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Sammanfattning 

Viktiga sociala funktioner som hälsa och säkerhet är nödvändiga för 
dagens samhälle att fungera och för att trygga dess individers liv. 
Infrastrukturer tillhandahåller och behåller dessa funktioner. 
Elektronisk kommunikationsteknik, transportsystem, olje- och 
gasförsörjning, vattenförsörjning och elnätet är kritiska infrastrukturer 
för samhället. Elnätet spelar en central roll bland de kritiska 
infrastrukturerna, eftersom alla andra infrastrukturer är beroende av 
elnätet. Driftavbrott kan därför få allvarliga konsekvenser, inte bara för 
elnätet men också för leverans av vatten, gas och mat. Det är därför 
viktigt att det elektriska energisystemet är tillförlitligt. 

För att tillhandahålla ett tillförlitlig och säkert elnät tillämpar nätoperatörerna 
strategier för kapitalförvaltning för att undersöka, planera, underhålla och 
använda systemet och dess komponenter samtidigt som prestanda förbättras enligt 
egna ekonomiska krav. Ett sätt att öka elnätets tillförlitlighet samtidigt som 
kostnaderna reduceras är underhållsplanering och optimering. För att optimera 
underhåll krävs ett tillförlitlighetsmasstal för komponenter i elnät. Felfrekvensen, 
som är sannolikheten för ett driftavbrott under en fördefinierad tidsperiod, 
används vid underhållsoptimering. 

Hittills har alla komponenter av samma typ, på grund av saknade 
komponentfeldata, tilldelats en genomsnittlig felfrekvens. Att försumma 
komponent heterogenitet begränsar dock precisionen i underhållsoptimering. 
Dessutom underskattas eller överskattas den faktiska felfrekvensen, vilket är en 
utmaning för att identifiera effekten av underhållet som utförs. 

Denna rapport presenterar hur precisionen i felfrekvensen kan förbättras trots 
begränsad feldata. I den första delen ges en introduktion till den allmänna teorin, 
begrepp och definitioner av felfrekvens-modellering för att ge läsaren en förståelse 
för de senare kapitlen och artiklarna. Den andra delen presenterar 
regressionsmodeller som kan användas för att modellera, förutsäga och 
karakterisera felfrekvensen och felintensiteten för komponenter. Cox regression 
och andra regression modeller används på två fallstudier av frånskiljare och 
strömbrytare feldata. Resultaten bidrar till förbättrad felfrekvens-modellering på 
individnivå, men förbättrar också förståelsen av riskfaktorns inverkan på  
komponentfel. Regressionsmodellerna används sällan i kunskapsfältet i kraftnätet 
på grund av den begränsade feldatan. Den tredje delen presenterar behovet av att 
skilja mellan genomsnittlig felfrekvensen och felfrekvensen för enskilda 
komponenter och introducerar riskfaktorer och metoder som vanligen används vid 
felmodellering. Dessutom presenterar avhandling en metod för att beräkna och 
förutsäga felfrekvenser för enskilda komponenter trots att det inte finns nå gon 
feldata, vilket är särskilt fördelaktigt för nya komponenter. 
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Summary 

A set of vital societal functions such as health and safety are necessary 
for today's society to function and to secure the life of its individuals. 
Infrastructure is required to provide and maintain these functions. This 
for society critical infrastructure includes electronic communication 
technology, transport systems, oil & gas supply, water supply, and the 
supply of electric power. The electric power system plays a central role in 
the critical infrastructure since it is required to operate all others. 
Therefore, outages in the power system can have severe consequences 
not solely for the supply of electricity but also for the supply of water, 
gas, and food. To provide a reliable and safe power supply, power 
system operators are applying asset management strategies to 
investigate, plan, maintain, and utilize the system and its components 
while improving the performance under its own financial constraints. 

