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Sammanfattning

Viktiga sociala funktioner som hilsa och sikerhet dr n6dviandiga for
dagens samhalle att fungera och for att trygga dess individers liv.
Infrastrukturer tillhandahdller och behdller dessa funktioner.
Elektronisk kommunikationsteknik, transportsystem, olje- och
gasforsorjning, vattenforsorjning och elnitet ar kritiska infrastrukturer
for samhallet. Elnétet spelar en central roll bland de kritiska
infrastrukturerna, eftersom alla andra infrastrukturer ir beroende av
elnitet. Driftavbrott kan dirfor fa allvarliga konsekvenser, inte bara for
elndtet men ocksa for leverans av vatten, gas och mat. Det ar darfor
viktigt att det elektriska energisystemet ar tillforlitligt.

For att tillhandahalla ett tillforlitlig och sakert elnét tillampar ndtoperatdrerna
strategier for kapitalfdrvaltning for att undersoka, planera, underhalla och
anvanda systemet och dess komponenter samtidigt som prestanda forbattras enligt
egna ekonomiska krav. Ett sitt att 0ka elnitets tillforlitlighet samtidigt som
kostnaderna reduceras ar underhallsplanering och optimering. For att optimera
underhall kravs ett tillforlitlighetsmasstal f6r komponenter i elnit. Felfrekvensen,
som dr sannolikheten for ett driftavbrott under en férdefinierad tidsperiod,
anvands vid underhallsoptimering.

Hittills har alla komponenter av samma typ, pa grund av saknade
komponentfeldata, tilldelats en genomsnittlig felfrekvens. Att forsumma
komponent heterogenitet begransar dock precisionen i underhéllsoptimering.
Dessutom underskattas eller 6verskattas den faktiska felfrekvensen, vilket ar en
utmaning for att identifiera effekten av underhallet som utfors.

Denna rapport presenterar hur precisionen i felfrekvensen kan forbattras trots
begréansad feldata. I den forsta delen ges en introduktion till den allméanna teorin,
begrepp och definitioner av felfrekvens-modellering for att ge lasaren en forstaelse
for de senare kapitlen och artiklarna. Den andra delen presenterar
regressionsmodeller som kan anvandas for att modellera, forutsédga och
karakterisera felfrekvensen och felintensiteten for komponenter. Cox regression
och andra regression modeller anvands pa tva fallstudier av franskiljare och
strombrytare feldata. Resultaten bidrar till forbattrad felfrekvens-modellering pa
individniva, men forbattrar ocksa forstaelsen av riskfaktorns inverkan pa
komponentfel. Regressionsmodellerna anvands séllan i kunskapsfaltet i kraftnatet
pa grund av den begransade feldatan. Den tredje delen presenterar behovet av att
skilja mellan genomsnittlig felfrekvensen och felfrekvensen for enskilda
komponenter och introducerar riskfaktorer och metoder som vanligen anvéands vid
felmodellering. Dessutom presenterar avhandling en metod for att berdkna och
forutsdga felfrekvenser for enskilda komponenter trots att det inte finns na gon
feldata, vilket &r sérskilt fordelaktigt for nya komponenter.
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Summary

A set of vital societal functions such as health and safety are necessary
for today's society to function and to secure the life of its individuals.
Infrastructure is required to provide and maintain these functions. This
for society critical infrastructure includes electronic communication
technology, transport systems, oil & gas supply, water supply, and the
supply of electric power. The electric power system plays a central role in
the critical infrastructure since it is required to operate all others.
Therefore, outages in the power system can have severe consequences
not solely for the supply of electricity but also for the supply of water,
gas, and food. To provide a reliable and safe power supply, power
system operators are applying asset management strategies to
investigate, plan, maintain, and utilize the system and its components
while improving the performance under its own financial constraints.

One approach to increase the reliability of the power grid while decreasing costs is
maintenance planning, scheduling, and optimization. To optimize maintenance, a
reliability measure for power system components is required. The failure rate,
which is the probability of failure in a predefined interval, is utilized in
maintenance optimization. Thus far, an average failure rate has been assigned to all
components of the same type due to a shortage of component failure data.
However, this limits the accuracy of maintenance techniques since the component
heterogeneity is neglected. Moreover, the actual failure rate is being underrated or
overrated and it is a challenge to identify the impact of conducted maintenance
tasks.

This report presents how the failure rate accuracy can be improved despite limited
failure data available. Firstly, an introduction to failure rate modelling theory,
concepts, and definitions is given to provide a common understanding for the later
chapters and papers. Secondly, regression models are presented which can be used
to model, predict, and characterise the failure rate and failure intensity for power
system components. The Cox regression and regression models for count data are
applied to two case studies of disconnector and circuit breaker failure data. The
results contribute to an improved modelling of the failure rate on individual level
but also improve the understanding of risk factor's impact on component failures.
However, the aforementioned regression models have rarely been applied in the
power system domain due to the limited failure data. Thirdly, the necessity to
distinguish between population and individual failure rates is illustrated and risk
factors and methods are presented, which are frequently used in failure rate
modelling. Moreover, the report presents a method to calculate and predict
individual failure rates despite the occurrence of actual failures which is of
particular advantage for new components.
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1 Introduction

This project report Individual Failure Rate Modelling and Exploratory
Failure Data Analysis for Power System Components is a condensed
form of the doctoral thesis with the same title (TRITA-EECS-AVL-
2018:67, ISBN 978-91-7729-950-9) successfully presented on 19 of
October, 2018, at KTH Royal Institute of Technology by the author [1].
The objective is to improve power system reliability assessment by
creating a better perception of how internal and external risk factors
influence the probability of failure of power system components and
how these can be utilized to compute a failure rate on individual
component level.

Chapter 1 positions the overall context of the project report from a societal
perspective and motivates the research need. Thereafter, the research objectives are
presented and a summary of the research contributions given. Chapter 2 presents
exploratory failure data analysis and failure rate prediction with regression models
to provide the reader with a solid background before the theory is applied to two
case studies. The first case study investigates disconnector population and the
second case study examines circuit breaker failures to improve the characterisation
of failure rate modelling and gain knowledge for power system asset management.
The ensuing Chapter 3 discusses power system component's heterogeneity in
failure rate modelling and presents relevant risk factors. Moreover, the chapter
presents the existing modelling techniques and gives an overview of the developed
model to calculate individual failure rates with two case studies. Chapter 4
concludes the presented work and describes required future work.

11 THE ELECTRIC POWER SYSTEM: A CRITICAL INFRASTRUCTURE

The Swedish Civil Contingencies Agency (Myndigheten f6r samhallsskydd och
beredskap, MSB) has been instructed by the Swedish government on April 14th,
2010, to develop a unified national strategy to protect the vital societal functions
[2]. These vital societal functions are defined as functions which are so critical that
their failure would result in ‘'major risks or hazards for the life and health of the
population, the functionality of society or society's fundamental values' [2, p. 10].
The first phase of this strategy includes the identification of these functions at local,
regional, and national level. From the perspective of the Council of the European
Union (EU) [3, p. 3], these societal functions are health, safety, security, economic
and social well-being of people. MSB also uses the term critical infrastructure
which is the "physical structure' that is required to maintain the vital societal
functions [2, p. 11], whereas the definition of the EU does not include the term
"‘physical’ which results in a more general definition that also includes services [3,
p- 3]. Critical infrastructure is identified in eleven sectors according to [4, p. 24]:
energy, information and communication technologies, water, food, health,
financial, public & legal order and safety, civil administration, transport, chemical
and nuclear industry, and space and research. The technical infrastructure is power
supply, electronic communications, payment systems, food supply, supply of
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drinking, transport system, and drug supply. These are discussed in a risk and
scenario analyses in [5] for the Swedish society.

All the aforementioned technical infrastructure has all one common attribute:
complexity. This infrastructure can be described as a complex system of interacting
components where change primarily occurs as a result of a learning process [6].
Moreover, this infrastructure has interdependencies and bidirectional
relationships, so that the state of one is dependent on the state of the other. Figure
1 demonstrates in an abstract example the interdependencies between the
infrastructure: electric power, natural gas, oil, telecom, water, and transportation.
A specific example of an interdependency is that electric power is needed for
compressors, storage, and control systems of the natural gas infrastructure but
natural gas is required as a fuel for thermal electricity generation. These
interdependencies can be 'tight' or 'loosely’ coupled, which refers to the level of
dependency [6]. The electric power supply has a central role in these
interdependencies as other infrastructure has strong dependencies on it. This
'special position' is also identified by the MSB in the risk assessment of technical
infrastructure in Sweden [5]. Particularly, the characteristic of no intermediate
storage capacity, the electricity is consumed while it is produced, increases its
importance as critical infrastructure since an outage has an instantaneous effect on
all other types of infrastructure.

The electric power supply is ensured through a network of electrical components
to supply, transfer, store, and use electric power. The electric generation and load
centres are connected via the power grid, which is categorised into a transmission
and distribution system. An additional system level is used in the terminology of
the Swedish power grid. Here, the regional system level is the linkage between
transmission and distribution level. The transmission power grid transfers the
electric power from the generation sites to electrical substations where it gets
further distributed through the regional and distribution grid to the customer.
Despite their common functionality of transferring electric power, the three system
levels are distinguished by voltage level and importance in descending order. The
voltage level ranges from 400 kV to 200 kV on transmission level, 130-30 kV on
regional level, and from 20 kV to 0,4 kV on distribution level. Since the
transmission grid, also defined as bulk power system [7], supplies all regional and
distribution systems, it is seen as the most important. Regardless of the
importance, uninterrupted electricity supply requires high reliability on all system
levels. An outage, whether it is caused by humans, technical faults, a lack of
maintenance or a faulty design can therefore lead to the loss of vital societal
functions [5]. Considering that an outage can have such severe impacts, the focus
remains on improving the design, planning, operation, and maintenance to achieve
a highly reliable and safe power grid.
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Figure 1: lllustration of infrastructure interdependencies in an abstract form based on [6, Fig. 3, p. 5]. Note
that more interdependencies exist and that interdependencies between other types of infrastructure are
neglected.

1.2 POWER SYSTEM ASSET MANAGEMENT

To achieve a reliable and safe power supply, a set of strategies is required to
operate the power grid. Asset management involves strategies to investigate, plan,
invest, utilize, maintain, replace, and dispose of components and systems while
maximising the value and performance of the assets under the constraint of a
utility's financial performance. The concepts and terminology of asset management
have been specified in a standard [8] to achieve effective and efficient practices on
an international level but also to limit the variations in the interpretation [9].
Following the business-driven approach, asset management aims to achieve the
'lifetime optimum' of components while considering the system perspective [9].
Finding the 'lifetime optimum' has its foundation on the concept of reliability-
cost/reliability-worth evaluation [10]. The resulting optimum is known as the
socio-economically optimal reliability level [11]. Therefore, asset management for
power grid operators has to resolve four challenges according to [12, p. 644] to
remain profitable:

e Incorporation of stakeholder values and objectives into strategy and operation
of the utility

e Achievement of reliability and safety considering financial constraints

e Receiving the benefits of performance-based rates

e Implementation and response to regulatory period changes

These challenges are approached by defining appropriate strategies for the
components and further subdividing it into specific techniques and actions. This
set of techniques and actions could include statistical failure analysis, lifetime
estimation, condition assessment, and maintenance strategy decisions which are
also suggested by [12]. All these techniques include the four basic parts of
reliability [10]: probability, adequate performance, time, and operating conditions.

10
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1.3 POWER SYSTEM RELIABILITY EVALUATION

Billinton and Allan discuss philosophical aspects of power system reliability in [13]
and state that the term includes an extensive variety of aspects which have the
common aim to satisfy the customer requirements. It is further described that there
is the necessity to recognise the generality of the power system's ability to perform
its required function. Focusing solely on the term reliability, an accepted definition
is

"Reliability is the probability of a device performing its purpose adequately for the period of
time intended under the operating conditions encountered.” [14]

which is similar to the definition in the standard ISO 9000:2015. Applying this
definition to the power system domain, we can translate device to system, a set of
connected power system components, and component, a specific type of
component in the system. From a societal perspective, the system reliability is of
greater importance than the component reliability. However, the system is a set of
components and therefore component failures could lead to system failures. This
relationship is illustrated in a simplified fault tree diagram in Figure 2 for one
hypothetical system. Depending on the structure of the system, a component
failure can lead to a system failure or not. Exploring reliability more theoretically,
itis

Reliability =1 - Probability of Failure

where the probability of failure is for a defined interval [0, t]. Thus, the reliability is
the probability of success of a component or system to fulfil its required function in
[0, t]. For example, a probability of failure can be assigned to an event in Figure 2
and with some probability calculations, a system reliability can be calculated. Thus,
it is important to precisely model the probability of failure to get the most accurate
estimation of the component reliability and consequently the system reliability.

