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A DYNAMIC PRICING MECHANISM FOR DISTRICT HEATING

Foreword

Inspired by the findings and conclusions that came forth in an earlier project — the
business logic and business models of district heating — in the research
programme Fjarrsyn, many district heating companies reviewed and developed
their price models to better reflect the capacity called for by district heating
customers and consequently to better mirror the cost structure of the district
heating companies. In this process the idea of pricing the demand for heat power
as accurately as possible has gained foothold among district heating suppliers. The
study presented in this report takes the idea to its extreme and explores the
possibility of developing a mechanism for a wholly dynamic pricing of the
demand for heat power.

The project has been carried out by Hailong Lee, Jingjing Song and Fredrik Wallin
at the department of energy and environmental engineering at the academy of
business, society and engineering at Malardalen University.

The project been followed by a project reference group including Jan Andhagen
from Malarenergi, Emil Berggren from Tekniska Verken i Linkdping, Patrik
Holmstrom from Energiforetagen Sverige and Tommy Jonsson from Sala-Heby
Energi.

The project is part of the research program Fjarrsyn, which is financed by
Energiforetagen Sverige and the Swedish Energy Agency. The research in Fjarrsyn
intends to strengthen district heating and cooling, encourage the development of
competitive businesses and technologies and create resource-efficient solutions for
the sustainable energy system of the future, for the benefit of the energy industry,
the customers, the environment and the society at large.

Anders Ericsson
Chairman of the Market Council at Energiforetagen Sverige

Reported here are the results and conclusions from a project in a research program
run by Energiforsk. The author / authors are responsible for the content and
publication which does not mean that Energiforsk has taken a position.
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Sammanfattning

Fjarrvarmebranschen star infor flera utmaningar under de kommande aren. En
kombination av hogre driftskostnader, konkurrens fran alternativ
uppvarmningsteknik som gynnas av laga elpriser, samt ett behov av att ge mer
transparent och tydlig prisinformation till slutanvéndarna stéller hoga krav pa
manga fjarrvarmeforetag. Det generella syftet med detta projekt har varit att
utveckla och utvidrdera en dynamisk prismekanism som fortsatt kan framja
konkurrenskraftiga leveranser av fjarrvarme.

En bra prismodell ska kunna spegla den aktuella produktionskostnaden sa
noggrant som majligt, och déarfér motivera slutanvandarna att bade minska
effekttopparna och energiférbrukning. Samtidigt ska fjarrvarmepriset vara bade
forutsdgbart och transparent. En ny dynamisk prismodell som baseras pa
momentana produktionskostnaden av en kilowattimme (eng. levelized cost of
energy, LCOE) har utvecklats. Berdkningarna beaktar olika bidragande faktorer
som kapitalkostnader, drift- och underhallskostnader samt andra 6vriga
kostnader.

Jamfort med de nuvarande prismodellerna sa visar den foreslagna
prismekanismen en potential for att sanka varmepriset. Det dynamiska
varmepriset varierar med produktionskostnaden, som i sin tur beror av
viarmebehovet i den aktuella drifttimmen. Ett dynamiskt varmepris skulle darfor
kunna 6ka kundernas motivation att minska varmeforbrukning under systemets
effekttoppar. Komplexiteten uppstér exempelvis branslekostnader ska fordelas
mellan samtidig produktion av el respektive fjarrvarme, vilket kan hindra dess
praktiska tillimpning och samtidigt gora prissattningen svarare att forsta.
Varierande och temporar anvandning av vissa anlaggningar i kombination med
oforutsedda underhallskostnader kan &ven leda till stora avvikelser da det
momentana varmepriset (LCOH) berdknas.

Dynamiska prognoser av varmebehovet ligger till grund fér prismodellen.
Lastprognosen baseras pa ett neuralt natverk (ENN) som har tranats med
ingangsparametrar som utomhustemperatur, vindhastighet och direkt
solinstralning. Det genomsnittliga absoluta procentuella felet uppgar till cirka 6 %.

Att reformera prismodellerna kan vasentligt bidra till att forandra kundernas
fjarrvarmekostnader, och samtidigt paverka valet av energibesparande atgarder.
Tre alternativa uppvarmningslosningar har utvarderas i denna studie: Fjarrvarme
for basbehov i kombination med direktverkande elvarme for toppeffekter;
Véarmepump for basbehov i kombination med fjarrvarme eller direktverkande
elvarme for toppeffekter. De nuvarande laga elpriserna resulterar i att fjarrvarme
som kompletteras med direkt elvdarme for spetsbehov eller att anvédnda
varmepump for basbehov i kombination med fjarrvarme for spetsbehovet utgor de
basta ekonomiska alternativen jamfort med enbart fjarrvarme. Lénsamheten for
dessa tva teknikalternativ blir ligre med en ny dynamisk prismodell jamfort med
de befintliga prismodellerna. Detta indikerar att en dynamisk prismodell dr mer
konkurrenskraftig an de traditionella modellerna.
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Summary

District heating (DH) companies are facing several challenges during the
upcoming years. A combination of higher operational costs, competition from
alternative technologies benefiting from low electricity prices, as well as the need
of providing more transparent price information to the end-users puts high
pressure on many utilities. The general purpose of this project is to develop a new
dynamic pricing mechanism, which can promote the competitiveness of DH.

A good price model should be able to reflect the dynamic production cost
accurately and motivate consumers to reduce the peak load and save energy at the
same time. In addition, the heat price should be predictable and transparent. A
novel dynamic price model has been developed based on the levelized cost of
energy, which carefully considers the capital cost, O&M cost and other costs.
Comparing to the current real price models, it can reflect the production cost in a
better way and is more transparent. Meanwhile, the price based on levelized cost
of heat (LCOH) varies with the production, which is further determined by the
total heat demand; hence, it can influence the behaviors of customers, especially
during the peak price time. It is easy to understand; whereas, its complexity, for
example the allocation of fuel cost for the production of electricity and heat in a
CHP system, may hinder its practicable application. Moreover, the dynamic
operation hours of equipment and unpredictable maintenance cost could also
introduce large deviations in the calculation of LCOH. Dynamic prediction of the
total heat demand in the network is the basis for the dynamic pricing model. A
model based on Elman neural network (ENN) has been developed with the
ambient temperature, wind speed and direct solar radiance, as key input
parameters. Its overall mean absolute percentage error is around 6%.

Price model reforming could lead to a significant change in the expense of
customers and affect the selection of energy saving measures. Three alternative
solutions to DH are assessed in this study: using direct electrical heating (DEH) to
provide the peak heating demand combined with DH covering base demand;
installing a ground source heat pump (HP) to cover base demand combining with
DH or DEH to provide peak demand. Results show that due to the low electricity
price currently, using DEH to cover the peak demand of district heating and
combing DEH and HP can be more economical than DH. Compared with the real
price models, the annual cost saving becomes smaller when the proposed dynamic
price model is applied, which implies a better competitiveness.
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1 Introduction

A District Heating (DH) system is a centralized system that distributes steam/hot
water through a pipeline network to satisfy end-users” heat demands. The
centralized heat generation benefits from the higher efficiency and more advanced
control on pollutant emission. District heating is the most common way to
distribute heat in Sweden [1]. There are more than 200 DH companies with over
400 DH systems in Sweden. For multi-dwelling buildings and non-residential
premises DH accounts for 92% and 80% of the market share respectively. Sweden
has an ambition to reduce 20 % of the energy demand in the building sector by
2020 [1]. To achieve this goal, DH would play a significant role.

