtgärder. 
Tre alternativa uppvärmningslösningar har utvärderas i denna studie: Fjärrvärme 
för basbehov i kombination med direktverkande elvärme för toppeffekter; 
Värmepump för basbehov i kombination med fjärrvärme eller direktverkande 
elvärme för toppeffekter. De nuvarande låga elpriserna resulterar i att fjärrvärme 
som kompletteras med direkt elvärme för spetsbehov eller att använda 
värmepump för basbehov i kombination med fjärrvärme för spetsbehovet utgör de 
bästa ekonomiska alternativen jämfört med enbart fjärrvärme. Lönsamheten för 
dessa två teknikalternativ blir lägre med en ny dynamisk prismodell jämfört med 
de befintliga prismodellerna. Detta indikerar att en dynamisk prismodell är mer 
konkurrenskraftig än de traditionella modellerna. 



 

 A DYNAMIC PRICING MECHANISM FOR DISTRICT HEATING 
 

5 

 

 

 

Summary 

District heating (DH) companies are facing several challenges during the 
upcoming years. A combination of higher operational costs, competition from 
alternative technologies benefiting from low electricity prices, as well as the need 
of providing more transparent price information to the end-users puts high 
pressure on many utilities. The general purpose of this project is to develop a new 
dynamic pricing mechanism, which can promote the competitiveness of DH.  

A good price model should be able to reflect the dynamic production cost 
accurately and motivate consumers to reduce the peak load and save energy at the 
same time. In addition, the heat price should be predictable and transparent. A 
novel dynamic price model has been developed based on the levelized cost of 
energy, which carefully considers the capital cost, O&M cost and other costs. 
Comparing to the current real price models, it can reflect the production cost in a 
better way and is more transparent. Meanwhile, the price based on levelized cost 
of heat (LCOH) varies with the production, which is further determined by the 
total heat demand; hence, it can influence the behaviors of customers, especially 
during the peak price time. It is easy to understand; whereas, its complexity, for 
example the allocation of fuel cost for the production of electricity and heat in a 
CHP system, may hinder its practicable application. Moreover, the dynamic 
operation hours of equipment and unpredictable maintenance cost could also 
introduce large deviations in the calculation of LCOH. Dynamic prediction of the 
total heat demand in the network is the basis for the dynamic pricing model. A 
model based on Elman neural network (ENN) has been developed with the 
ambient temperature, wind speed and direct solar radiance, as key input 
parameters. Its overall mean absolute percentage error is around 6%. 

Price model reforming could lead to a significant change in the expense of 
customers and affect the selection of energy saving measures. Three alternative 
solutions to DH are assessed in this study: using direct electrical heating (DEH) to 
provide the peak heating demand combined with DH covering base demand; 
installing a ground source heat pump (HP) to cover base demand combining with 
DH or DEH to provide peak demand. Results show that due to the low electricity 
price currently, using DEH to cover the peak demand of district heating and 
combing DEH and HP can be more economical than DH. Compared with the real 
price models, the annual cost saving becomes smaller when the proposed dynamic 
price model is applied, which implies a better competitiveness.   
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1 Introduction 

A District Heating (DH) system is a centralized system that distributes steam/hot 
water through a pipeline network to satisfy end-users’ heat demands. The 
centralized heat generation benefits from the higher efficiency and more advanced 
control on pollutant emission. District heating is the most common way to 
distribute heat in Sweden [1]. There are more than 200 DH companies with over 
400 DH systems in Sweden. For multi-dwelling buildings and non-residential 
premises DH accounts for 92% and 80% of the market share respectively. Sweden 
has an ambition to reduce 20 % of the energy demand in the building sector by 
2020 [1]. To achieve this goal, DH would play a significant role.  

However, due to the continuous rise in cost of DH, it faces big challenges to further 
improve efficiency, reduce cost and enhance profitability. The competitiveness of 
DH systems for a particular building/house owner depends on three factors: (I) the 
price of the DH, (II) the price of the fuel or electricity used to heat the building and 
the expected increase in those prices, and (III) the efficiency with which that fuel is 
used compared to the efficiency of the potential DH [2]. According to the Energy 
Markets Inspectorate (EMI) [3], DH, geothermal heat pumps and wood pellets are 
on the same competitive level for the typical multi-dwelling buildings in Sweden. 

Real-time pricing (RTP) in the electricity sector has proved remarkably efficient in 
demand-side management, increasing the profit of electricity suppliers and 
improving the transparency in pricing mechanisms. Therefore, developing a new 
heat pricing mechanism can be a key to achieve the sustainable development of the 
heating market. 

The general purpose of this project is to develop a new dynamic pricing 
mechanism, which can promote the competence of DH. The specific objectives 
include: 

• Understanding the needs of both DH companies and customers more deeply 
and identifying the problems about the current price models  

• Developing new models that can predict the total heat demand in the network 
more accurately. The forecasted total heat demand will provide the basis for 
the determination of the dynamic price. 

• Evaluating the impacts of the new price model on the income of DH 
companies and energy expense of consumers.  
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2 Current situation about heat pricing 

The pricing mechanism defines the way, in which DH companies charge their 
customers for their service. Due to the monopoly nature, the DH company 
dominates in pricing of heat and the price elasticity is low in the heat market. The 
overall cost of DH generally depends on three main factors: (1) the connection 
costs for customers, (2) the costs of a distribution network, which depend on the 
size of the DH network and its thermal loads, and (3) the production costs of 
thermal energy. 

2.1 DH PRICING IN A REGULATED MARKET AND A DEREGULATED 
MARKET 

Worldwide, there are two main types of DH market, namely the regulated and 
deregulated. There are two representative methods used to price DH: the cost-plus 
pricing method, which is often used in regulated DH markets, and the marginal-
cost pricing method, which is commonly used in deregulated heating markets [4]. 

2.1.1 Cost-plus pricing 

Cost-plus pricing offers a number of advantages to sellers, buyers and regulators, 
such as simplicity, flexibility and ease of administration. However, a regulated 
market does not allow DH companies to compete with other heating solutions by 
adjusting DH prices, while the subsidization of DH systems is often needed in 
order to make DH as a competitive option as its alternatives, e.g. oil boilers, gas 
boilers and electricity-driven heat pumps. The subsidy on DH systems is important 
in terms of stabilizing local energy prices, developing local energy systems, saving 
imports of energy, reducing ambient pollution, and creating jobs. The size of the 
subsidy can be calculated by referring to the value of these goals [5]. However, 
cross-subsidies may impact adversely on both the DH sector and other sectors [6]. 
In addition, the cost-plus method is usually based on the historical data of real 
plants, which contains uncertainties when applied to the projection of future 
situations. 

Under a cost-plus pricing mechanism, DH companies have incentives to increase 
profits by inflating costs, since permitted profits are usually related to costs [7]. The 
DH companies would be punished and allowed for a lower level of permitted 
profits, if they are operating on a lower cost than the reported level [6, 8]. 
Consequently, the cost-plus pricing method undermines suppliers’ incentives to 
reduce costs and to upgrade their technologies. In addition to this, changes in real 
fuel costs cannot be transferred to consumers due to the use of historic data, and 
this prevents DH producers from generating enough profit to budget for necessary 
maintenance and improvements. In the long run, DH tariffs based on the cost-plus 
pricing approach will affect the efficiency of the DH market. 
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2.1.2 Marginal cost pricing 

A marginal cost is the cost of one more unit of product, which in this case is the 
cost of generating one more unit of heat through DH [9, 10]. According to 
Economic theory, the market price is obtained at the equilibrium point where the 
total amount of heat supply is equal to the entire heat demand. Facing the 
exogenous market price, a DH supplier can take a larger market share and gain 
more profits by setting its price at a lower level than the market price. As the DH 
price is based on the supplier’s marginal cost, every supplier is motivated to 
reduce costs, promote efficiency, and invest in infrastructure and equipment. 
Consequently, pricing DH according to marginal costs will benefit not only DH 
producers, but also the environment in terms of reduction in CO2 emissions and 
other pollutants. In practice, a marginal cost is usually calculated by splitting a 
total cost into a fixed and a variable cost. The marginal cost is thus equal to the 
additional unit of variable costs plus the depreciation of fixed costs. In this way, 
the marginal cost approach provides a clear route to understanding and managing 
the behavior of costs.  