14 FAILURE RATE ACCURACY AND UNDERSTANDING

The probability of failure for a system or component is also known as failure rate
and is an essential reliability measure. It describes the conditional probability that
a component will fail in the interval (¢, t + At] given that it has survived until t. A
more detailed background of the failure rate and other reliability measures is
presented in [1, ch. 2]. The failure rate is important as a parameter in optimal
maintenance planning [15], risk-based maintenance optimization [16], and to
connect component reliability and maintenance in reliability-centred asset
maintenance [17].

11
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Figure 2: Simplified relationship between component and system reliability.

Failure data from lifetime tests is required to estimate a particular lifetime
distribution F(t) = 1 — R(t) by using nonparametric and parametric methods.
From this distribution a failure rate can be derived and is applied to all
components of the same type. This requires the assumption that all components
are identical and operated under equal conditions. Power system components
however, are frequently designed for particular tasks and systems and are different
to the tested components. Applying the same failure rate to one component type
would consequently induce a bias. Moreover, primary components in power
systems are designed for lifetimes typically around thirty years [18] but this might
increase to forty years or more [19]. Due to these long lifetimes, experimental
laboratory lifetime tests are difficult to conduct for power system components and
most estimates are gained from historical operational failure data as in [19, 20].
This empirical approach is often problematic due to poor component
documentation and long lifetimes cause incomplete failure data sets. This
incompleteness of failure data causes censoring and truncation, see [1, sec. 2.2],
which leads to large confidence intervals in the lifetime prediction. This has been
shown in a study to predict the lifetime of power transformers [21], for example.
Thus far, a practical solution is to assume a constant failure rate for all components
of the same type[20]. This is based on the assumption of an underlying exponential
distribution. This basic approach has produced reasonable results [20] since a
constant failure rate reflects the useful life period of various components [22, p. 21].

Four major disadvantages remain from using this average failure rate approach.
Firstly, applying one constant failure rate to each component of a type neglects the
component heterogeneity. Even though all components in a population are of the

12
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same type, individual component characteristics such as size differ. This results in
a failure rate which under or over estimates the actual failure rate. Secondly, the
impact of maintenance activities cannot be identified from the failure rate. This is a
challenge for maintenance optimization in particular. Thirdly, the failure rate
estimation from empirical failure data, without considering the actual environment
and stress, could cause a serious bias in the estimates [23]. Finally, possible trends
are neglected. Consequently, the constant failure rate and the universal approach
of applying one failure rate to all components has a significant impact on the
accuracy. This inaccuracy negatively impacts subsequent analytical methods such
as network reliability modelling or optimal maintenance planning [15] and other
methods discussed in [1, sec. 2.4]. This poses the question:

Can the accuracy of the failure rate be improved despite the limited historical data
available?

Generally speaking, the failure rate expresses the answer to the question: why
certain components fail quicker or survive longer than others? The attempt to
explain varying lifetimes demands for more information. Risk factors or
explanatory variables are variables which the failure rate depend upon. Hence, [20]
states that every type of component should ideally be characterised by a failure
rate as a function of risk factors. The environment, component characteristics, and
operational stress are such risk factors. For example, possible explanatory variables
for power transformer failure rates can include:

¢ Continuous variables such as loading, voltage, and condition measurements.
e Categorical variables such as size, design, manufacturer, and location.

Investigating and estimating the significance and effect of explanatory variables on
the failure rate can improve the understanding of risk factors which results in
better decision-making within asset management. For example, in monitoring an
implemented maintenance strategy.

1.5 RESEARCH OBIJECTIVES

Based on the previous sections, the central research question, which is the
foundation of this report, can be formulated as:

Can the failure rate accuracy on an individual component level be increased despite the
limited historical failure data available?

This question leads to the following research objectives (OBJ) which are to be
solved with this report:

e  OBJ1: Investigate the impact of explanatory variables on the failure rate of
power system components to support asset management decision-making and
to improve failure rate accuracy and prediction.

e OBJ2: Demonstrate that neglecting component heterogeneity leads to
erroneous failure rate modelling and discuss risk factors which impact the
condition and failure rate of components over time.

e OBJ3: Develop and validate a method to calculate and predict failure rates for
individual components without actual failure occurrence.

13
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1.6 SUMMARY OF RESEARCH CONTRIBUTIONS

1.6.1 Research Objective OBJ1

Research objective OBJ1 is addressed by the results of [24-26]. These papers utilise
statistical learning techniques, such as Cox regression and regression models for
count data, to characterise the failure rate and rate of recurrence of failures
(ROCOF) with explanatory variables for an improved failure rate accuracy and
contribute to an increased understanding of failures. The papers investigate
explanatory variables of solely electrical switchgear such as disconnectors and
circuit breaker due to the data availability. However, the papers encourage further
data analysis of other power system components for future studies. The particular
results of each paper are summarised in the following.

[24] discusses the difficulties of using regression approaches in the power system
domain and illustrates how to overcome these. A population containing 1626
disconnectors is investigated to assess the impact of preventive maintenance, PM and
remote control availability on the failure rate. It is shown that PM has a positive
impact whereas remote control availability has a negative effect. Moreover, the
magnitudes of these effects are determined and can be used in further applications.
The results show that single pole disconnectors have a 9.37 times higher failure
rate compared to the double side break disconnector. Furthermore, the competing
risk approach is used to distinguish the analysis among the failure modes
manoeuvrability, current carrying, and secondary functions and how this affects
the results. The paper demonstrates that even though the data quality is
inadequate, valuable results have been achieved.

[25] describes exploratory failure assessment of circuit breakers (CB) by examining
the impact of the explanatory variables CB type, voltage level, operating mechanism,
location, PM, and number of operations. Likewise in [24], PM has a positive impact on
the failure rate. Moreover, the study also presents that maintenance is conducted
more frequently for oil CB compared to SFy or vacuum CB. This might be
explained by the general higher age of o0il CB in the population. The number of
operations within the last year before failure has a negative impact on the failure rate.
The difference between a CB operated sixty or more times compared to zero to ten
times is quantified with a hazard ratio of 4.338. The age at admission is also a
significant predictor and has hazard ratio of 1.038.

In contrast to [25], the analysis in [26] models the recurrence of CB failure as count
data. In this approach, the recurrence of failures is investigated by applying
regression models such as Poisson and negative binomial regression. Likewise the
results in the single failure setting, the significance of the explanatory variables is,
except the CB type, similar. However, the analysis revealed that the maintenance
conducted after the first failure increases the failure rate. This is due to underlying
problems which have not been solved properly during repair works. PM before the
first failure, however, has a positive effect and results in an approximately constant
ROCOF over the lifetime. The negative binomial model performs better than the
Poisson regression model due to the zero-inflation in the failure dataset.

14
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1.6.2 Research Objective OBJ2

Addressing research objective OBJ2, [27] presents that neglected component
heterogeneity in failure rate modelling leads to an erroneous failure rate estimation
and understanding. To do so, two populations with different failure rates are
simulated and the population failure rate, the observed failure rate, underlines that
it does not reflect sufficiently the failure rate of either population. Moreover, the
study in [27] explores the field of failure rate modelling in the power system
domain to identify methods and explanatory variables which are commonly
utilised to model the failure rate. Particularly, age and the environmental
conditions have been frequently used risk factors in the literature thus far. In
addition, statistical data driven approaches are still rarely used in the power
system domain due to data availability and quality. Moreover, the study in [27]
identifies the necessity to develop a practical method which can more accurately
model the failure rate for individual components without actual failure occurrence
such as for new components.

1.6.3 Research Objective OBJ3

Based on the findings in [27], a method is presented in [28, 29] to model individual
failure rates for power system components. [28] presents the general concept with
solely one basic function and time independence. This method is applied to a case
study of 30 power transformers to show the general suitability. [29] presents a
rigorous method formulation, while considering time-dependence of explanatory
variables, and suggests, with the non-linear and the cumulative risk functions, two
new functions. Assuming the explanatory variables to be internal and stochastic,
the individual failures rates can be predicted with some uncertainty, which is also
presented in [29]. The method validation is presented in section 3.3.3 of this report
and the results are plausible and equivalent to expert judgement.

15
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2  Exploratory Failure Data Analysis of Power
System Components with Regression
Models

Since the aim is to prevent failures from occurring, it is of importance to
understand which explanatory variables have a significant impact on the time to
failure. Regression analysis provides a set of statistical methods to estimate the
relationship between explanatory variables and the outcome 'failure rate'.
Regression models help to understand the relationship and can be used for failure
rate modelling and prediction. All definitions and regression models presented in
this chapter are applied in [24-26] and knowledge of these enables a better
understanding. This chapter introduces exploratory failure data analysis with
regression models by (1) describing possible explanatory variable types and (2)
presenting the theory of the relative risk and count response regression models
which (3) are applied in the case studies 1 and 2. These case studies are summaries
of [24-26].

2.1 EXPLANATORY VARIABLES

Explanatory variables, predictors, or covariates are variables which might affect a
response variable [30], in the reliability context, mostly time to failure and a failure
indicator variable, which indicates the occurrence of a failure or censoring. The
term covariate is often used as an alternative name for explanatory variable [30]
but the meaning might change depending on the field of application. In this report
and the attached research [24-29], the term covariate is primarily used due to its
common use in reliability and survival analysis.

Vlok [31] discusses three covariate characteristics:

1. Time dependent and time independent,
2. Internal and external, and
3. Stochastic and non-stochastic.

Understanding these covariate characteristics is essential for the selection of
covariates in the later analysis and the interpretation of the results. Thus, this
section gives a brief overview about covariate types and characteristics.

2.1.1 Explanatory Variable Types and Coding

Covariates are either quantitative or qualitative. Thus, a classification between the
different forms is necessary. Quantitative covariates have numerical values which
mostly arise when taking measurements, whereas qualitative or categorical
covariates are not numerical and occur while recording features and characteristics
of the components of interest. A quantitative covariate can be sub-classified into

e Continuous: A real number in the form of a measurement, such as oil
temperature or stress of a power transformer.
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e Discrete: An integer which is obtained as a count. For example, the number of
operations of a circuit breaker.

Whereas the use of quantitative covariates is rather straightforward, more
attention and preparation is required when using categorical covariates. A
classification of categorical covariates is:

¢ Nominal: No natural order among the categorises exists. Examples are the
distinction between manufacturer, operating mechanism, and location for
example.

e Ordinal: A natural order exists between the categories. This is the case when
sorting voltage levels in power grids in ascending or descending order.

Binary or dichotomous covariates are another type of covariate which is similar to
a categorical covariate but is limited to two classes. These classes might be 'yes' and
no' or if a particular feature is included or not. A coding into numerical values is
needed when using categorical and binary covariates in regression modelling. A
binary covariate might simply just be coded as an indicator variable into 1 or 0. As
presented later, the value which has been coded into zero is the 'reference’ value or
group. Categorical covariates with more than two classes might be first translated
from qualitative into numerical values such as 1,2,3,... and a value chosen as the
reference group. The indicator coding approach can be used here in an extended
form. Assuming a categorical covariate with three categories, the resulting two
indicator variables Z; and Z,[32] can be introduced such that

7. 0 otherwise
1= 1 if the component belongs to category 1

1 if the component belongs to category 2

Zy — { 0  otherwise

To prevent dependency between the variables, the number of indicator variables is
always one less than the number of categories. Note that sometimes quantitative
covariates are categorised into specific groups to simplify later interpretation. A
more detailed treatment of covariate coding is given by Klein and Moeschberger in
[33, ch. 8.2] with several examples of coding and interpretation of covariates.

2.1.2 Time Independent and Time Dependent Covariates

The covariates of interest are usually selected before the observation period [33].
Covariates that are constant over the observation period are known as fixed or
time independent covariates. Time dependent covariates, however, vary during
the study period and therefore should be known before the study so that changes
can be recorded. The distinction is even more important in the later regression
analysis since the models differ significantly when time dependent covariates are
included [33].