However, due to the continuous rise in cost of DH, it faces big challenges to further
improve efficiency, reduce cost and enhance profitability. The competitiveness of
DH systems for a particular building/house owner depends on three factors: (I) the
price of the DH, (II) the price of the fuel or electricity used to heat the building and
the expected increase in those prices, and (III) the efficiency with which that fuel is
used compared to the efficiency of the potential DH [2]. According to the Energy
Markets Inspectorate (EMI) [3], DH, geothermal heat pumps and wood pellets are
on the same competitive level for the typical multi-dwelling buildings in Sweden.

Real-time pricing (RTP) in the electricity sector has proved remarkably efficient in
demand-side management, increasing the profit of electricity suppliers and
improving the transparency in pricing mechanisms. Therefore, developing a new
heat pricing mechanism can be a key to achieve the sustainable development of the
heating market.

The general purpose of this project is to develop a new dynamic pricing
mechanism, which can promote the competence of DH. The specific objectives
include:

e Understanding the needs of both DH companies and customers more deeply
and identifying the problems about the current price models

¢ Developing new models that can predict the total heat demand in the network
more accurately. The forecasted total heat demand will provide the basis for
the determination of the dynamic price.

e Evaluating the impacts of the new price model on the income of DH
companies and energy expense of consumers.
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2  Current situation about heat pricing

The pricing mechanism defines the way, in which DH companies charge their
customers for their service. Due to the monopoly nature, the DH company
dominates in pricing of heat and the price elasticity is low in the heat market. The
overall cost of DH generally depends on three main factors: (1) the connection
costs for customers, (2) the costs of a distribution network, which depend on the
size of the DH network and its thermal loads, and (3) the production costs of
thermal energy.

2.1 DH PRICING IN A REGULATED MARKET AND A DEREGULATED
MARKET

Worldwide, there are two main types of DH market, namely the regulated and
deregulated. There are two representative methods used to price DH: the cost-plus
pricing method, which is often used in regulated DH markets, and the marginal-
cost pricing method, which is commonly used in deregulated heating markets [4].

2.1.1 Cost-plus pricing

Cost-plus pricing offers a number of advantages to sellers, buyers and regulators,
such as simplicity, flexibility and ease of administration. However, a regulated
market does not allow DH companies to compete with other heating solutions by
adjusting DH prices, while the subsidization of DH systems is often needed in
order to make DH as a competitive option as its alternatives, e.g. oil boilers, gas
boilers and electricity-driven heat pumps. The subsidy on DH systems is important
in terms of stabilizing local energy prices, developing local energy systems, saving
imports of energy, reducing ambient pollution, and creating jobs. The size of the
subsidy can be calculated by referring to the value of these goals [5]. However,
cross-subsidies may impact adversely on both the DH sector and other sectors [6].
In addition, the cost-plus method is usually based on the historical data of real
plants, which contains uncertainties when applied to the projection of future
situations.

Under a cost-plus pricing mechanism, DH companies have incentives to increase
profits by inflating costs, since permitted profits are usually related to costs [7]. The
DH companies would be punished and allowed for a lower level of permitted
profits, if they are operating on a lower cost than the reported level [6, 8].
Consequently, the cost-plus pricing method undermines suppliers’” incentives to
reduce costs and to upgrade their technologies. In addition to this, changes in real
fuel costs cannot be transferred to consumers due to the use of historic data, and
this prevents DH producers from generating enough profit to budget for necessary
maintenance and improvements. In the long run, DH tariffs based on the cost-plus
pricing approach will affect the efficiency of the DH market.
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2.1.2 Marginal cost pricing

A marginal cost is the cost of one more unit of product, which in this case is the
cost of generating one more unit of heat through DH [9, 10]. According to
Economic theory, the market price is obtained at the equilibrium point where the
total amount of heat supply is equal to the entire heat demand. Facing the
exogenous market price, a DH supplier can take a larger market share and gain
more profits by setting its price at a lower level than the market price. As the DH
price is based on the supplier’s marginal cost, every supplier is motivated to
reduce costs, promote efficiency, and invest in infrastructure and equipment.
Consequently, pricing DH according to marginal costs will benefit not only DH
producers, but also the environment in terms of reduction in CO2 emissions and
other pollutants. In practice, a marginal cost is usually calculated by splitting a
total cost into a fixed and a variable cost. The marginal cost is thus equal to the
additional unit of variable costs plus the depreciation of fixed costs. In this way,
the marginal cost approach provides a clear route to understanding and managing
the behavior of costs.

However, when a DH company has been determining DH price according to its
marginal costs, which in turn largely depend on variable costs, the company may
gain less profits than it would, for example, if the DH price is determined using the
cost-plus method. As a result, it may lead to a lower interest in investment and
maintenance, such as the electricity market in Sweden [11]. Furthermore, the DH
market in reality is never the textbook competitive market as presumed in
Economic theory, while a typical DH market is characteristically a natural
monopoly (see the detailed discussion above). Therefore, the optimal allocation of
resources cannot be achieved by simply pricing DH at its marginal cost, even in a
deregulated market. Although a competitive market environment can be
developed through bidding, it is almost impossible for bidders to bid according to
their marginal costs, due to imperfect information, as well as the availability of
alternative heating products [12, 13].

2.2 MARGINAL COST MODEL

The marginal cost (MC) has been commonly used for heat pricing in Sweden. In a
marginal cost-based pricing model, the total price normally involves two parts:
fixed cost and variable cost, as shown in Eq. 1.

_ dTQ) _ dFC+ve) _ do)
MC = a) aQ) Q)

21

where TC is total cost, FC is fixed cost, VC is variable cost and Q represents the
volume of heat production. VC mainly consists of energy cost, labor cost and other
variable operation cost, such as the cost for marketing. Energy cost or fuel cost can
be calculated as:

Fuel cost = Fuel price + Sulphur tax + NOx tax + Carbon tax + Energy tax (2-2)

For a DH system, heat can be produced in different ways, such as combined heat
and power system, heat pumps and oil/gas/biomass boilers. Their operations are
combined in order to meet dynamic heat demands in different weather conditions.

10
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Different technologies have different investment cost and energy efficiencies,
which further result in different operation costs.

According to Eq. 1, it is clear that FC is not really reflected by the marginal cost
since it is considered as a constant. In order to reduce the financial risks due to the
high investment cost, a fixed cost is usually added.