One approach to increase the reliability of the power grid while decreasing costs is 
maintenance planning, scheduling, and optimization. To optimize maintenance, a 
reliability measure for power system components is required. The failure rate, 
which is the probability of failure in a predefined interval, is utilized in 
maintenance optimization. Thus far, an average failure rate has been assigned to all 
components of the same type due to a shortage of component failure data. 
However, this limits the accuracy of maintenance techniques since the component 
heterogeneity is neglected. Moreover, the actual failure rate is being underrated or 
overrated and it is a challenge to identify the impact of conducted maintenance 
tasks. 

This report presents how the failure rate accuracy can be improved despite limited 
failure data available. Firstly, an introduction to failure rate modelling theory, 
concepts, and definitions is given to provide a common understanding for the later 
chapters and papers. Secondly, regression models are presented which can be used 
to model, predict, and characterise the failure rate and failure intensity for power 
system components. The Cox regression and regression models for count data are 
applied to two case studies of disconnector and circuit breaker failure data. The 
results contribute to an improved modelling of the failure rate on individual level 
but also improve the understanding of risk factor's impact on component failures. 
However, the aforementioned regression models have rarely been applied in the 
power system domain due to the limited failure data. Thirdly, the necessity to 
distinguish between population and individual failure rates is illustrated and risk 
factors and methods are presented, which are frequently used in failure rate 
modelling. Moreover, the report presents a method to calculate and predict 
individual failure rates despite the occurrence of actual failures which is of 
particular advantage for new components. 
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1 Introduction 

This project report Individual Failure Rate Modelling and Exploratory 
Failure Data Analysis for Power System Components is a condensed 
form of the doctoral thesis with the same title (TRITA-EECS-AVL-
2018:67, ISBN 978-91-7729-950-9) successfully presented on 19th of 
October, 2018, at KTH Royal Institute of Technology by the author [1]. 
The objective is to improve power system reliability assessment by 
creating a better perception of how internal and external risk factors 
influence the probability of failure of power system components and 
how these can be utilized to compute a failure rate on individual 
component level.  

Chapter 1 positions the overall context of the project report from a societal 
perspective and motivates the research need. Thereafter, the research objectives are 
presented and a summary of the research contributions given. Chapter 2 presents 
exploratory failure data analysis and failure rate prediction with regression models 
to provide the reader with a solid background before the theory is applied to two 
case studies. The first case study investigates disconnector population and the 
second case study examines circuit breaker failures to improve the characterisation 
of failure rate modelling and gain knowledge for power system asset management. 
The ensuing Chapter 3 discusses power system component's heterogeneity in 
failure rate modelling and presents relevant risk factors. Moreover, the chapter 
presents the existing modelling techniques and gives an overview of the developed 
model to calculate individual failure rates with two case studies. Chapter 4 
concludes the presented work and describes required future work. 

1.1 THE ELECTRIC POWER SYSTEM: A CRITICAL INFRASTRUCTURE 

The Swedish Civil Contingencies Agency (Myndigheten för samhällsskydd och 
beredskap, MSB) has been instructed by the Swedish government on April 14th, 
2010, to develop a unified national strategy to protect the vital societal functions 
[2]. These vital societal functions are defined as functions which are so critical that 
their failure would result in 'major risks or hazards for the life and health of the 
population, the functionality of society or society's fundamental values' [2, p. 10]. 
The first phase of this strategy includes the identification of these functions at local, 
regional, and national level. From the perspective of the Council of the European 
Union (EU) [3, p. 3], these societal functions are health, safety, security, economic 
and social well-being of people. MSB also uses the term critical infrastructure 
which is the 'physical structure' that is required to maintain the vital societal 
functions [2, p. 11], whereas the definition of the EU does not include the term 
'physical' which results in a more general definition that also includes services [3, 
p. 3]. Critical infrastructure is identified in eleven sectors according to [4, p. 24]: 
energy, information and communication technologies, water, food, health, 
financial, public & legal order and safety, civil administration, transport, chemical 
and nuclear industry, and space and research. The technical infrastructure is power 
supply, electronic communications, payment systems, food supply, supply of 
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drinking, transport system, and drug supply. These are discussed in a risk and 
scenario analyses in [5] for the Swedish society.  