However, when a DH company has been determining DH price according to its 
marginal costs, which in turn largely depend on variable costs, the company may 
gain less profits than it would, for example, if the DH price is determined using the 
cost-plus method. As a result, it may lead to a lower interest in investment and 
maintenance, such as the electricity market in Sweden [11]. Furthermore, the DH 
market in reality is never the textbook competitive market as presumed in 
Economic theory, while a typical DH market is characteristically a natural 
monopoly (see the detailed discussion above). Therefore, the optimal allocation of 
resources cannot be achieved by simply pricing DH at its marginal cost, even in a 
deregulated market. Although a competitive market environment can be 
developed through bidding, it is almost impossible for bidders to bid according to 
their marginal costs, due to imperfect information, as well as the availability of 
alternative heating products [12, 13]. 

2.2 MARGINAL COST MODEL 

The marginal cost (MC) has been commonly used for heat pricing in Sweden.  In a 
marginal cost-based pricing model, the total price normally involves two parts: 
fixed cost and variable cost, as shown in Eq. 1. 

𝑀𝑀𝑀𝑀 = 𝑑𝑑(𝑇𝑇𝑇𝑇)
𝑑𝑑(𝑄𝑄)

= 𝑑𝑑(𝐹𝐹𝐹𝐹+𝑉𝑉𝑉𝑉)
𝑑𝑑(𝑄𝑄)

= 𝑑𝑑(𝑉𝑉𝑉𝑉)
𝑑𝑑(𝑄𝑄)

                                                                                             (2-1) 

 
where TC is total cost, FC is fixed cost, VC is variable cost and Q represents the 
volume of heat production. VC mainly consists of energy cost, labor cost and other 
variable operation cost, such as the cost for marketing. Energy cost or fuel cost can 
be calculated as: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑁𝑁𝑁𝑁𝑁𝑁 𝑡𝑡𝑡𝑡𝑡𝑡 +  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡   (2-2) 

For a DH system, heat can be produced in different ways, such as combined heat 
and power system, heat pumps and oil/gas/biomass boilers. Their operations are 
combined in order to meet dynamic heat demands in different weather conditions. 
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Different technologies have different investment cost and energy efficiencies, 
which further result in different operation costs.  

According to Eq. 1, it is clear that FC is not really reflected by the marginal cost 
since it is considered as a constant. In order to reduce the financial risks due to the 
high investment cost, a fixed cost is usually added.  

2.3 PRICE COMPONENT IN SWEDEN 

The Swedish DH sector experienced a transition from a regulated to a deregulated 
market in the past decades. Prior to the deregulation of the DH market on January 
1, 1996, all DH plants and distribution networks were owned and operated by 
Swedish municipalities. The DH companies were not allowed to make profits 
according to Swedish law [14]. After deregulation, many municipalities sold their 
DH companies to either the private sector or municipality- or state-owned large 
energy companies.  

A survey has been conducted to investigate the current price models adopted by 
the REKO labeled DH companies in Sweden. More than 170 price models have 
been collected. A price model normally includes four components: fixed cost, 
capacity cost, energy cost and flow cost [15].  

• Fixed cost is the fee that a user needs to pay each month for being connected to 
the network. 65% of investigated DH companies have such a fixed component 
in their price models.  

• Capacity cost is charged to cover the cost of DH companies in order to 
maintain a certain level of capacity for users’ peak demand, for instance, 
investment costs of facilities. It is common to classify it as a kind of fixed cost. 
The most primitive method (by 14% of investigated DH companies) is to use 
consumers’ total consumption during a certain period of time (either the 
previous year or the previous high peak period) to determine their capacity 
needs. The most commonly used method (by 53% of investigated DH 
companies) is called Category-Figure method, which is an engineering 
approximation based on the primitive method, to differentiate different types 
of users. It gives different consumption time (category-figure) to different user 
groups and use it to determine the customer’s required capacity.  

• Energy cost, as the variable cost, is included in all of the price models. 
Primarily, 59% of DH companies use constant energy price. Seasonal energy 
price is used by 37% of DH companies, which means the energy price is more 
expensive in the winter time and cheaper during summer time. About 1% of 
DH companies set their energy price according to the outdoor temperature, 
which is generally a good indicator on the energy demand in the energy 
system and this information could also be accessed easily by the general 
public. About 2% of DH companies use subscribed energy scheme. 

• Flow cost is, in principle, a cost charged on volume of hot water needed to 
deliver the energy user consumes. It is usually a good motivation for the user 
to improve the performance of their heat exchanger. But it is only adopted by 
42% of DH companies 
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2.4 PRICING DILEMMA  

• Fixed cost vs. variable cost 

A DH company would have financial risks if its DH price is predetermined for a 
long time. A common way to reduce this financial risk is to divide the price into 
two parts: a fixed component and a variable component [16]. A pricing approach 
comprising a fixed component can reduce producers’ risks caused by fluctuations 
in consumption. With the deregulation of the DH market, DH pricing is moving 
towards a more consumer-oriented approach, in terms of more flexible pricing 
options for consumers to choose. The main reason there is a preference for a fixed 
charge is that heat demand fluctuates largely over a year, and a high proportion of 
the operating costs of a DH system doesn’t change in a short run. Therefore, a fixed 
charge can streamline the cash flow of producers. 

The fixed charge usually covers the cost related to the investment cost. Therefore, it 
is common to link the fixed cost to the heat capacity of the users.  However, on the 
contrary, consumers always prefer a high share of the energy cost, which can 
increase the flexibility of heat consumption and price transparency. This means 
that the pricing mechanism, especially the magnitude of the fixed component, 
should be decided to balance the needs of producers and requirements for 
consumers. 

• Historic consumption vs. current heat demand 

In order to improve the competitiveness of DH, nowadays, some DH companies 
are reforming their price models and the capacity cost receives the most attention. 
The purpose of changing the capacity cost is to encourage consumers to reduce 
their peak heat capacity and therefore DH companies can reduce the investment 
cost and production cost, which may lead to a lower heat price. The charge of 
capacity cost is usually determined according to the historical heat consumption 
data. However, the climatic condition changes year by year, resulting in a dynamic 
change of capacity. Even though a correction based on the normal year can be 
introduced, there could still be a big deviation in the determination of the heat 
capacity, because the yearly degree-day may not accurately reflect the peak heat 
capacity.  

• Peak load vs. individual peak consumption 

The intention of using capacity based pricing is to motivate the consumers to 
change their behaviors to reduce the peak load on a long-term basis. 
Unfortunately, this may not solve the problem of high peak loads in the system. 
Different consumers have different consumption profiles; and their individual 
peak consumption may not occur at the same time. Therefore, reducing the 
individual peak consumption may not really reduce the peak load. 