2.3 PRICE COMPONENT IN SWEDEN

The Swedish DH sector experienced a transition from a regulated to a deregulated
market in the past decades. Prior to the deregulation of the DH market on January
1, 1996, all DH plants and distribution networks were owned and operated by
Swedish municipalities. The DH companies were not allowed to make profits
according to Swedish law [14]. After deregulation, many municipalities sold their
DH companies to either the private sector or municipality- or state-owned large
energy companies.

A survey has been conducted to investigate the current price models adopted by
the REKO labeled DH companies in Sweden. More than 170 price models have
been collected. A price model normally includes four components: fixed cost,
capacity cost, energy cost and flow cost [15].

e Fixed cost is the fee that a user needs to pay each month for being connected to
the network. 65% of investigated DH companies have such a fixed component
in their price models.

e Capacity cost is charged to cover the cost of DH companies in order to
maintain a certain level of capacity for users’ peak demand, for instance,
investment costs of facilities. It is common to classify it as a kind of fixed cost.
The most primitive method (by 14% of investigated DH companies) is to use
consumers’ total consumption during a certain period of time (either the
previous year or the previous high peak period) to determine their capacity
needs. The most commonly used method (by 53% of investigated DH
companies) is called Category-Figure method, which is an engineering
approximation based on the primitive method, to differentiate different types
of users. It gives different consumption time (category-figure) to different user
groups and use it to determine the customer’s required capacity.

¢ Energy cost, as the variable cost, is included in all of the price models.
Primarily, 59% of DH companies use constant energy price. Seasonal energy
price is used by 37% of DH companies, which means the energy price is more
expensive in the winter time and cheaper during summer time. About 1% of
DH companies set their energy price according to the outdoor temperature,
which is generally a good indicator on the energy demand in the energy
system and this information could also be accessed easily by the general
public. About 2% of DH companies use subscribed energy scheme.

e Flow cost is, in principle, a cost charged on volume of hot water needed to
deliver the energy user consumes. It is usually a good motivation for the user
to improve the performance of their heat exchanger. But it is only adopted by
42% of DH companies

11
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24 PRICING DILEMMA

e Fixed cost vs. variable cost

A DH company would have financial risks if its DH price is predetermined for a
long time. A common way to reduce this financial risk is to divide the price into
two parts: a fixed component and a variable component [16]. A pricing approach
comprising a fixed component can reduce producers’ risks caused by fluctuations
in consumption. With the deregulation of the DH market, DH pricing is moving
towards a more consumer-oriented approach, in terms of more flexible pricing
options for consumers to choose. The main reason there is a preference for a fixed
charge is that heat demand fluctuates largely over a year, and a high proportion of
the operating costs of a DH system doesn’t change in a short run. Therefore, a fixed
charge can streamline the cash flow of producers.

The fixed charge usually covers the cost related to the investment cost. Therefore, it
is common to link the fixed cost to the heat capacity of the users. However, on the
contrary, consumers always prefer a high share of the energy cost, which can
increase the flexibility of heat consumption and price transparency. This means
that the pricing mechanism, especially the magnitude of the fixed component,
should be decided to balance the needs of producers and requirements for
consumers.

e Historic consumption vs. current heat demand

In order to improve the competitiveness of DH, nowadays, some DH companies
are reforming their price models and the capacity cost receives the most attention.
The purpose of changing the capacity cost is to encourage consumers to reduce
their peak heat capacity and therefore DH companies can reduce the investment
cost and production cost, which may lead to a lower heat price. The charge of
capacity cost is usually determined according to the historical heat consumption
data. However, the climatic condition changes year by year, resulting in a dynamic
change of capacity. Even though a correction based on the normal year can be
introduced, there could still be a big deviation in the determination of the heat
capacity, because the yearly degree-day may not accurately reflect the peak heat
capacity.

e Peakload vs. individual peak consumption

The intention of using capacity based pricing is to motivate the consumers to
change their behaviors to reduce the peak load on a long-term basis.
Unfortunately, this may not solve the problem of high peak loads in the system.
Different consumers have different consumption profiles; and their individual
peak consumption may not occur at the same time. Therefore, reducing the
individual peak consumption may not really reduce the peak load.

e Complex price model vs. pricing transparency

There are a couple of methods to determine the heat capacity demand for charging
the capacity cost. One is the assigned consumption hour method, which
determines the capacity by dividing the customer’s annual consumption by
assigned consumption hours. The assigned consumption hour is a constant but

12
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different for different types of customers. However, how it is obtained is not fully
clear. In addition, the capacity cost is charged as capacity price multiplied by
capacity, (e.g. a capacity price [SEK/kW] multiplied by capacity [kW]). The
determination of capacity price is not easy to understand. It is commonly assumed
that the income from the capacity cost accounts for 30-50% of total income.

2.5 NEED OF DYNAMIC PRICING MECHANISMS

As discussed above, the big concern coming from the high capital cost is the main
driving force for charging a higher capacity cost in order to motivate consumers to
reduce their peak consumption. However, due to the dynamic change of ambient
temperature, the purpose may not be achieved in a short term. Meanwhile,
charging a higher capacity cost doesn’t contribute much to encourage consumers
to save energy. From the perspective of strengthening sustainability, a good price
model should be able to:

e Reflect the dynamic production cost accurately

e Motivate consumers to reduce the peak load and save energy at the same time
e Be predictable

e Be transparent and easy to understand

A dynamic pricing mechanism based on the prediction of system heat demand
becomes more attractive with the above criteria in mind. Based on the demand
prediction, DH companies could more accurately foresee the peak load and
estimate the extra cost for covering the peak load. By charging a higher price for
the peak, it should be possible to reduce the peak load. Since most of the heat
productions are based on CHP, a dynamic heat price can also cope with the
dynamic electricity price in a better way. The dynamic pricing model can also
provide more transparent information to consumers, which has been proved to be
an effective way to achieve energy savings in the domestic sector. By
understanding the pricing mechanism, consumers can change their behaviors in
order to reduce the heat consumption and save the cost.

13
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3  Dynamic pricing mechanism

3.1 LEVELIZED COST OF HEAT

The levelized cost of energy is a popular methodology for evaluating the economic
competitiveness of electricity generation technology over the long term [17]. This
approach computes the average cost of energy production over the lifetime, taking
into consideration main cost components, such as investment, operations and
maintenance (O&M), fuel, and decommissioning costs. Different from the marginal
cost model, in which the fixed cost is charged on a period basis, in the levelized
cost of heat (LCOH) model, the fixed cost is embedded in regular DH prices. The
investment of various types of technology is allocated over their life time and the
cost components at a specific time point include the cost for the actual technologies
in use. Therefore, there is no need to include those different cost components
presented in Chp 2.3. The main advantage of the LCOH-based method lies in its
flexibility and transparency; while the biggest challenge for calculating LCOH is
how to estimate the heat production during the lifetime. LCOH-based prices are
usually calculated on an hourly basis:

LCOH = LCOH,y; + LCOHpyc + LCOHogy
(3-1)

(TICt+FOM+VOM)x(1+1)t

%
LCOHyjc + LCOHygy = 2t S, HEAT,

(3-2)

where TIC is the total investment cost, FOM and VOM are fixed operation &
maintain cost and variable operation & maintain cost respectively, r is the interest
rate, t is the life time and Y, HEAT, is the total heat production during the life time.