2.1.3 Internal and External Covariates

An essential differentiation exists for time-dependent covariates by classifying
them into external and internal. External covariates might be covariates which are
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constant during the study period and measured in advance, with a predetermined
total covariate path, or when the covariate is the result of an external stochastic
process [34, ch. 6.3]. Kalbfleisch and Prentice use in [34, ch. 6.3] the example of a
voltage which is applied to an electrical cable for insulation testing to illustrate an
external covariate. Internal covariates are the result of a stochastic process which is
generated by the component under observation [34]. An important feature is that
the covariate can only be observed while the component has not failed or is
uncensored. A comprehensive discussion of external and internal covariates is
given in [34, ch. 6.3]and [35, ch 9.2.4] for more information.

2.1.4 Stochastic and Non-Stochastic Covariates

A time varying covariate can be seen as a collection of random variables, and in
fact, as a stochastic process. Assuming the covariate to be stochastic allows its
prediction with methods such as time series analysis, state space models, and
Markov chains, for example. However, the prediction of the covariate path comes
with some level of uncertainty. In contrast, non-stochastic covariates can be
predicted with higher accuracy. Vlok presents, in the context of residual life
estimation [31, ch. 4.2.5], a set of parametric functions such as a linear, quadratic,
hyperbolic, exponential, and geometric curve, which can be utilized for prediction.
The prediction of covariate behaviour is not directly relevant for the investigation
of covariates with regression models, however, it will be utilized in the calculation
of individual failure rates in Chapter 3.

2.2 REGRESSION MODELS IN FAILURE DATA ANALYSIS

One approach to investigate the relationship between an outcome Y and a set of
explanatory variables X is the use of regression models. Generally, the outcome Y,
the dependent variable, and the explanatory variable are related by a function f
such that

Y =f(X)+e 2.1

where ¢ is the normally distributed error term with zero means and the variance
o?. Assuming that the function f is linear, the linear regression model can be
written as

YVi=xipB + e, i=1,...,n 2.2

with x; = (x4, %2, ..., X;p) as a row vector of p explanatory variables for the i-th
component and f; = (B4, B2, ..., Bp) a column vector of p regression parameters.
Note that this formulation includes a regression intercept such that x; = 1. A
comprehensive introduction of linear regression is provided by [36], however, if
the function f is not linear or the dependent variable Y is not continuous, other
regression models need to be applied, such as a generalised linear regression
model which has the same form as in eq. 2.2.

The choice of regression model can be made based on the data type and primarily
the dependent variable. In reliability analysis, the relationship between failure or
degradation and a set of explanatory variables is of interest. If the outcome is a
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component failure, a binary outcome, logistic regression seems a reasonable choice.
However, this model would neglect the time to failure which is of particular
interest. Therefore, Cox presented in [37] the proportional hazard model (PHM) or
cox regression where the dependent variable is the time to failure and a censoring
indicator regressed on the explanatory variables. This approach is similar to linear
regression [38]and in some parts equivalent to logistic regression [39]. The failure
rate and the ROCOF are in focus within power system reliability assessment,
hence, regression models for these outcomes are presented in the following
sections, which are the PHM and regression models for count data.

2.2.1 Relative Risk Model

The PHM is a relative risk model which is commonly applied in survival analysis
with particular high frequency in the medical domain [40]. The aim is the impact
assessment of explanatory variables on the failure rate. Following the notation of
[34], let T be the time to failure and x; = (x; 1, X; 5, ..., X; ) the vector of basic
covariates for the i-th component with n as the number of components in the
population. The relative risk model is defined as

Pt<T<t+At|T>tx)
At—sD At

2.3
= Xo(t) r(t,x;), t>0

with 44(t) denoted as the baseline failure rate and r(t, x;) as the unspecified
relative risk function. The relative risk functions can take several forms, however,
the exponential is the most natural since it satisfies the property A(t; x;) = 0 [34].
Note that other functional forms might be more suitable depending on the setting.
Choosing the relative risk function in exponential form, the model is

At x;) = Ao(t)eZi (P 2.4

with Z;(t) as a vector of derived and possibly time dependent covariates and f8 the
vector of regression parameters as before without the regression intercept. The
covariates Z;(t)are obtained as functions from the basic covariates x; which might
be necessary for analysis or interpretation. The term PHM is generally used for the
model in eq. 2.4 when the covariates are constant, thus, the relative risk function
becomes proportional. The relative risk model has the advantage that the baseline
failure rate A, (t) can be left unspecified for the covariate assessment, hence 1, (t) is
assumed to be non-parametric. Since the relative risk function is parametric, the
overall model is semi parametric. This model has lead to the development of
several other reliability models with covariates, which are presented in [31] and
discussed based on their advantages and disadvantages in [41]. To apply the
relative risk model, the following assumptions must hold:

e The random variable time to failure is independent and identically distributed

¢ Censoring must be non-informative (random) which means that components
that are lost or not longer considered can solely leave the study due to
unrelated reasons
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e Given fixed covariates, the relative risk function is required to be proportional
over time

Model Parameter

Applying the relative risk model requires the data to be available in the form of
(T;, 6;, Z;(t)). The time to failure or censoring time T; must be given and an
indicator §; that describes that a failure has occurred (§; = 1) or that the
component is right-censored (6; = 0). The vector Z;(t) is the vector of covariates as
aforementioned. Covariates are described in more detail in section 2.1.1.

Estimation of Regression Parameters

The estimation of the regression parameters f is an inferential challenge of the
relative risk model which is described in detail in [34]. Maximum likelihood
methods are utilized to estimate the regression parameters, also called maximum
likelihood estimates, by maximizing the partial likelihood
T z f 51:

(3) elZi(t)B)
Lo -11 2

: (L (1 :
i1 ZR‘ER:HI € .I..( JJB)

with Ry = {k:t, = t;} as the set of components at risk at time t;. The likelihood
function L describes the joint probability of observing the actual failures on the
components in the study as a function of the unknown estimates 8 [38]. Itis a
partial likelihood because solely probabilities for components who fail are
considered which arises due to the missing assumption about 1,(t). Thus, &;
indicates whether a component contributes to the likelihood (§; = 1) or not (§; =
0). An illustrative example of the construction of the likelihood function is
presented in [38, sec. 3.9].

The construction of the likelihood function varies depending on the data set given.
The likelihood function presented in eq. 2.5 does not consider tied time to failure
data as in the first relative risk model proposed by Cox in [37]. For ties in the time
to failure data, several formulations of the likelihood function have been proposed
such as Breslow, Elfron, or the discrete-logistic likelihood [33, ch. 8.4]. A
comparison of these methods has been conducted in [42] which recommends the
Elfron method due to better approximations, particularly with moderate or heavy
ties in the data set.

Hypotheses Testing

After the estimation, consider testing a hypothesis about the f parameters. Several
tests exist, however, the Wald test static, the likelihood ratio test, and the score test
are mostly used, for example in [33, 43]. In general, one might be interested in
testing the hypothesis of a subset of B parameters. Suppose that B = (B, B5)”
with B, as a g-dimensional vector of the B parameter of interest and 8, as (p — q)-
dimensional vector with the remaining parameter. Now, the null hypothesis is
formulated as
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Hy:38,=0 2.6

with 0 as a vector of zeros with dimension q. In the following, the Wald test static,
the likelihood ratio test, and the score test are briefly described. However, for a
more profound description and derivation of the statistics the authors Klein and
Moeschberger [33, ch. 8.5], Cox and Oakes [44, ch. 3.3], or Cizek, Hardle and
Weron [45, ch. 5.3.3] are recommended for further reading.

Wald Test Given the maximum likelihood estimates B = ( B7, Eg)Tof B, the
inverse of information matrix I(B), which is calculated while computing the
maximum likelihood estimates, can be partitioned as

L (T2
I 1(‘3) = (121 122) . 2.7

with ' is the ¢ X g submatrix belonging to B,. Thus, the Wald test statistic is
given by

X2, =B [1'(B3) 5, 2.8

The distribution of the Wald test statistic, under H,, converges for large samples to
a chi-squared distribution with q degrees of freedom.

Likelihood Ratio Test The likelihood test statistic is defined as

Xip=2[((B) - {(30)] 2.9

with By = (07,B1)" and I(B) = In [L(B)]. Likewise the Wald test statistic, the
likelihood ratio statistic has a chi-squared distribution for large samples and under
H, with q degrees of freedom. The p-values are calculated as the tail probabilities
of the yZ-distribution.

Score Test Testing H, with the score statistic, suppose U; () is the subvector of the
first q elements of the score function U(f), the score statistic can be expressed by

X2o = Ui (Bo) I (Bo)Ui (Bo) 2.10

The score test statistic also converges to a y4-distribution with a large sample
under H,.

Model Selection

Explanatory variables can be assessed in a single-variable setting individually or in
a multiple-variable setting mutually. The latter is usually of greater interest to
study an explanatory variable while other variables are present in the model.
Consequently, a strategy is important to select a set of explanatory variables to
build the best overall model. Collett discusses strategies for model selection in [46,
ch. 3.6] and states that the failure rate function does not necessarily depend on a
unique combination of explanatory variables. Hence, there might be a set of
equally good models instead of one particular model. Both, Collett in [46, ch. 3.6]
as well as Klein and Moeschberger in [33, ch. 8.7], distinguish the model selection
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process by the purpose of the study. Briefly, this distinction is made by whether
someone has a particular hypothesis or without any specific hypothesis and solely
explanatory variables are used to predict the distribution of time to failure. For the
latter, the Akaike information criterion (AIC) is a useful statistic to assess the
model [33]. The AIC is estimated by

A

AIC =2¢—2In(L) 2.11

with L as the Log Likelihood and ¢ as the number of independent parameters in
the model. A lower value of AIC is preferred when comparing the fitted models to
each other. This statistic rewards the goodness of fit but also securing from over-
fitting by including unnecessary explanatory variables. If the number of possible
explanatory variables exceeds a certain amount, automatic variable selection
routines might be used. These are forward selection, backward elimination, and
stepwise procedure. However, Collett in [46, ch. 3.6] discusses some disadvantages
of these routines, so caution is required while applying them.

Hazard Ratio

When the covariates are constant over time, the ratio between two individuals 1
and 2 is used as a possible form of interpretation of . This hazard ratio (HR) is
defined as

Ao(t) e(22(1)8)

= () c@m =T 212

HR

Assuming that Z;(t) = 0, the failure rate of the i-th individual is proportional to

Ao (t) with eZiF Generally, if HR = eZ(®F = 1 the covariate has no impact, HR<1
the covariate has a positive impact, and HR>1 has a negative impact on the failure
rate. Note that the confidence interval of the HR must be considered while
interpreting the results.

Competing Risks

The PHM in eq. 2.4 only considers a single failure type and thus might not be
suitable in the power system domain where components can experience several
failure types. Therefore, a different model, the competing risk model, is required to
handle these cases. Assume that the i-th component can fail to a set of different
failure types which can be denoted by the random variable / with the index j €

{1, ..., m} with m as the number of possible failure types. Let Z;(t) denote the
covariate vector as before. Now, the cause specific failure rate function can be
defined, according to [34], as

2.13

PU<T<At,J=j|T>tZt
A:{f;x?)ZAlimo =T < ’Afj| > t,72;(t))
X Af—

which is the probability of failure that the i-th component with the covariate vector
Z,(t) fails in the interval (¢, t + At] due to the failure type j. Under the assumption
that the failure types j are independent and each component can fail solely to one
particular failure type can occur, it leads to
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m

Alt) =3 At ). 2.14
=1

Consequently, the occurrence of two failure types must be separately defined. The
competing risk approach is discussed in theoretical form in [34, ch. 8.2] and
described with more practical examples in [38, ch. 9]. Kleinbaum and Klein
describe in [38, ch. 9] two different methods to for handling competing risks.
Firstly, a common approach is the utilisation of the PHM to analyse the failures
and hazard ratios for each failure type separately while treating all competing
failures as censored. Here, separate models need to be built and analysed. The
second approach is also known as Lunn-McNeil approach which requires only one
model to be fitted with the PHM rather than several. This model can produce
identical results when the covariates are the same [38]. Here, the data layout must
be augmented to carry out the analysis. However, it is referred to [38, ch. 9] for
further description of both methods.

Recurrent Failure Data

In the original formulation in eq. 2.3 of the relative risk model in [37], solely single
failures are considered and a component is removed from the study after failure
occurrence. This is a fair assumption in clinical studies, but technical components
can be repaired after a failure. Recurrent event data analysis investigates the
impact of explanatory variables on the recurrent events such as failures. Let n
denote the number of recurrent failure processes components in the study over the
time interval [0, ] where 7 is the total study time. Moreover, assume that N;(t)
denotes the number of failures in the time interval [0, ] for the i-th process or
component. Now, the cumulative sample mean function is given by [47]

FO I 2.15
fi(t) = ;Z;’\-‘i(f).

i=1

Compared to the relative risk model, the pair of parameters (T;, 8;) is replaced with
(N;(©),Y;(t)) in the counting process approach [48, p. 4] where Y;(¢) equals one if
the component is observed and at risk at time t and zero otherwise. This alteration
in the formulation of the single-event PHM has led to several PHM extensions for
recurrent event analysis [49]. Generally, four different approaches have been
developed:

1. A counting process formulation which has been developed by Andersen and
Gill (AG) [50]. Thus, sometimes also called AG model.