• Complex price model vs. pricing transparency  

There are a couple of methods to determine the heat capacity demand for charging 
the capacity cost. One is the assigned consumption hour method, which 
determines the capacity by dividing the customer’s annual consumption by 
assigned consumption hours. The assigned consumption hour is a constant but 
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different for different types of customers. However, how it is obtained is not fully 
clear. In addition, the capacity cost is charged as capacity price multiplied by 
capacity, (e.g. a capacity price [SEK/kW] multiplied by capacity [kW]). The 
determination of capacity price is not easy to understand. It is commonly assumed 
that the income from the capacity cost accounts for 30-50% of total income.   

2.5 NEED OF DYNAMIC PRICING MECHANISMS 

As discussed above, the big concern coming from the high capital cost is the main 
driving force for charging a higher capacity cost in order to motivate consumers to 
reduce their peak consumption. However, due to the dynamic change of ambient 
temperature, the purpose may not be achieved in a short term. Meanwhile, 
charging a higher capacity cost doesn’t contribute much to encourage consumers 
to save energy. From the perspective of strengthening sustainability, a good price 
model should be able to: 

• Reflect the dynamic production cost accurately  
• Motivate consumers to reduce the peak load and save energy at the same time 
• Be predictable  
• Be transparent and easy to understand 

A dynamic pricing mechanism based on the prediction of system heat demand 
becomes more attractive with the above criteria in mind. Based on the demand 
prediction, DH companies could more accurately foresee the peak load and 
estimate the extra cost for covering the peak load. By charging a higher price for 
the peak, it should be possible to reduce the peak load. Since most of the heat 
productions are based on CHP, a dynamic heat price can also cope with the 
dynamic electricity price in a better way. The dynamic pricing model can also 
provide more transparent information to consumers, which has been proved to be 
an effective way to achieve energy savings in the domestic sector. By 
understanding the pricing mechanism, consumers can change their behaviors in 
order to reduce the heat consumption and save the cost. 
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3 Dynamic pricing mechanism  

3.1 LEVELIZED COST OF HEAT 

The levelized cost of energy is a popular methodology for evaluating the economic 
competitiveness of electricity generation technology over the long term [17]. This 
approach computes the average cost of energy production over the lifetime, taking 
into consideration main cost components, such as investment, operations and 
maintenance (O&M), fuel, and decommissioning costs. Different from the marginal 
cost model, in which the fixed cost is charged on a  period basis, in the levelized 
cost of heat (LCOH) model, the fixed cost is embedded in regular DH prices. The 
investment of various types of technology is allocated over their life time and the 
cost components at a specific time point include the cost for the actual technologies 
in use. Therefore, there is no need to include those different cost components 
presented in Chp 2.3. The main advantage of the LCOH-based method lies in its 
flexibility and transparency; while the biggest challenge for calculating LCOH is 
how to estimate the heat production during the lifetime. LCOH-based prices are 
usually calculated on an hourly basis: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝐿𝐿𝐶𝐶𝑂𝑂𝐻𝐻𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻𝑂𝑂&𝑀𝑀                                                                           
(3-1) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻𝑂𝑂&𝑀𝑀 = ∑ (𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡+𝐹𝐹𝑂𝑂𝑂𝑂𝑡𝑡+𝑉𝑉𝑂𝑂𝑂𝑂𝑡𝑡)×(1+𝑟𝑟)𝑡𝑡𝑡𝑡
∑ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡

                                                         (3-2) 

where TIC is the total investment cost, FOM and VOM are fixed operation & 
maintain cost and variable operation & maintain cost respectively, r is the interest 
rate, t is the life time and ∑ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡  is the total heat production during the life time.  

For different heat production technologies, LCOHs are different. The overall 
LCOH is calculated via combining LCOH for each technology according to their 
heat productions: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ∑ (𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝑖𝑖
∑𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝑖𝑖

)                                                                                          (3-3) 

3.2 LCOH FOR CHP 

Since the CHP plant produces heat and power simultaneously, the fuel 
consumption should be allocated for between electricity and heat production, 
which directly affects the cost for heat production.  

𝐹𝐹𝑡𝑡𝑒𝑒 = (1 − 𝛼𝛼ℎ)×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                                           (3-4) 
𝐹𝐹𝑡𝑡ℎ = 𝛼𝛼ℎ×𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                                               (3-5) 

where 𝐹𝐹𝑡𝑡𝑒𝑒  𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝑡𝑡ℎ are the fuel costs of electricity and heat respectively. 

There are a number of principles used to allocate joint costs between heat and 
power for CHP plants [18]. There following three methods have been tested in this 
work: 
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(M-1) Setting the price of electricity, and then calculating the cost of heat 
accordingly. All fuel costs are allocated to heat. The income from selling electricity 
at the market price is deducted from the total cost. 

(M-2) Allocating the costs in proportion to the amounts of generated heat and 
electricity. To simplify the calculation, it is assumed that electricity and heat are 
produced with the same efficiency in a CHP plant. Therefore, the total fuel costs 
can be divided into heat costs and electricity costs according to the electricity-to-
heat ratio. Sweden applies this method to energy taxation on CHP plants. 

(M-3) Allocating the costs in proportion to the exergy of the generated heat and 
electricity. Another way to consider the influence of efficiency is to use the concept 
of exergy, which reflects the quality of energy and can be calculated using the laws 
of thermodynamics. Since the product of electricity has higher exergy than the 
product of heat, this method will normally attribute a relatively large portion of the 
total costs to electricity generation. 

As aforementioned, the fuel allocation should only be applied to the fuel that is 
used to product heat and electricity. However, in the CHP system, fuel is not 
always used for combined production as shown in Fig 3-1. For example, at a high 
heat demand, steam can bypass the turbine to produce more heat. The fuel used to 
produce bypass steam should not be allocated between heat and electricity, as it is 
used only for heat production. In order to accurately calculate the cost for both 
heat and electricity production, heat produced in the CHP system can be further 
divided into H_CHP and H_HO, which correspond to the heat produced in 
combination with electricity and the heat produced from bypass steam 
respectively. Meanwhile, extra heat can be recovered from FGC, which is usually 
released to the ambient and not included in the heat production of CHP. Therefore, 
the fuel of H_FGC can be ignored.  

 
Fig 3-1 Energy flow in a CHP system 

3.3 CASE STUDY 

LCOH was calculated for a real DH system, which consists of a CHP plant, a 
biomass boiler, and a bio-oil boiler. Detailed input data and assumptions are listed 
in Table 3-1.  
  

fuel Boiler 

Steam 

FGC 

Electricity 

Bypass 
(H_HO) 

H_CHP 

Fuel 

Q_Steam 

H_FGC 
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Table 3-1 Input data and assumptions 

Parameter Unit Value  

CHP Boiler MWth 150 

Steam turbine (ST) MWe 39 

Designed heat power ratio  1,82 

Min partial load of ST % 25 

FGC MWmax 32 

Boiler efficiency % 85 

CHP TIC MUSD 12,1 

Operating hour of CHP hr 7500 

Biomass boiler MWth 66 

Biomass boiler TIC MUSD 3,7 

Bio-oil boiler  MWth 24 

Bio-oil boiler TIC MUSD 1,98 

Lifetime yr 20 

Interest rate % 8 

Biomass price  USD/kWh 0,02 

Electricity price USD/MWh 2,9 

Bio-oil price USD/kWh 0,055 

Profit % 8 

 

 
Fig 3-2 Overall LCOH of DH system 

 

Figure 3-2 shows the calculated LCOH at different heat capacities. In general, 
LCOH increases along with the increase of heat capacity no matter which model is 
used to allocate the fuel cost. CHP, which is normally provides the base load, has 
low production cost; on the contrary, the biomass boiler and bio-oil boiler, which 
are used to cover the peak load, have relatively high production costs. The high 
LCOH at very low heat capacity is mainly due to that at a demand lower than 25% 
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of CHP capacity, CHP is not in operation. Instead, biomass boiler is used. 
Meanwhile, the high LCOH of biomass and bio-oil boiler primarily comes from the 
short operation hours, which results in a high fraction of TIC in LCOH. For bio-oil 
boiler, the high LCOH is also owing to the high fuel cost. 