For different heat production technologies, LCOHs are different. The overall
LCOH is calculated via combining LCOH for each technology according to their
heat productions:

LCOH = Y™, (LCOH; =iy (3-3)

! S Heat;

3.2 LCOH FOR CHP

Since the CHP plant produces heat and power simultaneously, the fuel
consumption should be allocated for between electricity and heat production,
which directly affects the cost for heat production.

Ff = (1 — ay)xFuel cost (3-4)
FI' = ap,xFuel cost (3-5)

where Ff and F[! are the fuel costs of electricity and heat respectively.

There are a number of principles used to allocate joint costs between heat and
power for CHP plants [18]. There following three methods have been tested in this
work:

14
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(M-1) Setting the price of electricity, and then calculating the cost of heat
accordingly. All fuel costs are allocated to heat. The income from selling electricity
at the market price is deducted from the total cost.

(M-2) Allocating the costs in proportion to the amounts of generated heat and
electricity. To simplify the calculation, it is assumed that electricity and heat are
produced with the same efficiency in a CHP plant. Therefore, the total fuel costs
can be divided into heat costs and electricity costs according to the electricity-to-
heat ratio. Sweden applies this method to energy taxation on CHP plants.

(M-3) Allocating the costs in proportion to the exergy of the generated heat and
electricity. Another way to consider the influence of efficiency is to use the concept
of exergy, which reflects the quality of energy and can be calculated using the laws
of thermodynamics. Since the product of electricity has higher exergy than the
product of heat, this method will normally attribute a relatively large portion of the
total costs to electricity generation.

As aforementioned, the fuel allocation should only be applied to the fuel that is
used to product heat and electricity. However, in the CHP system, fuel is not
always used for combined production as shown in Fig 3-1. For example, at a high
heat demand, steam can bypass the turbine to produce more heat. The fuel used to
produce bypass steam should not be allocated between heat and electricity, as it is
used only for heat production. In order to accurately calculate the cost for both
heat and electricity production, heat produced in the CHP system can be further
divided into H_CHP and H_HO, which correspond to the heat produced in
combination with electricity and the heat produced from bypass steam
respectively. Meanwhile, extra heat can be recovered from FGC, which is usually
released to the ambient and not included in the heat production of CHP. Therefore,
the fuel of H_FGC can be ignored.

Q_Steam

H_FGC

Fig 3-1 Energy flow in a CHP system

3.3 CASE STUDY

LCOH was calculated for a real DH system, which consists of a CHP plant, a
biomass boiler, and a bio-oil boiler. Detailed input data and assumptions are listed
in Table 3-1.

E - oroifarck
15 Energiforsk
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Table 3-1 Input data and assumptions

Parameter Unit Value
CHP Boiler MWth 150
Steam turbine (ST) MWe 39
Designed heat power ratio 1,82
Min partial load of ST % 25
FGC MWmax 32
Boiler efficiency % 85
CHP TIC MUSD 12,1
Operating hour of CHP hr 7500
Biomass boiler MWsth 66
Biomass boiler TIC MUSD 3,7
Bio-oil boiler MWth 24
Bio-oil boiler TIC MUSD 1,98
Lifetime yr 20
Interest rate % 8
Biomass price USD/kWh 0,02
Electricity price USD/MWh 2,9
Bio-oil price USD/kWh 0,055
Profit % 8
e V-1 M-2 M-3
7
5}
= 5
=4
et
T 4
(NN}
v
- 3
@]
Q
-1 2
1
0
0 50 100 150 200 250 300

Heat production MW

Fig 3-2 Overall LCOH of DH system

Figure 3-2 shows the calculated LCOH at different heat capacities. In general,
LCOH increases along with the increase of heat capacity no matter which model is
used to allocate the fuel cost. CHP, which is normally provides the base load, has
low production cost; on the contrary, the biomass boiler and bio-oil boiler, which
are used to cover the peak load, have relatively high production costs. The high
LCOH at very low heat capacity is mainly due to that at a demand lower than 25%

16
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of CHP capacity, CHP is not in operation. Instead, biomass boiler is used.
Meanwhile, the high LCOH of biomass and bio-oil boiler primarily comes from the
short operation hours, which results in a high fraction of TIC in LCOH. For bio-oil
boiler, the high LCOH is also owing to the high fuel cost.

Fig 3-3 shows the calculated LCOH for CHP. Different methods, which are used
for allocating the fuel cost for productions of power and heat, result in different
LCOH_CHP. In general, there is a clear drop for all methods when FGC is
introduced in heat production. This is mainly due to that the heat produced from
FGC doesn’t require extra fuel. Therefore, when the cost remains the same,
producing more heat gives a lower production cost. For M-1 and M-2, LCOH goes
up when bypass is introduced. This is owing to more fuel allocated for heat
production as electricity production is less. For M-3, due to the high fraction of the
capital cost in LCOH, H_CHP has a higher cost than H_HO. Therefore, when less
heat is produced from CHP and more heat is produced from bypass, LCOH_CHP
decreases.

0,3

LCOH (SEK/kWh)
“_CD
%]

0,1

18 38 58 78 98 118 138
Heat production MW

Fig 3-3 LCOH of CHP

Based on LCOH, dynamic heat price can be obtained at dynamic heat demand by
adding a profit in LCOH. During July 20 to Aug 20, CHP is assumed to be shut
down for maintenance, and the biomass boiler is usually used as an alternative. Fig
3-4 compares the prices from different price models at different heat demands. Old
PM and New PM are two real price models, which are based on seasonal fuel cost
and subscribed heat capacity [15].

Different from the LCOH methods above, district heating companies use another
approach in their daily practice. According to an earlier price model survey [15],
they allocate more than 95% of their income in two different components based on
their cost structure: the Energy Demand Component (EDC) and the Load Demand
Component (LDC).
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The EDC is used to cover the production cost of district heating, which is mainly
the cost of fuel, taxes and operating costs, which charges district heating user a
certain amount for each kWh of heat consumption.

LDC is used to cover the cost to the district heating company to maintain a certain
level of capacity for users’ peak demand, e.g. for investment costs of facilities, etc.
Since the capacity reserved for a specific user is related to the user’s peak demand,
district heating companies usually set a price for each kW of peak demand (usually
in SEK/kW), and use user’s peak demand as a parameter to charge users.

e Old PM (Seasonal Price model)

One of the commonly used price model is the seasonal price model, this model has
a LDC based on users” highest measured daily average demand in one year, and a
two-level seasonal energy price (higher during winter and lower during summer)
in EDC to differentiate consumptions in different period.

Under this model, a user’s district heating cost is expressed as:
E= Penergy.w ><Cw + Penergy.sxcs + Pload ><Lpeak (3'6)

Penergy.w: Energy price during winter season, SEK/kWh.
Penergy.s: Energy price during summer season, SEK/kWh.
Cw: User’s winter district heating consumption, kWh.
Cs: User’s summer district heating consumption, kWh.
Pioad: Load demand price, SEK/kW.