All the aforementioned technical infrastructure has all one common attribute: 
complexity. This infrastructure can be described as a complex system of interacting 
components where change primarily occurs as a result of a learning process [6]. 
Moreover, this infrastructure has interdependencies and bidirectional 
relationships, so that the state of one is dependent on the state of the other. Figure 
1 demonstrates in an abstract example the interdependencies between the 
infrastructure: electric power, natural gas, oil, telecom, water, and transportation. 
A specific example of an interdependency is that electric power is needed for 
compressors, storage, and control systems of the natural gas infrastructure but 
natural gas is required as a fuel for thermal electricity generation. These 
interdependencies can be 'tight' or 'loosely' coupled, which refers to the level of 
dependency [6]. The electric power supply has a central role in these 
interdependencies as other infrastructure has strong dependencies on it. This 
'special position' is also identified by the MSB in the risk assessment of technical 
infrastructure in Sweden [5]. Particularly, the characteristic of no intermediate 
storage capacity, the electricity is consumed while it is produced, increases its 
importance as critical infrastructure since an outage has an instantaneous effect on 
all other types of infrastructure. 

The electric power supply is ensured through a network of electrical components 
to supply, transfer, store, and use electric power. The electric generation and load 
centres are connected via the power grid, which is categorised into a transmission 
and distribution system. An additional system level is used in the terminology of 
the Swedish power grid. Here, the regional system level is the linkage between 
transmission and distribution level. The transmission power grid transfers the 
electric power from the generation sites to electrical substations where it gets 
further distributed through the regional and distribution grid to the customer. 
Despite their common functionality of transferring electric power, the three system 
levels are distinguished by voltage level and importance in descending order. The 
voltage level ranges from 400 kV to 200 kV on transmission level, 130-30 kV on 
regional level, and from 20 kV to 0,4 kV on distribution level. Since the 
transmission grid, also defined as bulk power system [7], supplies all regional and 
distribution systems, it is seen as the most important. Regardless of the 
importance, uninterrupted electricity supply requires high reliability on all system 
levels. An outage, whether it is caused by humans, technical faults, a lack of 
maintenance or a faulty design can therefore lead to the loss of vital societal 
functions [5]. Considering that an outage can have such severe impacts, the focus 
remains on improving the design, planning, operation, and maintenance to achieve 
a highly reliable and safe power grid. 
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Figure 1: Illustration of infrastructure interdependencies in an abstract form based on [6, Fig. 3, p. 5]. Note 
that more interdependencies exist and that interdependencies between other types of infrastructure are 
neglected. 

1.2 POWER SYSTEM ASSET MANAGEMENT 

To achieve a reliable and safe power supply, a set of strategies is required to 
operate the power grid. Asset management involves strategies to investigate, plan, 
invest, utilize, maintain, replace, and dispose of components and systems while 
maximising the value and performance of the assets under the constraint of a 
utility's financial performance. The concepts and terminology of asset management 
have been specified in a standard [8] to achieve effective and efficient practices on 
an international level but also to limit the variations in the interpretation [9]. 
Following the business-driven approach, asset management aims to achieve the 
'lifetime optimum' of components while considering the system perspective [9]. 
Finding the 'lifetime optimum' has its foundation on the concept of reliability-
cost/reliability-worth evaluation [10]. The resulting optimum is known as the 
socio-economically optimal reliability level [11]. Therefore, asset management for 
power grid operators has to resolve four challenges according to [12, p. 644] to 
remain profitable: 

• Incorporation of stakeholder values and objectives into strategy and operation 
of the utility 