Fig 3-3 shows the calculated LCOH for CHP. Different methods, which are used 
for allocating the fuel cost for productions of power and heat, result in different 
LCOH_CHP. In general, there is a clear drop for all methods when FGC is 
introduced in heat production. This is mainly due to that the heat produced from 
FGC doesn’t require extra fuel. Therefore, when the cost remains the same, 
producing more heat gives a lower production cost. For M-1 and M-2, LCOH goes 
up when bypass is introduced. This is owing to more fuel allocated for heat 
production as electricity production is less. For M-3, due to the high fraction of the 
capital cost in LCOH, H_CHP has a higher cost than H_HO. Therefore, when less 
heat is produced from CHP and more heat is produced from bypass, LCOH_CHP 
decreases.  

 
Fig 3-3 LCOH of CHP 

 

Based on LCOH, dynamic heat price can be obtained at dynamic heat demand by 
adding a profit in LCOH. During July 20 to Aug 20, CHP is assumed to be shut 
down for maintenance, and the biomass boiler is usually used as an alternative. Fig 
3-4 compares the prices from different price models at different heat demands. Old 
PM and New PM are two real price models, which are based on seasonal fuel cost 
and subscribed heat capacity [15].  

Different from the LCOH methods above, district heating companies use another 
approach in their daily practice. According to an earlier price model survey [15], 
they allocate more than 95% of their income in two different components based on 
their cost structure: the Energy Demand Component (EDC) and the Load Demand 
Component (LDC).  
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The EDC is used to cover the production cost of district heating, which is mainly 
the cost of fuel, taxes and operating costs, which charges district heating user a 
certain amount for each kWh of heat consumption. 

LDC is used to cover the cost to the district heating company to maintain a certain 
level of capacity for users’ peak demand, e.g. for investment costs of facilities, etc. 
Since the capacity reserved for a specific user is related to the user’s peak demand, 
district heating companies usually set a price for each kW of peak demand (usually 
in SEK/kW), and use user’s peak demand as a parameter to charge users. 

• Old PM (Seasonal Price model) 

One of the commonly used price model is the seasonal price model, this model has 
a LDC based on users’ highest measured daily average demand in one year, and a 
two-level seasonal energy price (higher during winter and lower during summer) 
in EDC to differentiate consumptions in different period.  

Under this model, a user’s district heating cost is expressed as: 

𝐸𝐸 = 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.𝑤𝑤×𝐶𝐶𝑤𝑤 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.𝑠𝑠×𝐶𝐶𝑠𝑠 + 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙×𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝                                  (3-6) 

Penergy.w: Energy price during winter season, SEK/kWh. 
Penergy.s: Energy price during summer season, SEK/kWh. 
Cw: User’s winter district heating consumption, kWh. 
Cs: User’s summer district heating consumption, kWh. 
Pload: Load demand price, SEK/kW. 
Lpeak: User’s peak demand (daily), kW 

• New PM (Subscription Price Model) 

Other than the commonly used Seasonal Price Model, there are several newly 
emerged price models been adopted by large district heating companies such as 
Fortum in Stockholm. Similar to the seasonal price model, the LDCComponent in 
this model is also based on the peak demand of users, except in hourly basis. The 
EDC, on the other hand, is based on users instant demand level: the district heating 
company suggests a subscription level in proportion with the user’s peak load 
demand, users are entitled to pay a lower price (so called base price) for their 
energy consumption below the subscription level (base load); however, peak 
energy consumption above the subscription level is charged at a higher price (so 
called peak price). 

User’s cost is calculated using the formula below. 

𝐸𝐸 = 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.b×𝐶𝐶𝑏𝑏 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.p×𝐶𝐶𝑝𝑝 + 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙×𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝×α                           (3-7) 

Penergy.b: Base energy price (subscribed part), SEK/kWh. 
Penergy.p: Peak energy price (exceeded part), SEK/kWh. 
Cb: User’s base load, kWh. 
Cp: User’s peak load, kWh. 
Pload: Load demand price, SEK/kW. 
Lpeak: User’s peak demand (hourly), kW 
α: the subscription level, proportion of base load plant’s capacity compared with 
system’s total capacity, %. 
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Table 3-2 Price-levels of Price Models in use 

 

 

 

 

 

 

 

 

 

 

Both Old-PM and New-PM are not dynamic price models. To generate the hourly 
price for the real price models, 638 user’s consumption data has been used in the 
calculation. Each user’s hourly costs on EDC are calculated according to the energy 
consumption and the energy price level during that hour. The annual cost on LDC 
is first calculated based on the user’s peak demand and the load price level, and 
then evenly distributed into each hour of the year. The average hourly price then is 
calculated by adding up each user’s hourly cost on both EDC and LDC and then 
divided by the total consumption.  

 

Seasonal Model 

Price level for Energy Demand Component in summer 
(SEK/kWh) 

0.253 

Price level for Energy  Demand Component in winter  
(SEK/kWh) 

0.455 

Price level for Load  Demand Component  
(SEK/kW) 

560 

Subscription Model 

Price level for Energy  Demand Component  base 
(SEK/kWh) 

0.369 

Price level for Energy  Demand Component peak 
(SEK/kWh) 

1.386 

Price level for Load Demand Component  
(SEK/kW) 

729 
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Fig 3-4 Heat price from different price models at different heat demands 

 

It is clear that the prices based on LCOH are much lower than those from the real 
price models, which implies there should be a potential to lower the heat price. 
Meanwhile, LCOH can reflect the variation of heat demand in a better way and 
effectively cover the high cost at the peaks. It is also interesting to see that the 
prices at low heat demands, for example in summer, are still quite high. For the 
dynamic model based on LCOH, since CHP is shut down during summer and 
biomass boilers are used instead, the high fuel cost results in a high price. 
Meanwhile, for the two real price models, the high price during summer time is 
majorly due to the fixed LDC, which is not allocated according to the energy 
consumption but allocated based on time. That means the cost of LDC is a constant 
value in each hour, to calculate the average price for each kWh energy 
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consumption, it has to be divided by the total consumption. So when the 
consumption is very low, this part will contribute a lot to the average price. This 
might seems abnormal but reasonable for the energy company, because when they 
set up the price, it is impossible to foresee how much energy they are going to sell, 
and the maintenance are more or less irrelevant to the total consumption. Hence to 
allocate this part of cost into energy consumption means higher risk, so if allocate 
these fixed costs into energy consumption, they are kind of forced to raise the price 
to cover the possible risk (even though a higher profit is not even the main goal 
here).  

3.4 MODEL COMPARISON 

Table 3-3 compares the characters of different price models. In general, the price 
model based on seasonal fuel cost is simple to understand. As the fuel cost 
accounts for the major part of the heat price, it can also reflect the dynamic 
production cost. For the price model based on subscribed heat capacity, it is largely 
determined the peak demand of the customers. Therefore, it can effectively 
motivate customers to reduce the peak load. Nevertheless, such a model is difficult 
be understand and is less transparent. For the price model based on LCOH, the 
price varies with the production cost, which is further determined by the demand; 
hence, it can motivate customers to reduce the heat consumption, especially during 
the peak time. It is also easy to understand but its complexity of calculation results 
in big uncertainties of the cost.  