Lypeak: User’s peak demand (daily), kW

e New PM (Subscription Price Model)

Other than the commonly used Seasonal Price Model, there are several newly
emerged price models been adopted by large district heating companies such as
Fortum in Stockholm. Similar to the seasonal price model, the LDCComponent in
this model is also based on the peak demand of users, except in hourly basis. The
EDC, on the other hand, is based on users instant demand level: the district heating
company suggests a subscription level in proportion with the user’s peak load
demand, users are entitled to pay a lower price (so called base price) for their
energy consumption below the subscription level (base load); however, peak
energy consumption above the subscription level is charged at a higher price (so
called peak price).

User’s cost is calculated using the formula below.

E= Penergy.bxcb + Penergy.pxcp + PloadXLpeakxa (3'7)

Penergyb: Base energy price (subscribed part), SEK/kWh.

Penergy.p: Peak energy price (exceeded part), SEK/kWh.

Cub: User’s base load, kWh.

Cp: User’s peak load, kWh.

Pioad: Load demand price, SEK/kW.

Lypeak: User’s peak demand (hourly), kW

a: the subscription level, proportion of base load plant’s capacity compared with
system’s total capacity, %.
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Table 3-2 Price-levels of Price Models in use
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Seasonal Model

Price level for Energy Demand Component in summer
(SEK/kWh)

Price level for Energy Demand Component in winter
(SEK/kWh)

Price level for Load Demand Component
(SEK/kW)

0.253

0.455

560

Subscription Model

Price level for Energy Demand Component base
(SEK/kWh)

Price level for Energy Demand Component peak
(SEK/kWh)

Price level for Load Demand Component
(SEK/KW)

0.369

1.386

729

Both Old-PM and New-PM are not dynamic price models. To generate the hourly
price for the real price models, 638 user’s consumption data has been used in the

calculation. Each user’s hourly costs on EDC are calculated according to the energy

consumption and the energy price level during that hour. The annual cost on LDC
is first calculated based on the user’s peak demand and the load price level, and
then evenly distributed into each hour of the year. The average hourly price then is
calculated by adding up each user’s hourly cost on both EDC and LDC and then

divided by the total consumption.
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Fig 3-4 Heat price from different price models at different heat demands

It is clear that the prices based on LCOH are much lower than those from the real
price models, which implies there should be a potential to lower the heat price.
Meanwhile, LCOH can reflect the variation of heat demand in a better way and
effectively cover the high cost at the peaks. It is also interesting to see that the
prices at low heat demands, for example in summer, are still quite high. For the
dynamic model based on LCOH, since CHP is shut down during summer and
biomass boilers are used instead, the high fuel cost results in a high price.
Meanwhile, for the two real price models, the high price during summer time is
majorly due to the fixed LDC, which is not allocated according to the energy
consumption but allocated based on time. That means the cost of LDC is a constant
value in each hour, to calculate the average price for each kWh energy
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consumption, it has to be divided by the total consumption. So when the
consumption is very low, this part will contribute a lot to the average price. This
might seems abnormal but reasonable for the energy company, because when they
set up the price, it is impossible to foresee how much energy they are going to sell,
and the maintenance are more or less irrelevant to the total consumption. Hence to
allocate this part of cost into energy consumption means higher risk, so if allocate
these fixed costs into energy consumption, they are kind of forced to raise the price
to cover the possible risk (even though a higher profit is not even the main goal
here).

34 MODEL COMPARISON

Table 3-3 compares the characters of different price models. In general, the price
model based on seasonal fuel cost is simple to understand. As the fuel cost
accounts for the major part of the heat price, it can also reflect the dynamic
production cost. For the price model based on subscribed heat capacity, it is largely
determined the peak demand of the customers. Therefore, it can effectively
motivate customers to reduce the peak load. Nevertheless, such a model is difficult
be understand and is less transparent. For the price model based on LCOH, the
price varies with the production cost, which is further determined by the demand;
hence, it can motivate customers to reduce the heat consumption, especially during
the peak time. It is also easy to understand but its complexity of calculation results
in big uncertainties of the cost.

Table 3-3 Characters of different price models

Seasonal fuel cost Subscribed heat LCOH based PM
(e.g. Old PM) capacity (e.g. New (e.g. M-1, M-2,

PM) and M-3)
Simplicity ++ - -
Predictable - - +
Transparent + -- +
Reflecting the dynamic + + ++
production cost
Reflecting the dynamic heat -- - ++
demand
Motivate consumers to reduce - ++ ++
the peak load
Motivate consumers to save + - ++

energy
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4 Prediction of the total heat demand

In general, there are two types of models used for predicting the heat demand:
physical models, which calculate the heat loss based on the principle of heat
transfer; and statistic models, which correlate the demand to some factors, such as
weather data, based on large amount of metering data. Evolving technologies
about smart meters and smart energy network open up new opportunities,
allowing energy companies to do things in a better way or do things they never
could before, such as better understanding customer segmentation and behavior,
shaping customer usage patterns, improving the reliability, optimizing unit
commitment and more [19]. Hence, with the development of heat metering, the
statistic models attract more and more attention in the prediction procedure, due
to its ability to reflect the sociological parameters such as consumer behaviors. For
example, ANN models, one type of statistic models, have been used to predict the
heat demand and shown the ability to produce accurate predictions [20].

4.1 MODEL DESCRIPTION

A model based on Elman neural networks (ENN) was developed to predict the
heat demand. Elman neural network [21-22], initially proposed for speech
processing problem in 1990 by J. L. Elman, is a global feed forward local recurrent
neural network. An ENN generally comprises four levels: the input, the hidden,
the context, and the output layers. The structures of input, hidden, output layers
are similar to normal feedforward neural network. The role of context layer nodes
is to store the output values of the hidden layer nodes, which is equivalent to the
time delay operator or the state feedback [23-24]. The model of Elman neural
network is represented as follows:

x1(k) = flwtu(k — 1) + w x4 (k)] (4-1)
x;(k) = flwix;_y(k — 1) + wx,;(K)],i = 2,3,-,s (4-2)
X (k) =x;(k—1),i =23,:,s (4-3)
y(k) = glw**xs (k)] (4-4)

where s is number of hidden layers, u(k) is the input of the model, x; (k) and x; (k)
are the output of context layer i and hidden layer i, y(k) is the output of output
layer, w' is the connection weight matrix between the input layer and the hidden
layer 1, w' is the connection weight matrix between the hidden layer i and the
hidden layer (i-1), w™*?! is the connection weight matrix between the hidden layer
n and the output layer, respectively, w is the connection weight matrix between
the hidden layer i and the context layer i. f(-) and g(-) are transfer functions, f(*) is
usually sigmoid, tangent sigmoid or logarithm sigmoid transfer function, and g(-)
is usually a linear transfer function. The structure of ENN with multiple hidden
layers is shown in Fig 4-1.
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Fig. 4-1. The structure of a typical Elman neural network (ENN)