2. Prentice, Williams, and Peterson (PWP) have developed two conditional
models which differ primarily by the time scale used [51]. These are (1) the
conditional probability model (PWP-CP) and (2) the gap time model (PWP-
GT).

3. Wei, Lin, and Weissfeld proposed in [52] a fourth model which is a marginal
event-specific model.

These models have been compared in [53]but the differences become more obvious
when the time intervals used in each model are compared [49, p. 289] which is also
illustrated in graphical form in [48, p. 188].
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2.2.2 Count Response Regression Models

Power system components can be repaired, and several failures might occur until
the component is replaced. A straightforward approach is to treat failures as
counts and use count response regression models such as the Poisson or negative
binomial model. The next two sections present such regression models.

Poisson Regression Model

Recall the notation x; = (x;,X;2, ..., X; ) as the covariate vector with p covariates
for each component i. Now, y; denotes the number of failures for each component
in an interval of length 7. Note that the assumption of event occurrence is constant
for the Poisson distribution. This rate w is known as the intensity of a process and
if the event is a failure, the rate is the ROCOF describe in eq. 2.2 in [1]. Therefore,
the Poisson distribution describes the probability that a failure occurs exactly k
times in the interval T with

(wT)*

P{?Jf:k): L

e T for k=0,1,2,...;w > 0. 2.16

A common approach for count data modelling is to use the regression model w =
e*if with B as vector of regression parameters as previously. Note that this basic
formulation is identical to the relative risk model in eq. 2.4. However, for the
Poisson model, x; ; = 1, because an intercept f8; is included. The regression
parameters are either estimated by non-linear least squares or with the maximum
likelihood method, which is the most common choice [54]. This leads to the
Poisson generalised linear model (GLM) with

(WT)*

Py =k) = X e T for k=0,1,2,...;w =P > 0. 2.17

The Poisson GLM is a non-linear regression model which has the conditional mean
function

Ely;|x;] = w = 5P 2.18
and the conditional variance
Var|y:|x;] = w. 2.19

Obviously, it follows that E[y; | x;] = Var[y; | x;] which means the mean is equal
to the variance. To apply the Poisson GLM, this assumption must hold. However,
some count data might violate this assumption. These are either under-dispersed,
Varly; | x;] < E[y; | x;], or more commonly over-dispersed, Var[y; | x;] >

Ely; | x;]- These and other count data features are more thoroughly discussed in
[54-56]. To address data features such as overdispersion, other count regression
models have been developed. Testing the statistical inference about the 8
parameters can be done by applying the aforementioned likelihood ratio, Wald,
and score test. Likewise to the cox regression, the model selection can be done with
the AIC information criterion.
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Negative Binomial Regression Model

The negative binomial model is frequently used to accommodate for
overdispersion in count data [54]. Given that the count data follows a NB
probability density function, the NB GLM is defined as

T(y: + 1) 1 Ve i aw \¥
_P Y; = k — - _ o i .
v : C(y; + DI(L) \ 1+ aw; 1+ o, 2.20

with «a as the dispersion parameter and I is the gamma distribution. The
conditional variance is Var[y;|x;] = w;a + a w?. Since @ > 0, the variance is

greater than in the Poisson GLM. However, the conditional mean is equal
Elyi| x;] = w; to the Poisson model, which has the advantage that the regression
parameters are calculated identically. The NB model is discussed in detail in [57].

2.3 CASE STUDY 1: ANALYSIS OF DISCONNECTOR FAILURES

Disconnectors have two primary functions in the power system. Firstly, they are
installed in substations to isolate other components such as circuit breakers and
power transformer for maintenance purposes. Secondly, remote controlled
disconnectors are installed in medium and low voltage power grids to isolate faults
or for automatic network reconfiguration. In the latter function, they are an
important part of automated systems or “self-healing” power systems to improve
power system reliability and quality [58, 59]. Although disconnectors have these
rather simple functionalities, failures can cause major outages as, for example, in
Sweden and Denmark in 2003 [60]. The incident demonstrates that disconnectors
should not be neglected in asset management. Therefore, [24] presents an
investigation of a non-current breaking disconnector population in Sweden to gain
a better understanding of explanatory variables which impact the failure rate but
also to improve the accuracy of failure rate modelling.

The investigated disconnector population is in operation on distribution and
regional system levels from 6 kV to 220 kV. Totally, 1626 disconnectors with 2191
associated work orders have been analysed from a time period of 2008 to February
2015 to identify major failures in the population. This population included 36.1 %
remote-controlled and 63.9 % manually operated, the disconnector is operated on-
site, disconnectors. The work orders include the following information:

e Disconnector ID

e Installation year

e Voltage level

e Remote control availability

e Manufacturer

e Disconnector type

¢ Conducted preventive maintenance (PM)
e General description of work order

The initial failure analysis with descriptive statistics to identify failure modes,
causes and location has been presented in [61]. Manoeuvrability, current carrying,
and secondary functions have been identified as failure modes in both major and
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minor failures. To conduct the analysis with the PHM in [24], certain data features
such as right censoring, left-truncation, and missing explanatory variable
information, have been addressed. For example, the age was solely given for 69 %
of the disconnectors. This data quality has led to assumptions to better analyse the
failure data. The major findings of the study in [24] include:

Single variable analysis

e The covariates voltage level, remote control, and PM are significant at the o = 0.05
acceptance level.

e Remote-controlled disconnectors have a higher failure rate than manually
operated disconnectors by a factor of 2.1.

e Ageat admission is not significant.

e Asignificant negative effect, compared to the double side break disconnector
which has been selected as reference, has the vertical break (Hazard Ratio =
5.514), knee type (Hazard Ratio = 2.960), semi-pantograph (Hazard Ratio =
2.530), and the single pole disconnector (Hazard Ratio = 9.370).

Multiple variable analysis

e The multiple variable analysis has been conducted with time on study and age,
considering the left-truncation of the data set, as survival time. The significance
and covariate effects are similar but differ in magnitude.

e The covariates voltage level, remote control, and PM, which have been selected
with the stepwise regression procedure, are included in the model. PM has a
positive and the strongest effect on the failure rate. However, the magnitude of
the effect decreases with increased PM compared to zero PM which might be
due to the smaller group size of the third PM category.

e The Hazard Ratio is, compared to the reference group on the 6-20 kV voltage
level, 0.469 and 0.612 times lower for the 40 kV and the 220 kV voltage level,
respectively.

e The competing risk approach is applied to test the covariates depending on the
failure modes maneuverability, current carrying, and secondary functions. The
covariate remote control has the greatest effect on secondary functions and
maneuverability with 7.26 and 2.28, respectively. A reason might be the
installed control equipment and the number of operations. However,
unfortunately more detailed data has not been available to test these
assumptions.

Remarks

Exploratory failure data analysis with the PHM has been limited in the power
system domain thus far due to a number of challenges in data quality and
availability. These challenges are also encountered in this case study. In spite of the
aforementioned statistical results to improve the failure rate prediction, [24]
addresses the data challenges and presents existing solutions to encourage other
researchers and practitioners to apply statistical learning approaches to improve
the accuracy and understanding of the failure rate. One key element in this case
study, to gain the results and conduct the study, has been the strict approach to
state clear assumptions, particularly in the definition and identification of failures.
This is discussed in detail in [24-26].
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24 CASE STUDY 2: ANALYSIS OF CIRCUIT BREAKER FAILURES

Circuit breakers (CB) are developed to protect and control the power system by
breaking the current, also when a failure occurs. Consequently, CBs have at least
one more important failure mode compared to disconnectors, which is the load
breaking capability.

An international survey in [62] shows that around 25 % of CB applications are in
transformer bays, 60 % are used in overhead lines and cable bays, 10 % as bus
couplers, and the rest are used for shunt reactors, shunt capacitors, and some other
minor applications. The survey showed that, in particular, the CBs in shunt
reactors and capacitor applications are operated most, and that there is a
connection between the average number of operating cycles per year per
application and the failure rate. Another study in [63] concludes that the average
failure frequency increases with the number of operations and voltage level. The
demand for high reliability of CBs [62] requires a major share of the maintenance
budget in utilities [63], which motivates the study of a CB population in Sweden
in[25, 26].

The CB population includes 2622 components which have been under observation
from 2008 to 2015. The failure and maintenance information has been extracted
from the internal asset management system of a utility in the form of 4496 work
orders. The work orders include information such as:

e CBID

e Installation year

e Voltage level from 40 kV to 400 kV

e Remote control availability

e Manufacturer

e CB Type: oil, SF;, and vacuum

e Conducted preventive maintenance

e Geographical area of operation

e Number of operations in each year from 2008 to 2015
e Operating mechanism: hydraulic, mechanical spring, watch spring
e General description of work order

The population is investigated with the assumption that CBs are non-repairable in
[25] and that the CB are repairable in [26].

CB Failure Analysis with PHM
The findings of [25] can be summarised as follows:

e A one-way analysis of variance (ANOVA) test shows that the means of the
maintenance intensity (MI) in [maintenance tasks/time-on-study] is different
depending on the CB type. The oil type CBs experience the highest MI
followed by SF; and vacuum CB. Moreover, age at admission and MI are
moderately correlated.

The single variable analysis shows that:

e Age at admission is significant with a Hazard Ratio of 1.014,
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The origin of the CB (manufacturer) has no impact on the failure rate,

There is no significant difference between the CB types,

The covariate MI has a positive and significant impact on the failure rate for all
categories,

The operating mechanism has no significant impact on the failure rate,
Remote-controlled CB do not have a higher failure rate, however, the group
size of manual CB is with less than 10 % very low.

The results of covariate assessment in the multiple variable analysis are:

The analysis is conducted with time-on-study and age adjusting for left-
truncation as survival time. The MI has a positive impact and the number of
operations within the last year (#OLY) a negative impact on the failure rate in
both approaches.

The negative impact of #OLY is increasing with the number of operations. A
CB with more than 60 #OLY has a 6.322 times higher failure rate than a CB
which is operated less than ten times within the last year.

The Hazard Ratio of age at admission is estimated with 1.038. Thus, the
relative risk between two CB with an age difference of ten years would be 1.46.
When time-on-study is used as time to failure, the oil CB type has a positive
impact compared to the SF, type. However, this result might be because the oil
CB are generally older and more maintained.

CB Failure Analysis with Regression Models for Count Data

Since the CBs under investigation are usually repaired, a second study has been

conducted in [26]. If recurrent failures are treated as counts, regression models

such as Poisson and negative binomial regression can be applied. The major results

are:

In general, the negative binomial regression has a better model fit, compared to
the Poisson regression, primarily due to the over-dispersion and the zero-
inflation in the count data.

In the single variable setting, the operating mechanism and the total number of
operations has no significant impact on the recurrence of failures, thus, they are
not further considered in the multiple variable setting.

The covariates M1, age at admission, mean number of operations per year, and
voltage level are significant and included in the final model.

The ROCOF of a CB operated more than 50 times per year is 2.33 higher
compared to a CB operated less than 50 times per year.

The MI is divided into MI before the first failure and after the first failure. The
results show that there is an opposite effect. Maintenance conducted before the
first failure has a positive impact and the maintenance after the first failure has
a negative impact on the ROCOF. Investigating the CB with many recurrent
failures revealed that an underlying problem exists which is not solved
properly during the maintenance tasks.