Table 3-3 Characters of different price models 

 Seasonal fuel cost 
(e.g. Old PM) 

Subscribed heat 
capacity (e.g. New 

PM) 

LCOH based PM 
(e.g. M-1, M-2, 

and M-3) 

Simplicity   ++ - - 

Predictable - - + 

Transparent  + - - + 

Reflecting the dynamic 
production cost 

+ + ++ 

Reflecting the dynamic heat 
demand 

- - - ++ 

Motivate consumers to reduce 
the peak load  

- ++ ++ 

Motivate consumers to save 
energy 

+ - ++ 
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4 Prediction of the total heat demand 

In general, there are two types of models used for predicting the heat demand: 
physical models, which calculate the heat loss based on the principle of heat 
transfer; and statistic models, which correlate the demand to some factors, such as 
weather data, based on large amount of metering data. Evolving technologies 
about smart meters and smart energy network open up new opportunities, 
allowing energy companies to do things in a better way or do things they never 
could before, such as better understanding customer segmentation and behavior, 
shaping customer usage patterns, improving the reliability, optimizing unit 
commitment and more [19]. Hence, with the development of heat metering, the 
statistic models attract more and more attention in the prediction procedure, due 
to its ability to reflect the sociological parameters such as consumer behaviors. For 
example, ANN models, one type of statistic models, have been used to predict the 
heat demand and shown the ability to produce accurate predictions [20].  

4.1 MODEL DESCRIPTION 

A model based on Elman neural networks (ENN) was developed to predict the 
heat demand. Elman neural network [21-22], initially proposed for speech 
processing problem in 1990 by J. L. Elman, is a global feed forward local recurrent 
neural network. An ENN generally comprises four levels: the input, the hidden, 
the context, and the output layers. The structures of input, hidden, output layers 
are similar to normal feedforward neural network. The role of context layer nodes 
is to store the output values of the hidden layer nodes, which is equivalent to the 
time delay operator or the state feedback [23-24]. The model of Elman neural 
network is represented as follows:  

𝑥𝑥1(𝑘𝑘) = 𝑓𝑓[𝑤𝑤1𝑢𝑢(𝑘𝑘 − 1) + 𝑤𝑤𝑐𝑐1𝑥𝑥𝑐𝑐1(𝑘𝑘)]              (4-1) 
𝑥𝑥𝑖𝑖(𝑘𝑘) = 𝑓𝑓[𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖−1(𝑘𝑘 − 1) + 𝑤𝑤𝑐𝑐𝑐𝑐𝑥𝑥𝑐𝑐𝑐𝑐(𝑘𝑘)], 𝑖𝑖 = 2,3,⋯ , 𝑠𝑠             (4-2) 
𝑥𝑥𝑐𝑐𝑐𝑐(𝑘𝑘) = 𝑥𝑥𝑖𝑖(𝑘𝑘 − 1), 𝑖𝑖 = 2,3,⋯ , 𝑠𝑠              (4-3) 
𝑦𝑦(𝑘𝑘) = 𝑔𝑔[𝑤𝑤𝑠𝑠+1𝑥𝑥𝑠𝑠(𝑘𝑘)]               (4-4) 
 
where s is number of hidden layers, 𝑢𝑢(𝑘𝑘) is the input of the model, 𝑥𝑥𝑐𝑐𝑐𝑐(𝑘𝑘) and 𝑥𝑥𝑖𝑖(𝑘𝑘) 
are the output of context layer i and hidden layer i, 𝑦𝑦(𝑘𝑘) is the output of output 
layer, 𝑤𝑤1 is the connection weight matrix between the input layer and the hidden 
layer 1, 𝑤𝑤𝑖𝑖  is the connection weight matrix between the hidden layer i and the 
hidden layer (i-1), 𝑤𝑤𝑛𝑛+1 is the connection weight matrix between the hidden layer 
n and the output layer, respectively, 𝑤𝑤𝑐𝑐𝑐𝑐  is the connection weight matrix between 
the hidden layer i and the context layer i. 𝑓𝑓(∙) and 𝑔𝑔(∙) are transfer functions, 𝑓𝑓(∙) is 
usually sigmoid, tangent sigmoid or logarithm sigmoid transfer function, and 𝑔𝑔(∙) 
is usually a linear transfer function. The structure of ENN with multiple hidden 
layers is shown in Fig 4-1. 
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Fig. 4-1. The structure of a typical Elman neural network (ENN) 

 

To investigate the impact of the length of slide window on heat demand 
prediction, data in consecutive 2, 4 and 8 hours are combined to create a super-
vector, respectively. A step size, which is set as a half of the length of slide 
window, is selected to update the super-vector. For example, if 4 hours is chosen as 
the length of slide window, then the step size will be 2 hours, the first super-vector 
will contain the data from 1st to 4th hours and the second super-vector contains the 
data from 3rd to 6th hours. To investigate the impact of the number of hidden 
layers in ENN on heat demand prediction, 4 and 8 layers are selected as the 
number of hidden layers.  
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The training steps of ENN are as follows [25]: 

⎩
⎪
⎨

⎪
⎧ Δ𝑤𝑤𝑖𝑖𝑖𝑖

𝑠𝑠+1 = 𝜂𝜂𝑠𝑠+1𝛿𝛿𝑖𝑖𝑠𝑠+1𝑥𝑥𝑠𝑠𝑠𝑠(𝑘𝑘) 𝑖𝑖 = 1,2,⋯ ,𝑚𝑚; 𝑗𝑗 = 1,2,⋯ , 𝑛𝑛
Δ𝑤𝑤𝑗𝑗𝑗𝑗

𝑝𝑝 = 𝜂𝜂𝑝𝑝𝛿𝛿𝑗𝑗
𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝(𝑘𝑘)  𝑗𝑗 = 1,2,⋯ , 𝑛𝑛; 𝑙𝑙 = 1,2,⋯ , 𝑛𝑛;𝑝𝑝 = 2,3,⋯ , 𝑠𝑠

Δ𝑤𝑤𝑗𝑗𝑗𝑗1 = 𝜂𝜂1𝛿𝛿𝑗𝑗1𝑢𝑢𝑞𝑞(𝑘𝑘 − 1) 𝑗𝑗 = 1,2,⋯ , 𝑛𝑛; 𝑞𝑞 = 1,2,⋯ , 𝑟𝑟

Δ𝑤𝑤𝑗𝑗𝑗𝑗
𝑐𝑐𝑐𝑐 = 𝜂𝜂𝑐𝑐𝑐𝑐 ∑ (𝛿𝛿𝑖𝑖

𝑝𝑝+1𝑤𝑤𝑖𝑖𝑖𝑖
𝑝𝑝+1) 𝜕𝜕𝑥𝑥𝑝𝑝𝑝𝑝(𝑘𝑘)

𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗
𝑐𝑐𝑐𝑐

𝑚𝑚
𝑖𝑖=1  𝑗𝑗 = 1,2,⋯ ,𝑛𝑛; 𝑙𝑙 = 1,2,⋯ , 𝑛𝑛; 𝑝𝑝 = 2,3,⋯ , 𝑠𝑠

                (4-5) 

𝛿𝛿𝑗𝑗
𝑝𝑝 = ∑ (𝛿𝛿𝑖𝑖

𝑝𝑝+1𝑤𝑤𝑖𝑖𝑗𝑗
𝑝𝑝+1)𝑓𝑓′𝑖𝑖(∙)

𝑚𝑚
𝑖𝑖=1 , 𝑝𝑝 = 1,2,⋯ , 𝑠𝑠              (4-6) 

𝛿𝛿𝑖𝑖𝑠𝑠+1 = (𝑦𝑦𝑑𝑑,𝑖𝑖(𝑘𝑘) − 𝑦𝑦𝑖𝑖(𝑘𝑘))𝑔𝑔′𝑖𝑖(∙)               (4-7) 

𝜕𝜕𝑥𝑥𝑗𝑗(𝑘𝑘)

𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗
𝑝𝑝 = 𝑓𝑓′𝑖𝑖(∙)𝑥𝑥𝑙𝑙(𝑘𝑘 − 1) + 𝛼𝛼 𝜕𝜕𝑥𝑥𝑗𝑗(𝑘𝑘−1)

𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗
𝑝𝑝  j = 1,2,⋯ , n; 𝑙𝑙 = 1,2,⋯ , n;𝑝𝑝 = 2,3,⋯ , 𝑠𝑠            (4-8) 

where 𝜂𝜂𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝜂𝜂𝑐𝑐𝑐𝑐(𝑝𝑝 = 1,2,⋯𝑠𝑠 + 1) are the training steps of  𝑤𝑤𝑝𝑝 and 𝑤𝑤𝑐𝑐𝑐𝑐, m is 
number of the output layer nodes, n is number of the hidden layer nodes, r is 
number of the input layer nodes, and s is number of the hidden layers. 