To investigate the impact of the length of slide window on heat demand
prediction, data in consecutive 2, 4 and 8 hours are combined to create a super-
vector, respectively. A step size, which is set as a half of the length of slide
window, is selected to update the super-vector. For example, if 4 hours is chosen as
the length of slide window, then the step size will be 2 hours, the first super-vector
will contain the data from 1st to 4t hours and the second super-vector contains the
data from 3rd to 6th hours. To investigate the impact of the number of hidden
layers in ENN on heat demand prediction, 4 and 8 layers are selected as the
number of hidden layers.
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The training steps of ENN are as follows [25]:

AW =516 xg (k) i = 1,2, ,m;j = 1,2, ,n
Awf = 1,8 xy;(k) j = 12,0, ;1= 1,2,,m;p = 2,3,
AWI = n151uq(k - 1)] = 1!2!"'!n;q = 112;'”,7' (4_5)

(AW = 1ep B (67w, PIERED =12, ml = 12,0, mp = 23,05
}l

DN CARTASTNO N ES WS (4-6)
85 = g (k) — yi (k) g’ () (4-7)
ax’(k) =f Oxk-1D+a a"’(k Di=12,ml=12-,m;p=23",s (4-8)

]l

where 1, and 1¢,(p = 1,2,---s + 1) are the training steps of w? and w°?, m is
number of the output layer nodes, n is number of the hidden layer nodes, r is
number of the input layer nodes, and s is number of the hidden layers.

The Z-Score or named standard score is used as the normalization method before
training step to preprocess measured data and represented as follows:

o _ Xi—E(x) . _ _

X = e 1,2,-,n (4-9)
E(x) = lz;‘ 1% (4-10)
D(x) = il — E(x))? (4-11)

where x; is an element of x = (x1, x5, -, x,) which is the measured data, X; is an
element of X = (%4, X,, -**, X,) which is the normalized data, E(x) and D(x) are the
sample mean and the unbiased sample variance of x, 1 is length of x and %.

To evaluate the model performance, the mean absolute percentage error (MAPE),
which is defined as Equ 4-12, as indicator:

MAPE = tyn P y’”'x1000/ 4-12
i=1

Maximum absolute deviation (MAD) is another important indicator, which is
defined as:

MAD = Max ('”yyz”l ><100°/) (i=1..n) (4-13)

4.2 KEY INPUT FACTORS

Statistic models need to correlate heat demand to some parameters, such as
weather conditions, building type and time of the day [26] etc. The ambient
temperature is the most important weather condition, since it determines the
temperature difference between indoor and outdoor, which is a key driving force
for heat transfer [27-28]. However, it is not sufficient to obtain satisfying results by
considering only ambient temperature. In order to further improve the accuracy of
prediction, existing studies have tried to consider other weather conditions in
predictions, such as wind speed and direct solar radiance. For example,
Michalakakou et al. involved direct solar radiance as one of the inputs in an
artificial neural network (ANN) model to forecast the heat demand in residential
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buildings [29]. Unfortunately, the effect of direct solar radiance on the prediction of
energy consumption was not carefully examined. Yang et al. combined the
numerical weather prediction (NWP) with an ANN model for the projection of
heat load, in which both direct solar radiance and wind speed were taken as inputs
[30]. Kusiak et al. identified wind speed as an important parameter in predicting
building energy demand [31]. Fu et al. verified the importance of direct solar
radiance on the thermal load of a micro DH network [32]. In contrast, there are also
researchers who argued that wind speed could be ignored in the prediction of heat
demand [33-35]. In general, existing studies have recognized the effects of wind
speed and direct solar radiance on the heat demand of buildings, while their
specific impacts on heat demand in buildings have not been extensively examined,
especially in a quantitative way. In order to achieve a high accuracy of prediction,
the parameter that has a greater impact on the heat demand should be given a
higher priority in the model. Therefore, the impacts of direct solar radiance and
wind speed on heat demand in buildings are compared in order to identify the
most important parameters.

Hourly measured data during the period 2008-2011 were collected from a utility
company, including heat demand, ambient temperature, direct solar radiance, and
wind speed. Short term and long term predictions of heat demand were
implemented to investigate the performance of ENN. In short term predictions, the
data from October 2008 to February 2009 (five months) were used for model
training and those on March 2009 (one month) were used for model validation. In
long term predictions, the data in 2010 (one year), from 2009 to 2010 (two years)
and from 2008 to 2010 (three years) were used for model training and those in 2011
(one year) were used for model validation. Due to the difference of heat demand in
working day and non-working day, this work focuses on working days only in
order to achieve a higher accuracy.

To evaluate the impacts of wind speed and direct solar radiance on the prediction
of heat demand, respectively, four datasets were created for Elman neural network
training, which details are listed in Table. 4-1.

Table 4-1. Dataset description

Ambient Direct solar
Heat demand temperature radiance Wind speed
Dataset A v v X X
Dataset B v v v X
Dataset C v \ X v
Dataset D v v v

The ENN model is trained by the data about the total heat production from 2008 to
2010, based on which dataset A, dataset B, dataset C or dataset D are extracted.
Correspondingly, four ENN models are obtained, which are renamed as ENN-A,
ENN-B, ENN-C and ENN-D. They used temperature, temperature and the direct
solar radiance, temperature and the wind speed, and temperature, the direct solar
radiance, and the wind speed as inputs respectively. Fig 4-2 compares the
measured and predicted heat demand (in MW), and Table 4-2 lists the
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corresponding MAPE and MAD. According to the results, all models are capable
to reflect the change of heat demand and predict the heat demand with MAPE less
than 6.6%, of which ENN-D shows the best accuracy with MAPE=6.35%. It is also
clear that the introduction of direct solar radiance and wind speed has positive
impacts on the performance of Elman neural network as ENN-B, C and D have
smaller MAPE than ENN-A. Comparatively, the inclusion of wind speed results in
a better prediction accuracy than that of the direct solar radiance. This implies that
wind speed is a more important parameter. Meanwhile, the introduction of both
wind speed and direct solar radiance simultaneously can further improve the
model accuracy. Table 4-2 also presents the maximum absolute deviation (MAD) of
different models. It is clear that compared to ENN-A, including direct solar
radiance and wind speed can reduce MAD. Meanwhile, including direct solar
radiance is more effective than including wind speed to reduce MAD, even though
including wind speed (ENN-C) can result in a lower MAPE.
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Fig. 4-2 Measured and predicted results (in MW) of the total heat demand

Table 4-2. MAPE and RMSE of different models

Model MAPE MAD

ENN-A 6.50% 91.6261
ENN-B 6.47% 71.8131
ENN-C 6.43% 81.5368
ENN-D 6.35% 70.6640

Fig 4-3 shows the distribution of absolute percentage errors. For all models, the
most of errors (>74%) is between -5%~5%. However, it is worth to note that
although ENN-A has the highest MAPE, it has the most points in the rage of -
5%~5%. Meanwhile, there are more points which heat demand was under-
estimated than those which heat demand was over-estimated for all of the models.
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Fig. 4-3 Distribution of absolute percentage errors

In order to further understand the error distributions, MAPE and MAD of different
models were also calculated at different heat demands and results were listed in
Table 4-3 and 4-4. For all of models, MAPE decreases, while RMSE increases with
the increase of heat demands. However, direct solar radiance and wind speed may
have different influences at different heat demands. According to Table 4-3, as very
low demand (0~150MW), it is more beneficial to include wind speed (ENN-C);
while in the demand of 150~300MW, including direct solar radiance (ENN-B) has
the lowest MAPE. In addition, despite that ENN-D has the lowest overall MAPE, it
doesn’t always have the lowest MAPE at different heat demands, actually it only
has the lowest MAPE in the demand range of 300~450MW.