Remarks

Case Study 2 focuses less on data quality and availability challenges but explores

the CB failure dataset in greater depth, primarily because more exploratory
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variables are given. The case study is divided by the assumption of non-repairable
and repairable CB which is presented in[25, 26], respectively. One important factor
in analysing failure data has been found to be the variation of assumptions and the
exploration of failure data by different tools instead of relying on one single
analysis. This approach leads to further insight into the data and additional
knowledge is gained for design and operation of the components. Reference [26]
exemplifies this by the negative impact of higher frequency of maintenance after
the first failure. It is shown that this is an indication of an underlying CB failure
which has not been properly repaired during the first maintenance and
consequently occurs again.
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3  Individual Failure Rate Modelling

The application of statistical regression models in failure rate estimation and
prediction in the power system domain is restricted by failure data availability and
quality which has been concluded from the literature study in [27]. As a result,
methods are required that improve the failure rate accuracy despite the limited
failure data available. This chapter starts by demonstrating that improved failure
rate accuracy can be gained through individual failure rates for components
instead of using population failure rates. The concept of population and individual
failure rates is presented and demonstrated based on an example. Thereafter, all
relevant factors and methods which have been used to improve failure rate
accuracy are shown and discussed based on the findings in [27]. These findings
underline the need to develop a method which can improve failure rate accuracy
without requiring actual failure data. Therefore, this chapter follows by presenting
the method developed in [28, 29] to calculate individual failure rates within
populations without actual failure occurrence. The general method is presented
and followed by a validation of the concept. The method is further applied in the
Case Studies 3 and 4, which are the summarised results of [28, 29].

3.1 POPULATION AND INDIVIDUAL FAILURE RATES

Recall the definition of the failure rate 4 (t) = f(t)/R(t) ineq. 2.4 [1] and how it is
observed by testing n identical components and recoding the time to failure for
each one. The failure rate is calculated from these n lifetimes, thus, it reflects the
failure rate from a population perspective. This can be demonstrated with two
examples. Firstly, consider the population of 25 power transformers rated greater
than 25 MVA from section illustrated in Figure 2.3 in [1]. The population is
simulated, according to [20], with an average failure rate of A = 0.03. In Figure 2.3
in [1], the actual lifetimes of each component, the estimated distribution function
F(t) with confidence intervals, the non-parametric estimate of F(t), and the failure
rate A(t) are shown. A question to ask for the failure rate would be: “ What is the
probability that this component will fail in the next interval (¢, t + At]?” [22, p. 19].
The obvious reply would be 'a constant failure rate of 0.03' because an exponential
distribution is assumed. However, the previous question seems misleading since it
asks for a specific component. Focusing on several components and considering
being in year 40, it would be expected that the failure rate is higher for power
transformer 11 to 15 which all fail soon after rather than for 23 to 25 which have a
lifetime longer than 100 years. Even though the failures are often assumed to be
random, the natural individual variations among the components should not be
ignored [64]. Generally, [64] argues that it is tempting to consider the population
failure rate as an individual failure probability over time. This becomes a particular
challenge when populations have subgroups with different failure rates. This has
been observed in a study regarding failure data of conductors, cables, and power
transformers in [65]. Here, the observed population failure rate increases first and
declines later. Particularly, this declining failure rate leads to a false perception. Let
the second example illustrate this problem. For this purpose, the example from [66,
67] is used with some modifications. Suppose a population can be divided into two
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subpopulations which are characterised by the failure rates 4, ;(t) and 1, ,(t) and
let R, ;(t) and R, ,(t) be the corresponding survival functions. Moreover, the
proportion of components still operating at time t is represented by

A(t) p(t), RO)

04 .
0.3
02

0.1 A (t) AD)

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

Time to failure in [years]

Figure 3: The left part of the figure depicts the population failure rate which is observed as the result of two
different subpopulations with 4,,; (£)=0.03 and 4,,, (£)= 0.105 x (0.03 * £)3>5~* for subpopulation 1 and 2,
respectively. The right part of the figure shows the survival functions of both subpopulations plus the relative
share p(t) of the subpopulations over time.

(f) _ pDRP:l (f)
poRp1(t) + (1 — po)Rpa(t)

with p, as the proportion of the subpopulation 1 at time ¢t = 0. Now, the resulting
population failure rate can be defined as

3.1

Ap(t) = p(t)Ap.a(t) + (1 —p(2))Ap.2(?). 3.2

Here, the population is divided into two subpopulations with a constant failure
rate A,;(t) = 0.03 and an increasing failure rate 1,,(t) = 0.105 * (0.03 * t)>°~!
based on a Weibull distribution with scale parameter § = 1/A = 1/0.03 = 33.33
and shape parameter @« = 3.5. The proportion of subpopulation 1 att = 0is pp, =
0.5. The results are shown in Figure 3 for the population failure rate and the
corresponding survival functions. This example illustrates how the population
failure rate over- or underestimates the failure rate of the subpopulations. In the
first interval up to 20 years, the observed population failure rate overestimates the
failure rate for subpopulation 2 but underestimates it for subpopulation 1. This
change after 20 years when 4,,,(t) further increases which results in a
simultaneous increase in the population failure rate. However, after 39 years the
population failure rate decreases again because the p(t) increases, since more
components of subpopulation 2 fail. If the population failure rate is interpreted as
an individual risk, one would observe a declining failure rate even for the
remaining 37 % of the subpopulation 2 components. This would lead to an
incorrect perception about subpopulation 2 since these components still follow

Ap2(t).

3.1.1 Heterogeneity in Populations

The previous examples underline the importance to have a clear distinction
between the population and individual failure rate and that the failure rate should
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be interpreted cautiously [64]. Consequently, for a measure of relative risk, it is
important to describe the heterogeneity among components. To do so, the concept
of heterogeneity and its source needs to be understood. Heterogeneity is the
difference or diversification of components in a particular population. Therefore,
the identification of component characteristics, which differentiate one component
from another, is essential to understand the concept. From a survival analysis
viewpoint in medical research, Aalen described three sources of heterogeneity in
[64]:

e Biological differences which are present from the beginning,
e A weakness as the result from the stresses of life as a dynamic concept, and
e Taking into consideration if a disease is in a early or late stage.

Unobserved individual heterogeneity is also called frailty in survival analysis [64].
However, transferring this concept to technical power system components, the
sources of heterogeneity are:

e Component specific variances from the commencement of operation (static
factors),

e Induced frailty as the result of load and other stresses from being in operation
(dynamic factors),

e Consideration of the condition, the physical state, of a component over time
which might range from “good” to “bad” and is the result of static and
dynamic factors over time.

The individual failure rate is, hence, a function of the static factors, dynamic
factors, and the condition which is in itself a function of the historical impact of the
static and dynamic factors in the interval (0, t]. Consequently, the three sources
static factors, dynamic factors, and the component condition are of interest to
accurately model the failure rate. Note that the condition is dependent on the static
and dynamic factors which are discussed in detail in [27]. Therefore, a literature
study has been conducted in [27] to investigate which factors have been modelled
thus far. These factors and their importance on a component's condition
development are schematically illustrated in Figure 4 and described in more detail
in the following section.
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Figure 4: Abstract illustration of the Impact Magnitude of static and dynamic factors on a component's
condition development and failure rate over time based on [27]

3.1.2 Relevant Factors

The literature review in [27] revealed a set of factors which have been used in
failure rate modelling of power system components. Ekstedt argued in [68] that no
consistent categorization of failure rate factors exists in the literature thus far.
Therefore, this section describes and categorises relevant factors which are
characteristic of the population heterogeneity. The selection is based on factors
used in failure rate modelling and the investigation of historical failure statistics.
Generally, the factors can be categorised into static population and dynamic
individual factors as aforementioned. The static population factors describe the
properties which are given from the commencement and do not vary over time.
Moreover, static factors cannot be controlled after the component is put into
operation. On the contrary, the dynamic individual factors characterise the effect of
time dependent factors on an individual component over time and consequently
lead to a unique condition development. Dynamic factors can be, to some extent,
controlled while the component is in operation. Even though the distinction is
similar to the classification of time independent and time dependent explanatory
variables in section 2.1.1, different terminology is chosen to more clearly
distinguish between general population attributes and factors which impact the
component condition. Primarily dynamic individual factors make a component
unique in a population since these factors are difficult to control.

Static Population Factors

Component Specific Variance The term component specific variances describe the
diversity of components within a population of the same type. These are attributes
such as size, length, and material which describe the component. For example,
overhead lines might be characterised by length and conductor type and a power
transformer by power rating.
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Ageing Based Power system components are built for a particular lifetime and
might be modelled with a lifetime distribution under the constraint that they are
operated within the predefined set of operating conditions. Hence, the general
ageing can be modelled with lifetime distributions which applies to all components
in the population.

Origin Based Origin or manufacturing based factors describe how a non-
conformity during the design and manufacturing process impact the failure rate.
For example, incorrect design or poor quality management can lead to early
component failures. Typical characteristics might be model, manufacturing year, or
manufacturer.

Installation Method The process of how a component is installed has an impact on
early component failures or might lead to higher stress during the operation.

Dynamic Individual Factors

Environmental Impact The location and environment a power system component
is operated in influences the lifetime. A general categorization of this
environmental effect might be into: (1) the constant and varying impact on the
wear and (2) the somewhat random appearance of certain events which cause
direct failures. The surroundings such as temperature, water, wind and other
weather features predominantly affect the wear. These weather related factors vary
over time and hence are dynamic. On the contrary, random events which lead to
direct component failures are often weather events with a higher magnitude. Other
constant factors are location, usual seasonal variations, vegetation, or construction
work. Vegetation or animal related factors also can cause direct failures.

Operational Stress Induced weakness resulting from operational stress in form of
overload or erroneous operation increases the failure rate of components.
Examples of these factors might be the current load, load history, amount of
operations, and time in operation.

Maintenance Impact Maintenance activities consist of supervision, prevention and
detection of failures to retain or restore the functioning state of a component [22].
Preventive maintenance, therefore can improve the condition and operating
environment to decrease the failure rate. However, incorrect maintenance could
have a negative impact on the failure rate. Corrective maintenance, in contrast, is
conducted after component failure and restores the component to a functioning
state. This type of maintenance is not considered here.

Condition-Based The physical or 'health' state of a component is the condition
which is an indicator of the ability to resist operational stresses. When the
condition is 'as new’, the component is considered to have the strength to
withstand the external forces it is designed for. During the lifetime, the preceding
factors cause degradation of the condition over time and reduce its ability to
withstand external forces.
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3.2 METHODS FOR FAILURE RATE ESTIMATION FOR INDIVIDUAL
COMPONENTS

This section presents approaches to model the failure rate of components based on
individual characteristics as presented in the preceding section. These consist of
the PHM, Markov models, Bayesian Updating Scheme, and a practical approach
based on empirical data. The presented methods are described briefly, and an
example of the failure rate estimation is given.

3.2.1 Proportional Hazard Model

The relative risk model or PHM, when the explanatory variables are fixed, is
described in section 2.2.1. This model is primarily used to investigate the effect of
explanatory variables on the failure rate. However, after the regression coefficients
are estimated, the resulting risk function acts multiplicatively on the failure rate
when considering the model in eq. 2.4. Therefore, the failure rate of an individual
component might be computed based on the set of its explanatory variables. Let
the results of Table IV in [24] serve as an illustrative example. Having the three
covariates geographical area, maintenance intensity, and number of operating within the
last year to be significant, the failure rate for component i can be formulated as

/\(t;xi) — )‘O(f_)821:’J’J+Z-2.52+Z-:..33+Z454+Z:,.-'j:+ZG.36+Z757+Zs.3s+Zoﬁ9+Zm.51[)

= Ao(t)eZ2 (-0:421)+Z2(=0.306)+ Za(~0.758)+ Za (= 2.452) 3.3

25 (—2.465)+Zg (—1.694)+Z7 (0.731)+ Zs (1.028)+Z9 (0.965)+ Z10(1.468)

Assuming a baseline failure rate with 4,(t) = 0.01, according to the average failure
rate for CBs in [20], the failure rate of a CB within geographical area 3, maintenance
intensity category 1, and number of operations within the last year category 1 is

)\(1‘-; Xi) = 0.01 % 61*(—0.?58}—1—1*(—‘2.482}—1—1*(0.731)

— 0.0008. 34

The failure rate for the remaining n — 1 components can be calculated likewise.
Applying the relative risk model enables a better failure rate characterisation based
on the investigated factors. However, this is often not feasible due to data
requirements. Even though the relative risk model modifies the baseline failure
rate to get an individual failure probability, the unobserved individual
heterogeneity might be neglected in survival analysis which has become a major
concern [64]. The argumentation and examples have been given in section 3.1 and
the general theory is known as frailty theory and presented, for example, in [67].
Aalen discusses the topic and presents some models to consider the unobserved
heterogeneity in [64]. A simplistic model is a proportional model where the
individual failure rate is the product of a specific quantity Q and the baseline
failure rate 1,(t) such that

individual failure rate = QAg(t). 3.5

In this basic model, Q is a random variable over the population. Aalen argues that
the population failure rate is observed in a population, which is the result for the n
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number of individuals with varying values of Q. This model primarily considers
the given differences from the start and solely extracts parts, but it could give
useful insights [64]. The frailty variable QQ (t) might be modelled as a stochastic
process or as a first-passage-time model. These are not further presented here and
it is referred to [40, 64, 67].