The Z-Score or named standard score is used as the normalization method before 
training step to preprocess measured data and represented as follows: 

𝑥𝑥�𝑖𝑖 = 𝑥𝑥𝑖𝑖−𝐸𝐸(𝑥𝑥)
�𝐷𝐷(𝑥𝑥)

, 𝑖𝑖 = 1,2,⋯ , 𝑛𝑛               (4-9) 

𝐸𝐸(𝑥𝑥) = 1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1               (4-10) 

𝐷𝐷(𝑥𝑥) = 1
𝑛𝑛−1

∑ (𝑥𝑥𝑖𝑖 − 𝐸𝐸(𝑥𝑥))2𝑛𝑛
𝑖𝑖=1              (4-11) 

 
where 𝑥𝑥𝑖𝑖 is an element of 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛) which is the measured data, 𝑥𝑥�𝑖𝑖 is an 
element of 𝑥𝑥� = (𝑥𝑥�1, 𝑥𝑥�2,⋯ , 𝑥𝑥�𝑛𝑛) which is the normalized data, 𝐸𝐸(𝑥𝑥) and 𝐷𝐷(𝑥𝑥) are the 
sample mean and the unbiased sample variance of 𝑥𝑥, n is length of 𝑥𝑥 and 𝑥𝑥�. 

To evaluate the model performance, the mean absolute percentage error (MAPE), 
which is defined as Equ 4-12, as indicator: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖−𝑦𝑦𝑝𝑝𝑝𝑝�

𝑦𝑦𝑖𝑖
×100%𝑛𝑛

𝑖𝑖=1              (4-12) 

 
Maximum absolute deviation (MAD) is another important indicator, which is 
defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀 ��𝑦𝑦𝑖𝑖−𝑦𝑦𝑝𝑝𝑝𝑝�
𝑦𝑦𝑖𝑖

×100%� (𝑖𝑖 = 1 …𝑛𝑛)            (4-13) 

4.2 KEY INPUT FACTORS 

Statistic models need to correlate heat demand to some parameters, such as 
weather conditions, building type and time of the day [26] etc. The ambient 
temperature is the most important weather condition, since it determines the 
temperature difference between indoor and outdoor, which is a key driving force 
for heat transfer [27-28]. However, it is not sufficient to obtain satisfying results by 
considering only ambient temperature. In order to further improve the accuracy of 
prediction, existing studies have tried to consider other weather conditions in 
predictions, such as wind speed and direct solar radiance. For example, 
Michalakakou et al. involved direct solar radiance as one of the inputs in an 
artificial neural network (ANN) model to forecast the heat demand in residential 
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buildings [29]. Unfortunately, the effect of direct solar radiance on the prediction of 
energy consumption was not carefully examined. Yang et al. combined the 
numerical weather prediction (NWP) with an ANN model for the projection of 
heat load, in which both direct solar radiance and wind speed were taken as inputs 
[30]. Kusiak et al. identified wind speed as an important parameter in predicting 
building energy demand [31]. Fu et al. verified the importance of direct solar 
radiance on the thermal load of a micro DH network [32]. In contrast, there are also 
researchers who argued that wind speed could be ignored in the prediction of heat 
demand [33-35]. In general, existing studies have recognized the effects of wind 
speed and direct solar radiance on the heat demand of buildings, while their 
specific impacts on heat demand in buildings have not been extensively examined, 
especially in a quantitative way. In order to achieve a high accuracy of prediction, 
the parameter that has a greater impact on the heat demand should be given a 
higher priority in the model. Therefore, the impacts of direct solar radiance and 
wind speed on heat demand in buildings are compared in order to identify the 
most important parameters. 

Hourly measured data during the period 2008-2011 were collected from a utility 
company, including heat demand, ambient temperature, direct solar radiance, and 
wind speed. Short term and long term predictions of heat demand were 
implemented to investigate the performance of ENN. In short term predictions, the 
data from October 2008 to February 2009 (five months) were used for model 
training and those on March 2009 (one month) were used for model validation. In 
long term predictions, the data in 2010 (one year), from 2009 to 2010 (two years) 
and from 2008 to 2010 (three years) were used for model training and those in 2011 
(one year) were used for model validation. Due to the difference of heat demand in 
working day and non-working day, this work focuses on working days only in 
order to achieve a higher accuracy. 

To evaluate the impacts of wind speed and direct solar radiance on the prediction 
of heat demand, respectively, four datasets were created for Elman neural network 
training, which details are listed in Table. 4-1. 

Table 4-1. Dataset description 

 Heat demand 
Ambient 
temperature 

Direct solar 
radiance Wind speed 

Dataset A √ √ × × 

Dataset B √ √ √ × 

Dataset C √ √ × √ 

Dataset D √ √ √ √ 

 

The ENN model is trained by the data about the total heat production from 2008 to 
2010, based on which dataset A, dataset B, dataset C or dataset D are extracted. 
Correspondingly, four ENN models are obtained, which are renamed as ENN-A, 
ENN-B, ENN-C and ENN-D. They used temperature, temperature and the direct 
solar radiance, temperature and the wind speed, and temperature, the direct solar 
radiance, and the wind speed as inputs respectively. Fig 4-2 compares the 
measured and predicted heat demand (in MW), and Table 4-2 lists the 
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corresponding MAPE and MAD. According to the results, all models are capable 
to reflect the change of heat demand and predict the heat demand with MAPE less 
than 6.6%, of which ENN-D shows the best accuracy with MAPE=6.35%. It is also 
clear that the introduction of direct solar radiance and wind speed has positive 
impacts on the performance of Elman neural network as ENN-B, C and D have 
smaller MAPE than ENN-A. Comparatively, the inclusion of wind speed results in 
a better prediction accuracy than that of the direct solar radiance. This implies that 
wind speed is a more important parameter. Meanwhile, the introduction of both 
wind speed and direct solar radiance simultaneously can further improve the 
model accuracy. Table 4-2 also presents the maximum absolute deviation (MAD) of 
different models. It is clear that compared to ENN-A, including direct solar 
radiance and wind speed can reduce MAD. Meanwhile, including direct solar 
radiance is more effective than including wind speed to reduce MAD, even though 
including wind speed (ENN-C) can result in a lower MAPE. 