Table 4-3. MAPE of different actual heat demand ranges

heat demand (MW) ENN-A ENN-B ENN-C ENN-D
0~150 8.95% 8.87% 8.73% 8.83%
150~300 4.95% 4.93% 5.06% 4.97%
300~450 4.14% 4.13% 4.06% 4.04%
>450 3.89% 3.71% 3.63% 3.66%

Table 4-4. MAD of different actual heat demand ranges

heat demand (MW) ENN-A ENN-B ENN-C ENN-D
0~150 28.5977 26.4968 26.5604 23.7552
150~300 46.4071 55.1570 52.5413 54.5364
300~450 91.6261 71.8131 81.5368 70.6640
>450 48.5284 43.9760 46.3392 47.8068

The influence of parameters on MAD is not consistent at different heat demands.
As illustrated in Table 4-4, including direct solar radiance can reduce MAD except
in the demand range of 150~300MW and it is more effectively than including wind
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speed. Moreover, similar to the results about MAPE, including both direct solar
radiance and wind speed does not necessarily result in the lowest MAD.

The distribution of absolute percentage errors was also broken down at different
heat demands and shown in Fig 4-4. Obviously, no matter what the heat demand
is, the most of errors of all models are in the range of -5%~5%, which is similar to
the overall error distribution. Comparatively, for the heat demand of 0~150MW,
the fraction of the points with errors larger than 10% or lower than -10% is much
higher. That is the reason that all models have the worst MAPE.
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Fig. 4-4 Distribution of absolute percentage errors at different heat demand

As shown in Table 4-3 and 4-4, ENN may not benefit from the introduction of both
wind speed and direct solar radiance simultaneously. This might be due to the
following reasons: 1) the effect of one factor is already included into the other one
(e.g., the effect of wind on the demand is reflected by the temperature), hence, it is
not necessary to include redundant information in the analysis. This should be
verified further in the future; 2) For ENN, there are different ways when
integrating multi-factors. In order to further improve the ENN, advanced fusion
methods may be applied. For example, with the principle of hierarchical neural
network, two ENNs, each one with a single factor, can be trained separately. Then
the two trained ENNSs can be combined to get an ENN model for prediction.
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4.3 DISCUSSION

It has been well recognized that heat demand is affected by social behaviors
obviously. In our previous work, we noticed that the heat demand in summer isn’t
really affected by the ambient temperature, as shown in Fig 1, which implies that it
is strongly affected by social behaviors. In order to consider the customers’
behavior accurately, other parameters rather than climatic parameters should be
included. For example, Dotzauer [32] constructed a model based on the premise
that heat demand is affected by outdoor temperature and different consumer
behaviors, which are tightly related to the time in a day. We also investigated the
impacts of building type on the prediction of heat demand and found that
categorizing buildings according to their functions represents a more effective way
to improve the model performance. Nevertheless, the current classification of
buildings is mainly done according to the function of building. Little work has
been done about user clustering according to heat demand.

Temperature °C Total Heat Demand (800+users) MW

0 5 10 15 20 25 30 0 5 10 15 2 25 20

——12-08-02 Thursday ~ —— 14-08-04 Monday —— 120802 Thursday ~ —— 14-08-04 Monday

Fig 4-5 Impacts of social behaviors on heat demand in summer

Data corruption about heat demand has already been identified from our previous
work, as shown in Fig 4-6. Abnormal data points have been found from both the
production side (as shown in Fig 4-6(a)) and the consumer side (as shown in Fig 4-
6(b)). Along with the development of smart metering technologies, more and more
data become available; hence, there is an urgent need to develop a method that can
cleanse the heat demand/production data systematically. However, no work has
been done about data cleansing regarding heat demand. The data quality has been
the bottleneck for developing more accurate models.

Heat demand — from usar side (MW)

— 2010 — 2012 — 2014

(a) heat production (b) aggregated heat consumption

Fig 4-6 Abnormal data examples

29



A DYNAMIC PRICING MECHANISM FOR DISTRICT HEATING

5 Influences of new price model

Price model reforming could lead to a significant change in the expense of
customers. It can also affect the selection of energy saving measures. In this
chapter, the influences of the two real price models introduced in Chp 3 and the
dynamic price model based on LCOH are compared.

5.1 INFLUENCES ON CONSUMERS

Fig 5-1 shows the heat demand and expenses under different price models for a
typical customer of multi-family house. In general, the expense changes with heat
demand no matter which price model is applied. For the two real price models
(Old PM and New PM), since both models include the energy component, when
the heat demand varies, the cost also varies. For the dynamic models based on
LCOH, the cost is related to the heat demand more closely, hence, the expenses
vary with the demand more obviously.
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Fig 5-1 heat demand and expenses of a typical customer of multi-family house

From Fig 5-1, it is also clear that in most of the cases, the expenses calculated with
the dynamic price model are lower than those calculated with the real price
models. It implies that there could be a big potential to further lower the price.
However, it should also be noted that even though the labor cost and profit have
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been considered in the dynamic model, due to lack of detailed real data, there may
be a big deviation from the assumed values, which can also result in a big
difference. Nevertheless, for the peak demand, dynamic price models result in a
higher cost than the real price models, and the difference is bigger at a higher peak
load. Comparing the new PM and the old PM shows that introducing an hourly
capacity load component results in a higher expense at higher heat demand, for
example in winter; while a lower expense at a lower heat demand, for example in
summer.

For other types of users, such as Office&school, Commercial buildings,
Hospital&social buildings and industry, the influence of price models is quite
similar.

5.2 INFLUENCES ON SELECTING ENERGY SAVING MEASURES

Three alternative solutions are considered in this study: using direct electrical
heating (DEH) to provide the peak heating demand combined with DH covering
base demand; installing heat pump (HP) to cover base demand combining with
DH or DEH to provide peak demand, Fig 5-1 shows the consumption profile of
each alternative. The annual cost of each solution is the sum of DH cost, electricity
cost and annual investment cost for HP installation.
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Fig. 5-2 Consumption profile of different heating solutions
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The capacity of heat pump is dimensioned to achieve the optimistic annual cost in
each solution that involves heat pump. The capital investment of heat pump is
presumed to be €1580/kW per installed capacity [36], lifespan is 20 years, and
interest rate is 5% [37]. The annual investment cost of heat pump could be
calculated using Eq. 1, the result of annual investment cost is €157/kW- year per
installed capacity. The SCOP of heat pump is assume to be 3.5. Price of electricity is
€84/MWHh [38]. The cost of implementing direct electrical heating equipment is
presumed to be near zero compared to lifespan of 20 years.