Remarks

Given sufficient failure data and explanatory variables, the Cox regression is the
most suitable method to investigate the impact of explanatory variables on the
failure rate of power system components. After developing a model, the failure
rate can be more accurately modelled and predicted for each individual
component under the assumption that the historical population is equal to the one
in operation. If, however, a technological design change has happened and the
actual components are different, then the prediction has its limitations.
Furthermore, this method is especially useful to assess past asset management
decisions and what impact these have on the components in operation. However,
the general challenge of data quality and availability continues to be the main
challenge for the application of this tool in the power system domain. It is
recommended to further apply regression models to gain valuable insight into
failure occurrences despite the high level of effort required to gather the data.

3.2.2 Markov Models and Hidden Markov Models

Markov models are a useful mathematical technique to model repairable
components. Further benefit of Markov models is the non-necessity of historical
failure data as long as the failure rate and repair rate are given as transition rates.
However, this applies solely to a two state Markov model and is a good
application example of the failure rate. Considering a Markov model with several
states to model a deterioration process of an individual component, the transition
rates have to be determined differently. In this application, the transition
probabilities can be computed from life-histories, manufacturer information,
historical condition monitoring data, and the deterioration function [69].
Afterwards, the probability of failure in each state is determined to estimate the
overall failure rate. For example, Velasquez-Contreras developed in [70] a five state
Markov model, including the states new, normal, defective, faulty, and failed, to
model the deterioration process of a power transformer to calculate the failure rate
for an asset management framework.

In contrast to the classical Markov model, the Hidden Markov model (HMM)
assumes that the state cannot be directly identified. A practical illustration is the
identification of the dielectric strength of the insulation material in a power
transformer. The difficulty in directly identifying the insulation material strength
and diagnostic measurements such as dissolved gas analysis is applied to provide
insightful information. These condition monitoring data can be utilised to calculate
the states. The condition-based failure rate estimation with a discrete HMM has
been demonstrated in [69]. The HMM utilizes a sequence of observations that are
the result of an underlying or 'hidden' Markov process to calculate the transition
rates between the condition states. The steps to determine the transition rates
according to [71] are as follows:
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e Define the number of all observable and non-observable states.
e Determine the following parameters:

% The Markov transition matrix with state transition probabilities A =
{a;j},a;; = P(Xe41 =Jj | X =1),1 < i,j < N where N is the component's
deterioration level and X; is the current state.

% The probability of obtaining an observation with a observation symbol M
at a specific state is B = {b]-(k)} with bj(k) = P(o, = wlX, = j,1 < j <
N,1 < k < M where o, is the current observation.

x  Suppose the latest observation is given, then the initial state distribution
can be calculated with Il = &; with m; = P(X; = i),1 < i <N.

o The final step is the calculation of the optimal parameter A = {4, B, I } by
maximizing the likelihood of the observation L;,; = p(O | 1). Here, the Baum-

Welch algorithm is applied.

The transition matrix P can be built after the estimation of the transition rates. The
state probability vector is denoted with P(hT) = [Py(hT) ... Py (hT)] where h =
1,2,3, ... and T is the time increment. The elements of the state probability vector are
the probabilities that a component is in a specific deterioration state at time T. For
example, when the component is in the first state at time ¢t = 0 then P(0) =

[10 ... 0]. Now, the probability can be computed so that a component is in any
deterioration level at time hT with P(hT) = P(0) = P". Finally, the failure rate is
calculated as

P((h+1)T) — P(hT)
1— P(hT)

PhT <z < (h+1)T|z > hT) =

Example

The HMM is applied to three power transformer case studies [70-72]. All authors
utilised dissolved gas analysis results to develop the model. In [71], the authors
used a sample size of 10 transformers over a time of 7 years to train the model and
calculate the transition probabilities. The calculated failure rate is depicted in
Figure 5. One drawback of the HMM is that, to determine the transition rates, it is
necessary that the component has been in all deterioration states as defined.
Moreover, the definition of the states itself can be challenging when only limited
knowledge about the deterioration process is available.

Remarks

Even though the HMM is theoretically a method to model the failure rate on an
individual level, practically this is difficult. Condition monitoring data need to be
gathered over such a long interval that the component has been in all predefined
stages such as a failure. Particularly, for power system transformers on
transmission level, this seems to be unrealistic due to the long-lifetimes and
generally low failure probability. Moreover, it is tempting from a practical
perspective to apply the same model to all other components in operation instead
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Figure 5: Estimated failure rate based on HMM and dissolved gas analysis data [71]

of gathering condition monitoring data for each. Therefore, the HMM is not very
suitable to model individual failure rates due to the practical implications.

3.2.3 Bayesian Reliability Modelling

Generally, the scarcity of failure data in the power system domain creates the
demand for methods which enable certain lifetime predictions with limited failure
data. Bayesian methods for reliability analysis are an approach to gain additional
insights by combining “ prior” information with some observed data to make
inferences [23]. The basic principle in a reliability context is presented in [22, ch. 13]
and [23, ch. 14] and is illustrated in the following. Suppose the random variable X
with the corresponding probability density function f(x, 8), 6 € 2 where Qisa
subspace of the r-dimensional Euclidean space. Moreover, 0 is understood as the
realisation of a random variable & with the density f,(8) which is interpreted as
the “beliefs” about the value of  prior to any observation. Therefore, f,(0) is
known as the prior density of @ and let fx|o (x | 8) denote the conditional density
of X. Following the theoretical concept in [22, ch. 13], the joint density of X and 0 is

fx.e(x.0) = fxje(z|0) * fo(f) 3.7

Now, having the marginal density of X with
ff\f (.’l’) = / fx__@(.’f-, Q)dg 38
J0

which leads to the conditional density of @, given X = x, is

o Ixje(=]0) x fo(0)
fe|x(0lz) = @ . 3.9

This can be seen as a basic form of Bayes's theorem. Since this expression states the
belief regarding the distribution of 0, after having observed X = x, it is called the
posterior density of 8. Recall that when X is obtained, the density fx(x) is constant
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in eq. 3.9. Consequently, this resulting proportionality between fyo (x | 6) and
fxjo (x10) * fo (6) can be expressed as

foix (0lz) o< fx|o(x|0) * fo (). 3.10

This method is also often called the Bayesian updating scheme, which originates
from the fact that the information about the parameter 6 is updated. Moreover, this
is an iterative process because the prior distribution of 8 is updated to the posterior
distribution 8, given X = x as soon as new information X is obtained and the
posterior distribution becomes the new prior distribution.

Bayesian methods also enable the prediction of future component failures within a
particular population. These failures are predicted by using the Bayesian posterior
predictive distribution [23, ch. 14.6] which is

fxolx (zolz) = /0 :f{$0|9) * foix (6|x)db. 3.11

The Bayesian method as updating the prior plus predicting the future density, is
illustrated in graphical form in [73, Fig. 3.2].

Examples

Bayesian Updating in combination with failure rate prediction has been applied for
overhead transmission [74] and distribution [15, 75] lines, and power transformers
[76]. In [74], the number of overhead line failures are modelled with a Poisson
process where the prior is a Gamma distribution which is updated with the
number of occurred failures over a six year period. Similar, but in combination
with log-linear regression, [75] is using a hierarchical Bayesian Poisson regression
to estimate individual failure probabilities for distribution lines. The authors
include the length, age, load and tree density as possible explanatory variables. In
a rather general approach, the feasibility of Bayesian updating in power
transformer failure rate estimation is shown in [76]. Here, condition monitoring
information in the form of power transformer oil and gas samples over a time
horizon of 8 years is used, to update the shape parameter a in the Weibull failure
rate function while assuming that the condition measurements follow a normal
distribution.

Remarks

Bayesian Updating presents accurate results, particularly, on the modelling of the
failure rate of overhead lines by using historical failures of each line and external
explanatory variables such as weather. However, the general approach of updating
the Weibull distribution parameters based on condition monitoring data should be
seen as an idea rather than a suitable method since a few simple assumptions have
been made to show the idea rather than a complete method. However, more
development of the general method might lead to better results.

39



INDIVIDUAL FAILURE RATE MODELLING AND EXPLORATORY FAILURE DATA ANALYSIS FOR POWER SYSTEM COMPONENTS

3.2.4 Failure Rate Modelling based on Inspection Data

An empirical approach to model the failure rate based on component inspection
data has been presented in [20]. Brown argued that the failure rate should be
modelled ideally as a function of critical parameters. However, assessment of the
failure rate with regression techniques as presented in Chapter 2 is difficult due to
limited data availability and the often poor data quality. Therefore, a failure rate
model has been found to empirically fit the data best with an exponential function
such that

AS) = 4eP + ¢ 3.12

where S is the condition score and 4, B, and C are the function parameters which
are calculated from the failure rate at the best, average, and worst inspection
outcome. The condition score S is computed by S = ¥5_; w,n,/ X5 _; w,, with the
relative importance weight w,, € {1,10} and the inspection outcome score r,, € {0,1}
with 0 as the best, 0.5 the average, and 1 as the worst inspection outcome. The
natural pairs are the failure rates A(0), 1(0.5), and A(1). Having these three failure
rates, the parameters for the failure rate function are determined by [20]

A(0.5) = A(0))?

A= X1 =2\05) + A0 313
B =2In (A(U..-}) _f _ ’\(0)) 3.14
C = A(0) — A. 3.15

Whereas the average failure rate 1(0.5) is often available for different component
types, the failure rates for the best and worst condition are difficult to determine
[20]. Therefore, Brown presents these for a range of component types in [20] and a
more detailed benchmarking in [19]}. In Figure 6, the component failure rates are
depicted for power transformer, disconnector, and CB dependent on the condition
score.

Example

This method is illustrated based on 3 transmission power transformers which are
used in the case study of [77] and are also part of [29]. To calculate the condition
score of these power transformers, the condition ratings for gas and oil analysis
and paper ageing have been utilized. Converting the condition score or health
index from 0-100, from very poor to very good, to 0-1 and inverting the scale, the
failure rate for these power transformers can be calculated based on 3.12. The
results are shown for the period 2002 to 2016 in Figure 7 and all power
transformers are below 1,5 = 0.03.
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Figure 6: Empirical component failure rate functions based on a condition score for power transformers rated
greater 25 MVA Apr-,5 (S) and smaller 25 MVA Apr_,5 (S), disconnectors 4,5 (S), and CB A5 (S) which are
presented in [20]

This method, which is based on historical component failure data, is the most
practical approach. If the condition score of a component can be accurately
determined, it is beneficial for power system operators. However, the condition
score and particularly the determination is also its weakness. Expert knowledge is
required to define the criteria and importance weights for the condition score.
Moreover, equal information must be gathered for all components to make the
results comparable.

3.2.5 Discussion

All aforementioned methods have the mutual aim to model and predict the failure
rate accurately. As Brown argued in [20, p. 783], the failure rate should be
characterised preferably through a regression model which assesses each internal
and external explanatory variable. Therefore, the PHM seems to be the preferable
option since it not solely models the failure rate but also investigates the statistical
significance of the explanatory variables. However, this requires failure data of the
population of interest which is often difficult to gather due to long lifetimes and
decisions to replace components before they fail. Markov and HMM estimate the
failure rate depending on the deterioration state of the individual component,
however, it is essential that the component has been in each deterioration state
before, which makes the data requirements even higher than with the PHM.
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Figure 7: Computed failure rates for three transmission power transformers rated greater 25 MVA based on a
health index score presented in [77]

Bayesian statistical methods, on the contrary, require less actual failure data and
are therefore an alternative approach. This method combines previous process
knowledge with data such as condition monitoring or failure statistics [73].
However, an assumption about the prior distribution is required for this
parametric method, which might be difficult in certain cases.

The empirical failure rate model developed by [20] and presented in the preceding
section is the most straightforward method. This heuristic method combines
historical failure data with expert knowledge and experience about most power
system component types to model the failure rate over a condition score. Although
straightforward, a challenge is the consistent definition of the condition score
which the failure rate is mapped to. Depending on the criteria defined and
available, the overall condition might be over- or underestimated if not a sufficient
amount of criteria is selected. Moreover, the presented failure rate data in [20] for
the best, average, and worst inspection outcome might be general but does not
necessarily have to be accurate for the population of interest due to developments
in component design, for example.

These limitations underline that a method, which does not require failure data and
the parametric assumption about the sample data used, would be beneficial in
improving failure rate modelling.