 

 
Fig. 4-2 Measured and predicted results (in MW) of the total heat demand 

 

Table 4-2. MAPE and RMSE of different models 

Model MAPE MAD 

ENN-A 6.50% 91.6261 

ENN-B 6.47% 71.8131 

ENN-C 6.43% 81.5368 

ENN-D 6.35% 70.6640 

 

Fig 4-3 shows the distribution of absolute percentage errors. For all models, the 
most of errors (>74%) is between -5%~5%. However, it is worth to note that 
although ENN-A has the highest MAPE, it has the most points in the rage of -
5%~5%. Meanwhile, there are more points which heat demand was under-
estimated than those which heat demand was over-estimated for all of the models. 
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Fig. 4-3 Distribution of absolute percentage errors 

 

In order to further understand the error distributions, MAPE and MAD of different 
models were also calculated at different heat demands and results were listed in 
Table 4-3 and 4-4. For all of models, MAPE decreases, while RMSE increases with 
the increase of heat demands. However, direct solar radiance and wind speed may 
have different influences at different heat demands. According to Table 4-3, as very 
low demand (0~150MW), it is more beneficial to include wind speed (ENN-C); 
while in the demand of 150~300MW, including direct solar radiance (ENN-B) has 
the lowest MAPE. In addition, despite that ENN-D has the lowest overall MAPE, it 
doesn’t always have the lowest MAPE at different heat demands, actually it only 
has the lowest MAPE in the demand range of 300~450MW.  

Table 4-3. MAPE of different actual heat demand ranges 

heat demand (MW) ENN-A ENN-B ENN-C ENN-D 

0~150 8.95% 8.87% 8.73% 8.83% 

150~300 4.95% 4.93% 5.06% 4.97% 

300~450 4.14% 4.13% 4.06% 4.04% 

>450 3.89% 3.71% 3.63% 3.66% 

 

Table 4-4. MAD of different actual heat demand ranges 

heat demand (MW) ENN-A ENN-B ENN-C ENN-D 

0~150 28.5977 26.4968 26.5604 23.7552 

150~300 46.4071 55.1570 52.5413 54.5364 

300~450 91.6261 71.8131 81.5368 70.6640 

>450 48.5284 43.9760 46.3392 47.8068 

 

The influence of parameters on MAD is not consistent at different heat demands. 
As illustrated in Table 4-4, including direct solar radiance can reduce MAD except 
in the demand range of 150~300MW and it is more effectively than including wind 
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speed. Moreover, similar to the results about MAPE, including both direct solar 
radiance and wind speed does not necessarily result in the lowest MAD.   

The distribution of absolute percentage errors was also broken down at different 
heat demands and shown in Fig 4-4. Obviously, no matter what the heat demand 
is, the most of errors of all models are in the range of -5%~5%, which is similar to 
the overall error distribution. Comparatively, for the heat demand of 0~150MW, 
the fraction of the points with errors larger than 10% or lower than -10% is much 
higher. That is the reason that all models have the worst MAPE. 

 

 
             (a) Heat demand < 150MW                             (b) Heat demand: 150~300MW 

 
            (c) Heat demand: 300~450MW                           (d) Heat demand > 450MW 
Fig. 4-4 Distribution of absolute percentage errors at different heat demand  

 

As shown in Table 4-3 and 4-4, ENN may not benefit from the introduction of both 
wind speed and direct solar radiance simultaneously. This might be due to the 
following reasons: 1) the effect of one factor is already included into the other one 
(e.g., the effect of wind on the demand is reflected by the temperature), hence, it is 
not necessary to include redundant information in the analysis. This should be 
verified further in the future; 2) For ENN, there are different ways when 
integrating multi-factors. In order to further improve the ENN, advanced fusion 
methods may be applied. For example, with the principle of hierarchical neural 
network, two ENNs, each one with a single factor, can be trained separately. Then 
the two trained ENNs can be combined to get an ENN model for prediction. 
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4.3 DISCUSSION 

It has been well recognized that heat demand is affected by social behaviors 
obviously. In our previous work, we noticed that the heat demand in summer isn’t 
really affected by the ambient temperature, as shown in Fig 1, which implies that it 
is strongly affected by social behaviors. In order to consider the customers’ 
behavior accurately, other parameters rather than climatic parameters should be 
included. For example, Dotzauer [32] constructed a model based on the premise 
that heat demand is affected by outdoor temperature and different consumer 
behaviors, which are tightly related to the time in a day. We also investigated the 
impacts of building type on the prediction of heat demand and found that 
categorizing buildings according to their functions represents a more effective way 
to improve the model performance. Nevertheless, the current classification of 
buildings is mainly done according to the function of building. Little work has 
been done about user clustering according to heat demand. 

  
Fig 4-5 Impacts of social behaviors on heat demand in summer 

 

Data corruption about heat demand has already been identified from our previous 
work, as shown in Fig 4-6. Abnormal data points have been found from both the 
production side (as shown in Fig 4-6(a)) and the consumer side (as shown in Fig 4-
6(b)). Along with the development of smart metering technologies, more and more 
data become available; hence, there is an urgent need to develop a method that can 
cleanse the heat demand/production data systematically. However, no work has 
been done about data cleansing regarding heat demand. The data quality has been 
the bottleneck for developing more accurate models. 

 
         (a) heat production                                              (b) aggregated heat consumption 
Fig 4-6 Abnormal data examples 
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5 Influences of new price model 

Price model reforming could lead to a significant change in the expense of 
customers. It can also affect the selection of energy saving measures. In this 
chapter, the influences of the two real price models introduced in Chp 3 and the 
dynamic price model based on LCOH are compared. 

5.1 INFLUENCES ON CONSUMERS 

Fig 5-1 shows the heat demand and expenses under different price models for a 
typical customer of multi-family house. In general, the expense changes with heat 
demand no matter which price model is applied. For the two real price models 
(Old PM and New PM), since both models include the energy component, when 
the heat demand varies, the cost also varies. For the dynamic models based on 
LCOH, the cost is related to the heat demand more closely, hence, the expenses 
vary with the demand more obviously.  

 

 
Fig 5-1 heat demand and expenses of a typical customer of multi-family house  

 

From Fig 5-1, it is also clear that in most of the cases, the expenses calculated with 
the dynamic price model are lower than those calculated with the real price 
models. It implies that there could be a big potential to further lower the price. 
However, it should also be noted that even though the labor cost and profit have 
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been considered in the dynamic model, due to lack of detailed real data, there may 
be a big deviation from the assumed values, which can also result in a big 
difference. Nevertheless, for the peak demand, dynamic price models result in a 
higher cost than the real price models, and the difference is bigger at a higher peak 
load. Comparing the new PM and the old PM shows that introducing an hourly 
capacity load component results in a higher expense at higher heat demand, for 
example in winter; while a lower expense at a lower heat demand, for example in 
summer. 

For other types of users, such as Office&school, Commercial buildings, 
Hospital&social buildings and industry, the influence of price models is quite 
similar.  

5.2 INFLUENCES ON SELECTING ENERGY SAVING MEASURES 

Three alternative solutions are considered in this study: using direct electrical 
heating (DEH) to provide the peak heating demand combined with DH covering 
base demand; installing heat pump (HP) to cover base demand combining with 
DH or DEH to provide peak demand, Fig 5-1 shows the consumption profile of 
each alternative. The annual cost of each solution is the sum of DH cost, electricity 
cost and annual investment cost for HP installation. 

 
Fig. 5-2 Consumption profile of different heating solutions 
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The capacity of heat pump is dimensioned to achieve the optimistic annual cost in 
each solution that involves heat pump. The capital investment of heat pump is 
presumed to be €1580/kW per installed capacity [36], lifespan is 20 years, and 
interest rate is 5% [37]. The annual investment cost of heat pump could be 
calculated using Eq. 1, the result of annual investment cost is €157/kW∙ year per 
installed capacity. The SCOP of heat pump is assume to be 3.5. Price of electricity is 
€84/MWh [38]. The cost of implementing direct electrical heating equipment is 
presumed to be near zero compared to lifespan of 20 years. 