L
Cannuar = Icar% (5-1)
Cannuait Annual investment cost per installed capacity of heat pump, €/kW - year.

Icqp: Capital investment of heat pump, €1580/kW.
a: interest rate of capital, 3.5%/year.
L: Lifespan of heat pump, 20 years.

The annual heating cost of a vulnerable user is calculated by using different price
models. Cost of three alternative solutions are calculated based on the same user’s
consumption pattern and a serial of technical assumptions. A DH user facing
significant cost increase in the price model restructuring process was chosen
according to our previous study [15] for the cost calculation. The annual costs of
each alternative under different price models are illustrated in Figure 5-3 and Fig
5-4.

Firstly, the old-PM and new-PM are compared. Both consist of a Load Demand
Component and an Energy Demand Component. Load demand component of old-
PM charges user €59/kW for user’s peak load demand in daily average, energy
demand of old-PM is divided into two price levels: a lower price for energy
consumption between May and September and a higher price (€48/MWh) for the
rest of time. New-PM uses a subscription level in both load demand and energy
demand level: user pays €77/MW for subscribed load demand (equals to 60% of
user’s peak load demand in hourly average), for energy demand under the
subscription level, user pays a lower price (€39/MWh) for energy consumption
under the subscription level and higher price (€146/MWh) for consumption over
subscription level.

According to Fig 5-3(a), for the old PM, reducing the peak district heating load
demand with direct electrical heating is the most economical alternative, which is
31% cheaper than district heating under old-PM. Installing a heat pump and using
direct electrical heating to cover the peak demand is the second best choice, which
could reduce the annual cost by 22%. Installing heat pump to supply base demand
and using district heating to cover the peak demand is not much different from
stick with district heating, which even increases the cost by 2%.

The rank of alternative solutions under new-PM is not exactly same as that under
old-PM, as shown in Fig 5-3(b): heat pump combined with direct electrical heating
becomes the most economical solution, which reduces the cost by 39,2%. It is
slightly better than using direct electrical heating to cover the peak demand of
district heating, which could reduce 39% of annual cost. Installing heat pump to
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cover the base demand instead of district heating cannot achieve a cost reduction
yet, which increases the cost by 3,6%.
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Fig. 5-3 Cost comparison between Old PM and New PM for different alternative solutions.

For the dynamic model based on LCOH, since a much lower heat price can be
obtained, the alternatives don’t show the same annual cost savings, as shown in
Fig 5-4. Using direct electrical heating to cover the peak demand of district heating
is still the best alternative; whereas, its saving is much smaller compared to the old
and new PMs, which are 19,1%, 19,6% and 25,9% respectively.
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Fig. 5-4 Cost comparison amongst M-1, M-2 and M-3 for different alternative solutions.
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6 Concluding remarks

District heating (DH) companies are facing several challenges during the
upcoming years. A combination of higher operational costs, competition from
alternative technologies benefiting from low electricity prices, as well as the need
of providing more transparent price information to the end-users puts high
pressure on many utilities.

Marginal cost method has been widely used for heat pricing in Sweden as itis a
deregulated market. A price model normally includes four components: fixed cost,
capacity cost, energy cost and flow cost. Currently some DH companies have
updated their district heating prices by increasing the capacity cost in order to
encourage consumers to change their behaviors and, therefore, reduce the peak
load and consequently the production cost. One problem is that the capacity cost is
often based on the historical heat consumption data, and this may not reflect that
peak load to be charged accurately in real-time. Meanwhile, the peak load may not
happen at the same time for all customers; hence, charging a high capacity cost
cannot solve the problem caused by the peak load. A good price model should be
able to reflect the dynamic production cost accurately, therefore, motivate
consumers to reduce the peak load and save energy at the same time. In addition,
the heat price should be predictable and transparent.

A novel dynamic price model has been developed based on the levelized cost of
energy, which carefully considers the capital cost, O&M cost and other costs. Since
the combined heat and power (CHP) plant produces heat and power
simultaneously, the fuel consumption should be allocated for between electricity
and heat production, which directly affects the cost for heat production. Three
methods have been tested in this work, including allocating fuel according to
energy and exergy of products and market method. Results show that the prices
based on levelized cost of heat (LCOH) are much lower than those from the real
price models, which implies there should be a potential to lower the heat price. The
variation of LCOH follows the fluctuation of heat demand and therefore, the price
based on LCOH can demonstrate the production cost more accurately. Whereas, its
complexity, for example the allocation of fuel cost for the production of electricity
and heat in a CHP system, may hinder its practicable application. Meanwhile, the
dynamic operation hours of equipment and unpredictable maintenance cost could
also introduce large deviations in the calculation of LCOH.

Using artificial neural network for the prediction of heat demand has attracted
more and more attention. A model based on Elman neural network (ENN) has
been developed to predict the total heat demand in the DH network. Meanwhile,
weather conditions, such as ambient temperature, wind speed and direct solar
radiance are key input parameters. Their influences on the model accuracy have
been studied. Results show that including wind speed can generally result in a
lower overall mean absolute percentage error (MAPE) (4.43%) than including
direct solar radiance (6.47%); while including direct solar radiance can achieve a
lower maximum absolute deviation (71.8%) than including wind speed (81.53%).
In addition, even though including both wind speed and direct solar radiance
shows the best overall performance (MAPE=6.35%), ENN could not benefit from
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the simultaneous introduction of both wind speed and direct solar radiance,
according to MAPE.

Price model reforming could lead to a significant change in the expense of
customers and affect the selection of energy saving measures. The influences of the
dynamic price model based on LCOH are compared with those of the two real
price models. Due to the lower heat prices from the dynamic model, the heat
expense of consumers would be lower than those charged by using the real price
models. Three alternative solutions are assessed in this study: using direct
electrical heating (DEH) to provide the peak heating demand combined with DH
covering base demand; installing heat pump (HP) to cover base demand
combining with DH or DEH to provide peak demand. Results show that due to the
low electricity price currently, using DEH to cover the peak demand of district
heating and combing DEH and HP can be more economical than DH. Compared
with the real price models, the annual cost saving becomes smaller when the
proposed dynamic price model is applied, which implies a better competitiveness.
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A DYNAMIC PRICING MECHANISM
FOR DISTRICT HEATING

A novel dynamic price model has been developed based on the levelized cost of
heat. This model is expected to promote the competence of district heating and
motivate consumers to reduce the peak load and save energy at the same time.

Based on the predicted heat demand, the heat price can be determined, which is
able to reflect the production cost accurately. Artificial neural network is a pro-
mising method for the prediction of heat demand and ambient temperature,
wind speed and direct solar radiance are key input parameters.

Price model reforming could affect the selection of energy saving measures. Due
to the low electricity price currently, installing heat pump and using district
heating to cover the peak demand would be the most economical alternative.
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