3.3 INDIVIDUAL FAILURE RATES WITHIN POPULATIONS

This section presents the concept of Individual Failure Rates which has been
developed in the[28, 29]. [28] formulates the time-independent model and
describes the method in a practical context of a power transformer population. The
case study includes 30 power transformers with six single time condition
measurements and is summarized in section 3.4. [29] presents a more rigorous
formulation of the method considering time-dependence and introduces the risk
functions. Furthermore, the individual failure rates are forecasted by applying
time-series analysis to predict the stochastic internal covariates or condition
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measurements. Hence, the approach is applied to a population of twelve
transmission power transformer which is presented in section 3.5.

3.3.1 Modelling Assumptions and Constraints

The preceding section presented various methods to calculate failure rates for
components based on internal and external explanatory variables. However, these
methods are often difficult to apply within the power system domain. From a
general perspective of statistical data driven approaches, the authors of [78]
conclude with a literature review that a number of challenges remain before
existing methods can be applied to practical systems. The authors primarily
identify that there is

e the necessity to develop models with limited amount of data available, for
example, when new components are operated,

e the fusion of several input data sources such as condition information,

e the investigation of how external factors can be incorporated into the models
and how they impact the condition information,

e the development of a model which considers all failure modes of a single
component.

These four challenges are particularly relevant in the power system domain due to
the long lifetimes of the components and poor data quality which leads to a limited
amount of historical data [20]. The resulting consequences are a shortage of failure
data, records of component characteristics, and long-term environmental and
condition monitoring information. Therefore, the method to calculate individual
failure rates is based on the limited data available considering the challenges in the
power system domain. The method has been developed under the following
assumptions:

¢ Solely homogeneous populations are considered such as the population of a
particular component type

e No failures have occurred in the population until time ¢

e The components are non-repairable

e Atleast a single condition measurement has been obtained

e The condition monitoring information is a valid failure indicator

¢ The same condition monitoring information has been gathered from all
components

e The population or baseline failure rate and failure mode statistics are equal to
historical data of previous populations

3.3.2 Method

Assume a homogeneous population of n non-identical power system components
without failure occurrence until time t. Lel, (t)t be the baseline failure rate, also
known as population failure rate, computed from historical failure data of a
comparable population n with m distinct failure types j € {1, ..., m}. Let x; ;(t) =
(x5, (£), x5, (£), -, X5, (£)) be the vector of k internal covariates which are related
to failure type j of the i-th component with i € {1, ...,n} and x; ;(t) the vector of all
d covariates of component i with d = ¥/, k;. Recall the definition of the failure
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type specific failure rate in eq. 2.13. Following the competing risk approach in eq.
2.14, each failure type j can occur but separately, such that

At zi(t)) = ZL A (£ @i (1)) = Z Noj ()7 (85 i 5(1)) 3.16

The method is based on the form and idea of eq. 3.16 but must be clearly
distinguished from the regression model within survival analysis.

Suppose the frequency of each failure type j is known from population 1), the
vector « = (ajy, ..., &) denotes the proportion of each failure type j with the
property Y7L, a; = 1. Moreover, given that 3721 Ao;(t) = Ao(t) XL a, the
competing risk approach can then be written as

At ai(t)) = Ao( f)z L @iri (@i ;(t)) 3.17

Furthermore, it is assumed that each covariate is solely related to one failure type
Jj and that the vector x; ;(t) € R, is assumed to be a valid failure indicator of j.
Moreover, each internal covariate in vector x; ;(t) has a measurement uncertainty
vector p = (py, P2, ... P)- The measurement uncertainty p describes the assurance
of successfully measuring the internal covariates. This leads to the time dependent
model

At (1)) = Aol f)z a;p;ri(t; Z; j(t)) + o1 = pj)) 3.18

where Z; ;(t) = (Z;, (), Z;j, (), ..., Zij, (£)) is a vector of time dependent
covariates derived from x; ;(t). This notation is useful since the basic covariates
might be transformed such that Z; ;(t) = g(x;;(t)) where g depends on the internal
covariate data being chosen. This transformation might be needed to describe the
risk functions. The model parameter p is described in detail in [28] and the risk
function in eq. 3.18 is further described in the following section.

The risk function 7;(t; Z; ;(t)) is the factor which differentiates the i-th component
from the population failure rate 4, (t). Since 7;(t; Z; j(t)) > 1 causes an increase,
15(t; Z;j(t)) <1 adecrease, and 7;(t; Z; j(t)) = 1 an unaltered failure rate, this
function is a relative risk function. Assuming that the condition of the i-th
component is a valid risk of failure indicator, the function r;(t; Z; ;(t)) adjust the
population failure rate by utilizing the internal covariates Z; ;(t). The initial
background of the risk function is described in [28] and illustrates the idea that in a
homogeneous population which is operated under the same operating conditions,
the component which differs from the population features has an increased or
decreased failure rate. Hence, the 'reference group' required for the relative risk
function, here the population reference condition, is the average population
condition calculated from the internal covariates. Depending on how an internal
covariate describes the failure probability, the function space is large. While [28]
solely introduces a positive or negative linear risk function due to the time-
independence, [29] presents two additional risk functions when the covariate
history X,(t) = {xp w:0 <su<t } is given. Based on these covariate histories,
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the vectors Cand V are computed which are the average population condition and
variance for each covariate p € {1, ..., k}, respectively.

The arithmetic means C of all internal covariates is the reference measure and can
be compared to the current measurements Z(t). Since multiple covariates can be
related to failure mode j, the overall risk function is calculated by

r(t; Z(t)) = S(t; Z(t))w 3.19

where S(t; Z(t)) =S (t; Z, (t)), e Sk (t; Z, (t)) is the vector of all k risk functions
which are related to j, and w = {wy, ..., w;} € R, is the weight score with the
property wly,; = 1. The calculation is described in greater detail in [29], which
also presents the three proposed risk functions, which are the linear, non-linear,
and the cumulative risk function.
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Figure 8: Graphical illustration of possible risk functions

Linear Risk Function

This risk function can be either positive or negative and describes the relationship
between covariate and failure rate as linear. An illustration of this is shown in
Figure 8 a.). This function can be applied in the time dependent as well as in a time
independent setting. Before this function can be defined, the basic covariates need
to be transformed such that

,_f0 if zp(t) <0
ZP(U = { .’Ep(t) if ;Bi(t) >0 3.20

if there is a linear positive relationship and

Z,(t) = { zp(t) if zp(t) < Tpnew(t) .

0 if zp(t) > Tpnewl(t)

if a linear negative relationship between covariate and failure rate exists. The
vector X, (t) describes the incipient component condition. Having transformed
the basic covariates, the positive linear function is defined as

Sp(t; Zp(t)) = Zp(t)/Cyp 3.22

and the negative linear function as
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Sp(t;zp{f')) = (;rp._ﬂew (f) - Zp{f))/ (‘Tp._ﬂew {f) - ?p) 3.23

Non-Linear Risk Function

A possible failure indication might be the magnitude of change over time of the
internal covariates. An abrupt change of the internal covariate can be an indication
of an increased risk of failure, whereas a constant change over time shows normal
behaviour. This is illustrated in Figure 8 b.). Thus, a risk is identified when the rate
of change alters over time, which is described by the second derivative of X, (t).
The basic covariate x, (t) needs to be standardized such that

_ zp(t) — 613‘

Tp

Zp(t) 3.24

with oy, as the standard deviation of covariate p. Now, the risk function can be
modelled with

Sp(t; Zp(t)) = exp(Zp(t)) 3.25
with the exponential form to satisfy the failure rate property 1 (¢t; x(t)) = 0.
Cumulative Risk Function

The volatility of an internal covariate is another risk indicator which can be
described by the cumulative deviation of Z, (t) from the expected condition value
C,. Figure 8 c.) depicts the difference between a stable and volatile covariate path
over time. An example of such a covariate is the gas production in power
transformers over time. Standardising the covariate with

_ zp(t) — 633

Z,(t) o= 3.26
P

first, where the common scale is two times the standard deviation to consider

solely significant deviations from the mean, the cumulative risk function can be
defined as

¢
Sp(t; Zp(t)) :/0 |Zp(w)]| du. 3.27

Selection of Risk Function

Selecting the risk function is based on the risk behaviour of the covariate. The
general behaviour of different covariate risks is illustrated in Figure 8. The
following risk behaviours indicate which risk function to select from the set
suggested.

e High deviation from population The most straightforward description of risk
is the deviation of one particular covariate from the population average value.
Here, the linear risk function is the standard choice. Depending on the
covariate this might be linear positive, the higher the measurement value is the
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worse the condition is, or linear negative, the lower the measurement value is
the more possible it is that the covariate indicates an upcoming failure.

e Abrupt change If the covariate path suddenly changes from its approximately
constant path, this might be an indication for an increased probability of
failure. Then the non-linear risk function is most suitable.

e High volatility If a risk of failure of a component is reflected best with the
volatility in a particular covariate, the cumulative risk function is suitable to
describe this risk type. To identify the risk besides the general noise of the
covariate, the covariate is normalised as aforementioned.

Risk Function Weight Score

The k risk functions in § (t A (t)) must be combined with w to a single function
r(t; Z(t)) as shown in eq. 3.19. As described in [28], the weight w,, is calculated
with

k
w, = ¢,/ szl Cp 3.28

where ¢, € R, is the weight score of covariate p and describes the significance as
a failure indicator. Depending on the amount of historical covariate and failure
data available, different approaches are possible to determine c,, such as Cox or
logistic regression or the determination by expert knowledge.

Individual Failure Rate Prediction

Given the covariate history X, (t), the covariate behaviour can be modelled with
different methods to estimate the future value X, (¢t + t) witht > 0 periods ahead.
This covariate behaviour is either stochastic or non-stochastic and can be modelled
with time series analysis, state space models, and Markov Chains if stochastic, and
parametric functions if non-stochastic, as presented in [31]. Stochastic covariate
behaviour can be predicted with a certain confidence level whereas non-stochastic
covariates can be predicted with a higher accuracy. [29] illustrates the prediction of
individual failure rates by using univariate time series analysis to forecast the
covariate behaviour. This approach can be summarised into the following steps:

e Create a covariate behaviour model based on X,,(t) using techniques for
stochastic or non-stochastic covariates,

e Forecast X, (t + 1) with t periods ahead,

e Use Monte Carlo simulations to calculate ¢ sample path of X,,(t + 1),

e Compute an average covariate behaviour path with an upper and lower
confidence level.

e Calculate the Individual Failure Rates based on these three covariate paths.

The result is a prediction of the Individual Failure Rate with an upper and lower
confidence interval which enables different interpretations and allows the selection
of an Individual Failure Rate based on the operator's preferable risk behaviour.
Hence, the operator can choose a risk-neutral approach by choosing the average
forecasted path, and a risk-seeking or risk-averse approach by choosing the upper
or lower confidence level path.
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3.3.3 Validation

After having developed a method for failure rate estimation, validation of the
results is essential to show the accuracy. Generally, the validation of component
failure rates is connected to certain challenges such as the randomness of failure
occurrences primarily due to environmental impacts, the lack of failure data
because outages are expensive or a risk to general safety. Therefore, components
are replaced before failure or controlled experiments are conducted to simulate
certain failures which are imprecise due to the absence of actual operating
conditions. These general challenges have been discussed in more detail for failure
type detection with machine learning techniques in [79, ch. 8].

The proposed method estimates a failure probability for each component in a
population and if a threshold value ye[0,1] for the failure rate is set, the component
might be classified as failed or near failure. Consequently, Bayes' theorem might be
applied to evaluate the performance of diagnostic tests [80, ch. 1.3]. Let B denote a
fault state of the component and B that the component is not in a fault state. In
addition, A is the event that the method predicts a failure and A is the event that a
failure is not predicted. This should describe that the method is actually able to
predict positively or negatively a failure and a component actually experiencing a
failure. Hence, the aim is to quantify the error of the method. To validate the
proposed method, a population of power transformer in a Swedish county is
investigated. General population data is given in Table 1, and a single time
condition measurement is available in the form of gas analysis results such as the
total combustible gases (TCG) which are hydrogen (H,), methane (CH,), acetylene
(C,H,), ethylene (C,H,), ethane (C,H,), and carbon monoxide (CO). Applying the
expert weights to the measurements according to [81], the failure statistics
according to [82] likewise as in case study 3, setting 4,(t) = 0.02, the individual
failure rates can be computed with eq. 3.18. The results are depicted in Figure 9.