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐×𝑎𝑎𝐿𝐿

𝐿𝐿
                 (5-1) 

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎: Annual investment cost per installed capacity of heat pump, €/kW ∙ year. 

𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐: Capital investment of heat pump, €1580/kW. 

a: interest rate of capital, 3.5%/year. 

L: Lifespan of heat pump, 20 years. 

The annual heating cost of a vulnerable user is calculated by using different price 
models. Cost of three alternative solutions are calculated based on the same user’s 
consumption pattern and a serial of technical assumptions. A DH user facing 
significant cost increase in the price model restructuring process was chosen 
according to our previous study [15] for the cost calculation. The annual costs of 
each alternative under different price models are illustrated in Figure 5-3 and Fig 
5-4. 

Firstly, the old-PM and new-PM are compared. Both consist of a Load Demand 
Component and an Energy Demand Component. Load demand component of old-
PM charges user €59/kW for user’s peak load demand in daily average, energy 
demand of old-PM is divided into two price levels: a lower price for energy 
consumption between May and September and a higher price (€48/MWh) for the 
rest of time. New-PM uses a subscription level in both load demand and energy 
demand level: user pays €77/MW for subscribed load demand (equals to 60% of 
user’s peak load demand in hourly average), for energy demand under the 
subscription level, user pays a lower price (€39/MWh) for energy consumption 
under the subscription level and higher price (€146/MWh) for consumption over 
subscription level.  

According to Fig 5-3(a), for the old PM, reducing the peak district heating load 
demand with direct electrical heating is the most economical alternative, which is 
31% cheaper than district heating under old-PM. Installing a heat pump and using 
direct electrical heating to cover the peak demand is the second best choice, which 
could reduce the annual cost by 22%. Installing heat pump to supply base demand 
and using district heating to cover the peak demand is not much different from 
stick with district heating, which even increases the cost by 2%.  

The rank of alternative solutions under new-PM is not exactly same as that under 
old-PM, as shown in Fig 5-3(b): heat pump combined with direct electrical heating 
becomes the most economical solution, which reduces the cost by 39,2%. It is 
slightly better than using direct electrical heating to cover the peak demand of 
district heating, which could reduce 39% of annual cost. Installing heat pump to 
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cover the base demand instead of district heating cannot achieve a cost reduction 
yet, which increases the cost by 3,6%.  

 

(a) Old-PM                           (b) New-PM 

Fig. 5-3 Cost comparison between Old PM and New PM for different alternative solutions. 

 

For the dynamic model based on LCOH, since a much lower heat price can be 
obtained, the alternatives don’t show the same annual cost savings, as shown in 
Fig 5-4. Using direct electrical heating to cover the peak demand of district heating 
is still the best alternative; whereas, its saving is much smaller compared to the old 
and new PMs, which are 19,1%, 19,6% and 25,9% respectively.  

 

(a) M-1                       (b) M-2 

 

(c) M-3 

Fig. 5-4 Cost comparison amongst M-1, M-2 and M-3 for different alternative solutions. 
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6 Concluding remarks 

District heating (DH) companies are facing several challenges during the 
upcoming years. A combination of higher operational costs, competition from 
alternative technologies benefiting from low electricity prices, as well as the need 
of providing more transparent price information to the end-users puts high 
pressure on many utilities.  

Marginal cost method has been widely used for heat pricing in Sweden as it is a 
deregulated market. A price model normally includes four components: fixed cost, 
capacity cost, energy cost and flow cost. Currently some DH companies have 
updated their district heating prices by increasing the capacity cost in order to 
encourage consumers to change their behaviors and, therefore, reduce the peak 
load and consequently the production cost. One problem is that the capacity cost is 
often based on the historical heat consumption data, and this may not reflect that 
peak load to be charged accurately in real-time. Meanwhile, the peak load may not 
happen at the same time for all customers; hence, charging a high capacity cost 
cannot solve the problem caused by the peak load. A good price model should be 
able to reflect the dynamic production cost accurately, therefore, motivate 
consumers to reduce the peak load and save energy at the same time. In addition, 
the heat price should be predictable and transparent. 

A novel dynamic price model has been developed based on the levelized cost of 
energy, which carefully considers the capital cost, O&M cost and other costs. Since 
the combined heat and power (CHP) plant produces heat and power 
simultaneously, the fuel consumption should be allocated for between electricity 
and heat production, which directly affects the cost for heat production. Three 
methods have been tested in this work, including allocating fuel according to 
energy and exergy of products and market method. Results show that the prices 
based on levelized cost of heat (LCOH) are much lower than those from the real 
price models, which implies there should be a potential to lower the heat price. The 
variation of LCOH follows the fluctuation of heat demand and therefore, the price 
based on LCOH can demonstrate the production cost more accurately. Whereas, its 
complexity, for example the allocation of fuel cost for the production of electricity 
and heat in a CHP system, may hinder its practicable application. Meanwhile, the 
dynamic operation hours of equipment and unpredictable maintenance cost could 
also introduce large deviations in the calculation of LCOH. 

Using artificial neural network for the prediction of heat demand has attracted 
more and more attention. A model based on Elman neural network (ENN) has 
been developed to predict the total heat demand in the DH network. Meanwhile, 
weather conditions, such as ambient temperature, wind speed and direct solar 
radiance are key input parameters. Their influences on the model accuracy have 
been studied. Results show that including wind speed can generally result in a 
lower overall mean absolute percentage error (MAPE) (4.43%) than including 
direct solar radiance (6.47%); while including direct solar radiance can achieve a 
lower maximum absolute deviation (71.8%) than including wind speed (81.53%). 
In addition, even though including both wind speed and direct solar radiance 
shows the best overall performance (MAPE=6.35%), ENN could not benefit from 
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the simultaneous introduction of both wind speed and direct solar radiance, 
according to MAPE. 

Price model reforming could lead to a significant change in the expense of 
customers and affect the selection of energy saving measures. The influences of the 
dynamic price model based on LCOH are compared with those of the two real 
price models. Due to the lower heat prices from the dynamic model, the heat 
expense of consumers would be lower than those charged by using the real price 
models. Three alternative solutions are assessed in this study: using direct 
electrical heating (DEH) to provide the peak heating demand combined with DH 
covering base demand; installing heat pump (HP) to cover base demand 
combining with DH or DEH to provide peak demand. Results show that due to the 
low electricity price currently, using DEH to cover the peak demand of district 
heating and combing DEH and HP can be more economical than DH. Compared 
with the real price models, the annual cost saving becomes smaller when the 
proposed dynamic price model is applied, which implies a better competitiveness.  
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A DYNAMIC PRICING MECHANISM 
FOR DISTRICT HEATING
A novel dynamic price model has been developed based on the levelized cost of 
heat. This model is expected to promote the competence of district heating and 
motivate consumers to reduce the peak load and save energy at the same time. 

Based on the predicted heat demand, the heat price can be determined, which is 
able to reflect the production cost accurately. Artificial neural network is a pro-
mising method for the prediction of heat demand and ambient temperature, 
wind speed and direct solar radiance are key input parameters. 

Price model reforming could affect the selection of energy saving measures. Due 
to the low electricity price currently, installing heat pump and using district 
heating to cover the peak demand would be the most economical alternative.

Energiforsk is the Swedish Energy Research Centre – an industrially owned body  
dedicated to meeting the common energy challenges faced by industries, authorities  
and society. Our vision is to be hub of Swedish energy research and our mission is to  
make the world of energy smarter!
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