Table 1: Power transformer population data used in validation of individual failure rates

Number of components 92 units

Installation Year mean 1980; standard de-
viation = 13; min =
1954; max=2012

Number of Producers 15 manufacturers

Voltage Levels 6.6 < x < 230 kV

Power Rating 2 <z <500 MVA
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Two power transformers have been identified with a failure in the population.
Component 14 has experienced a bushing failure and has been put out of operation
for some time while the component has been repaired. The gas analysis has been
conducted after the failure but before it has been put in operation again. This
component with 4;, = 0.036 still has the second highest failure rate and has been
classified as a failure, even though the measurement has been taken after the
failure and is not fully representative. Component 35 has been diagnosed with
overheating and damaged insulation material and is classified as a failure. The
estimated individual failure rate for component 35 is A;5 = 0.210 which is ten
times higher than the population failure rate 1, = 0.02. Given solely the gas
analysis results and no further information about other possible failure modes, the
threshold value is set to y=0.04, which is two times higher than the population
failure rate and suggests a warning for further investigation. The evaluation results
of the individual failure rate method are presented in Table 2. Now, the two
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conditional probabilities P(A |B) and P(A|B) are calculated. P(A | B) describes the
positive response given that a failure has occurred, thus, the larger this conditional
probability is, the more sensitive the test is [80, ch. 1.3]. In contrast, P(Al B)
describes the conditional probability that a positive response is detected while the
component does not have a failure. Hence, the smaller P(A|B) is or the larger
P(A|B) is, the more specific is the method. Furthermore, the measured positive
predictive rate (PPV), calculated as PPV = P(B| A)= P(AIB)*P(B)/P(A), and the
negative predictive value (NPV), defined as NPV = P(B|4)= P(41B)*[1-P(B)]/[1-
P(A)], are presented in all Tables. These two criteria have also been called false
positive rate and false negative rate [80, ch. 1.3]. The sensitivity for the population
is with 0.5 rather low, however, the amount of failures is limited, which is similar
to general component failure data as aforementioned. Therefore, known failures
from other populations are utilized to validate the method further. To do so, the
published gas analysis data in [83] with failure classification is utilized and the
estimated individual failure rate for this components is shown in Figure 10Figure
9. To compare the evaluation results, the health index method proposed in [81] is
used as a benchmark. The evaluation of the individual failure rate method with
additional failures is presented in Table 3 and the failure identification with the
health index in Table 4. The evaluation results are similar with a sensitivity of
0.7731 and 0.7478 for the individual failure rate method and the Health Index
method, respectively. This shows that the individual failure rate method is a
plausible predictor of actual failures even though the failure detection with the
individual failure rate method is dependent of the threshold value y.

Table 2: Results of individual failure rate prediction compared to actual faults in population

Prediction Result

Failure Status (A) (A) Total

Fault Present (B) 1 1 2 Sensitivity = % =05
No Fault Present (B) 0 90 90 Specificity = % =1
PPV 1

NPV 0.9898

Table 3: Results of individual failure rate prediction of population with extra added faults published in [83]
with threshold value y= 0.1

Prediction Result

Failure Status (A4) (A) Total

Fault Present (B) 92 27 119 Sensitivity = {¥5 = 0.7731
No Fault Present (B) 0 90 90 Specificity = % =1

PPV

NPV 0.9954

50



INDIVIDUAL FAILURE RATE MODELLING AND EXPLORATORY FAILURE DATA ANALYSIS FOR POWER SYSTEM COMPONENTS

Table 4: Results of individual failure rate prediction of population with additional faults published in [83] with
health index gas analysis classification according to [81]

Prediction Result

Failure Status (A) (A) Total

Fault Present (B) 89 30 119 Sensitivity = % = 0.7478
No Fault Present (B) 0 90 90 Specificity = g_o =1

PPV 1

NPV 0.9949

3.3.4 Discussion

The proposed method uses the population failure rate, failure statistics, and
condition monitoring data to calculate an individual failure rate. In contrast to
other methods presented in section 3.2, no actual failure data, assumptions about
the sample data distribution, or the definition of condition scores or thresholds is
required.

Theoretical Limitations

Generally, comparing the individual failure rate results to other methods as in [28],
such as Health Indices, strengthens the plausibility of the concept. However, the
validation of the individual failure rates remains difficult due to the limited
amount of failure data in combination with an overall set of condition monitoring
data. Furthermore, the fusion of multiple covariates to one failure mode and an
increased set of risk functions should be improved. Whereas the set of risk
functions solely needs to be extended, the weighting of covariates should be
independent of expert knowledge and therefore the development of a new method
is suggested. Particularly, [29] illustrated that the risk functions have an impact on
the computed results and affects possible decision making or the outcome of
additional system calculations. However, [29] also demonstrates that using
different risk functions widen the understanding of the failure rate and
consequently, provide a better risk perception.

Practical Aspects

The practical aspects of the method, in an asset management context, have been
primarily presented in [28]. If the individual failure rates are utilised for
subsequent system reliability calculations or in maintenance optimization, the
additional accuracy also further improves the computations. Directly applied to
maintenance and replacement decision making, the individual failure rates,
generally as all failure rates, need to be correctly interpreted. To do so, thresholds
might be set to support the decision making process. Since individual failure rates
provide no linguistic condition classification such as Health Indices, the user is
engaged to interpret and understand the individual failure rates which prevents
immature decision making. Generally, the individual failure rates provide
additional insights into risk management of power system components and could
be especially utilised for new components. This would have great value for asset
management software tools in practice.
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3.4 CASE STUDY 3: TIME INDEPENDENT CALCULATION OF INDIVIDUAL
FAILURE RATES FOR POWER TRANSFORMER POPULATIONS

[28] presents a case study of a Canadian power transformer population with 30
units based on the published condition monitoring data in [84]. The population
failure rate is constant with 4y(t) = 0.02 [1/year] and the failure statistics for vector
a are based on findings in [82]. The following single condition measurements have
been obtained such as water content in oil, acidity, oil breakdown voltage,
dissipation factor, dissolved combustible gases, and 2-Furfuraldehyde. These
covariates indicate the condition of the liquid and solid insulation of a power
transformer and reflect winding failures. All risk functions are calculated with the
positive linear function but the negative linear risk function has been chosen for
the breakdown voltage. The results are presented in detail in [28] but also
illustrated in Figure 11. Transformer 19, with A,4(t) = 0.1373, the highest failure
rate of the population. In [84], this transformer is determined to be in a 'very bad'
condition. Comparing the value to the empirical results in [20] which provide a
failure rate of 0.14 for distribution transformer under 25 MVA with a 'worst'
inspection outcome, the results are plausible.

0.04 0.1373

e
o
@

Failure rate in [1/year]

0.02 -

0 5 10 15 20 25 30
Transformer number

Figure 11: Individual failure rates for transformers 1-30 with the initial average failure rate of 0.02 and a
confidence interval of 95%

3.5 CASE STUDY 4: ESTIMATION AND PREDICTION OF TIME DEPENDENT
INDIVIDUAL FAILURE RATES

The condition monitoring data of twelve transmission power transformers over the
time period from 2002 to 2015 have been utilized to calculate Individual Failure
Rates for each component in the population in [29]. The operation time of the
power transformers vary between twelve and forty-five years and the basic
covariates are: (1) breakdown voltage (BDV), (2) dissipation factor or tan delta, (3)
water content, (4) acidity in the oil, and the (5) total combustible gases (TCG)
which have been obtained in yearly intervals. The population failure rate has been
assumed with 1,(t) = 0.02 and the failure statistics for vector « are based on
findings in [82] as in case study 3.

The individual failure rates are computed using different risk functions. Firstly, a
positive linear risk function has been chosen for measurements 1,2, and 4 and a
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negative linear risk function for measurement 3, because a decreasing BDV
indicates a declining condition and increased probability of failure. For
measurement 5, a non-linear risk function has been chosen because an abrupt
increase of the TCG is associated with a higher probability of failure. The results of
the 12 power transformers are depicted in Figure 12 a.) and b.). Secondly, the
cumulative risk function is assigned to all covariates and the results are depicted in
Figure 12 c.) and d.).
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Figure 12: Estimated individual failure rates with suggested risk functions over the time period 2002 to 2015.
a.) Individual failure rates for transformers 1-6 with a positive linear risk function for measurement 1, 2, and 4,
a negative linear for measurement 3, and the non linear risk function for measurement 5. b.) Individual failure
rates for transformers 7-12 with a positive linear risk function for measurement 1, 2, and 4, a negative linear
for measurement 3, and the non linear risk function for measurement 5. c.) Individual failure rates for
transformers 1-6 calculated with the cumulative risk function for all measurements. d.) Individual failure rates
for transformers 7-12 calculated with the cumulative risk function for all measurements.
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4 Conclusion and Future Work

4.1 CONCLUSION

This report has the objective to improve the accuracy of failure rate modelling for
enhancement of power system reliability assessment tools such as maintenance
optimization. Primarily, this is achieved by addressing the three research objectives
presented in section 1.5.

The first objective is the investigation of the impact of risk factors or explanatory
variables on the failure rate of power system components, which includes [24-26].
Depending on how failures are defined and recorded, regression models such as
Cox regression and regression models for count data are applied to investigate the
failure rate and ROCOF of a disconnector and circuit breaker population. The
studies show that preventive maintenance, remote control availability and the
disconnector and circuit breaker type, among others, have a significant impact.
Quantifying these effects by using regression models, the failure rate can be more
precisely modelled based on external and internal risk factors but also component
characteristics. Therefore, the first research objective provides enhanced
understanding of the risk factors and the results can be used to gain higher failure
rate accuracy.

One result of [27] is that statistical data driven methods are still rarely applied in
the power system domain due to the lack of failure data. Addressed by [27], the
second research objective reviews the literature for methods and risk factors that
have been frequently used in the power system domain for failure rate modelling.
Primarily, the environmental impact in form of the weather is modelled. The
exponential and Weibull distribution are still the most commonly used models to
model the general ageing. Furthermore, the importance to distinguish between
population and individual failures rates is demonstrated by an illustrative
example. This shows the necessity to develop a method which is able to estimate
the failure rate on an individual component level, in spite of the limited failure
data.

The third research objective is the development of such a method to calculate
individual failure rates by using the population failure rate, failure statistics, and
condition monitoring data. This development is presented in [28, 29]. The general
suitability of the method is demonstrated in time-independent context in [28],
whereas [29] presents the method for time-dependent cases, providing a more
strict formulation, introducing into the concept of risk functions, and presenting
the prediction of individual failure rates. Both case studies present accurate results.
Moreover, the individual failure rates are validated on actual failure data in a time-
independent setting in section 3.3.3. The results show that the individual failure
rates deliver accurate estimates and could be used for failure classification with
similar accuracy to health indices based on expert knowledge. Overall, the
proposed method satisfies the necessity to estimate the risk of new components
where little historical data is available. Even though more data might become
available by the use of more Smart Grid technology and data records, power grid
operators, particularly transmission system operators, have an interest to replace
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their components with a safety margin. Thus, failure data will constantly be rare
and the individual failure rate method, a useful tool.

4.2 FUTURE WORK

Generally, the exploratory failure analysis should be applied to more power
system component types. Moreover, to gain a better understanding of if the
findings in [24-26] are of a general nature rather than particular results of the case
studies alone, more disconnector and circuit breaker populations should be
examined as well as other component types. Since the applied regression models
required different data types, a comparison between these methods with particular
focus on power system components would be of value. This gives a better
overview on which failure and condition monitoring data must be actually
recorded over time.

The individual failure rate method, however, should not solely be applied to more
component types, but also suggests further improvement in form of a larger set of
risk functions. Moreover, there is the need of better importance quantification of
condition measurements and more population data is required to further validate
the method in a time-dependent setting. Thus far, the historical stress and load is
considered in the actual condition measurement of the component, however, the
current load should be considered in future applications as well.
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INDIVIDUAL FAILURE RATE
MODELLING AND EXPLORATORY
FAILURE DATA ANALYSIS FOR
POWER SYSTEM COMPONENTS

This report presents how the failure rate accuracy can be improved despite
limited failure data available to improve maintenance optimization.

Firstly, regression models are applied which can be used to model, predict, and
characterise the failure rate and failure intensity for power system components.
These are applied to two case studies of disconnector and circuit breaker failure
data.

The results contribute to an improved modelling of the failure rate on indivi-
dual level but also improve the understanding of risk factor’s impact on compo-
nent failures. However, the aforementioned regression models have rarely been
applied in the power system domain due to the limited failure data.

Secondly, the report presents a method to calculate and predict individual
failure rates despite the limited occurrence of actual failures which is of parti-
cular advantage for new components.
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