• Achievement of reliability and safety considering financial constraints  
• Receiving the benefits of performance-based rates  
• Implementation and response to regulatory period changes 

These challenges are approached by defining appropriate strategies for the 
components and further subdividing it into specific techniques and actions. This 
set of techniques and actions could include statistical failure analysis, lifetime 
estimation, condition assessment, and maintenance strategy decisions which are 
also suggested by [12]. All these techniques include the four basic parts of 
reliability [10]: probability, adequate performance, time, and operating conditions.   
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1.3 POWER SYSTEM RELIABILITY EVALUATION 

Billinton and Allan discuss philosophical aspects of power system reliability in [13] 
and state that the term includes an extensive variety of aspects which have the 
common aim to satisfy the customer requirements. It is further described that there 
is the necessity to recognise the generality of the power system's ability to perform 
its required function. Focusing solely on the term reliability, an accepted definition 
is 

"Reliability is the probability of a device performing its purpose adequately for the period of 
time intended under the operating conditions encountered." [14] 

which is similar to the definition in the standard ISO 9000:2015. Applying this 
definition to the power system domain, we can translate device to system, a set of 
connected power system components, and component, a specific type of 
component in the system. From a societal perspective, the system reliability is of 
greater importance than the component reliability. However, the system is a set of 
components and therefore component failures could lead to system failures. This 
relationship is illustrated in a simplified fault tree diagram in Figure 2 for one 
hypothetical system. Depending on the structure of the system, a component 
failure can lead to a system failure or not. Exploring reliability more theoretically, 
it is 

Reliability = 1 - Probability of Failure 

where the probability of failure is for a defined interval [0, 𝑡𝑡]. Thus, the reliability is 
the probability of success of a component or system to fulfil its required function in 
[0, 𝑡𝑡]. For example, a probability of failure can be assigned to an event in Figure 2 
and with some probability calculations, a system reliability can be calculated. Thus, 
it is important to precisely model the probability of failure to get the most accurate 
estimation of the component reliability and consequently the system reliability.  

1.4 FAILURE RATE ACCURACY AND UNDERSTANDING 

The probability of failure for a system or component is also known as failure rate 
and is an essential reliability measure. It describes the conditional probability that 
a component will fail in the interval (𝑡𝑡, 𝑡𝑡 + 𝛥𝛥𝑡𝑡] given that it has survived until 𝑡𝑡. A 
more detailed background of the failure rate and other reliability measures is 
presented in [1, ch. 2]. The failure rate is important as a parameter in optimal 
maintenance planning [15], risk-based maintenance optimization [16], and to 
connect component reliability and maintenance in reliability-centred asset 
maintenance [17].  
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Figure 2: Simplified relationship between component and system reliability. 

 

Failure data from lifetime tests is required to estimate a particular lifetime 
distribution 𝐹𝐹(𝑡𝑡)  =  1 − 𝑅𝑅(𝑡𝑡) by using nonparametric and parametric methods. 
From this distribution a failure rate can be derived and is applied to all 
components of the same type. This requires the assumption that all components 
are identical and operated under equal conditions. Power system components 
however, are frequently designed for particular tasks and systems and are different 
to the tested components. Applying the same failure rate to one component type 
would consequently induce a bias. Moreover, primary components in power 
systems are designed for lifetimes typically around thirty years [18] but this might 
increase to forty years or more [19]. Due to these long lifetimes, experimental 
laboratory lifetime tests are difficult to conduct for power system components and 
most estimates are gained from historical operational failure data as in [19, 20]. 
This empirical approach is often problematic due to poor component 
documentation and long lifetimes cause incomplete failure data sets. This 
incompleteness of failure data causes censoring and truncation, see [1, sec. 2.2],  
which leads to large confidence intervals in the lifetime prediction. This has been 
shown in a study to predict the lifetime of power transformers [21], for example. 
Thus far, a practical solution is to assume a constant failure rate for all components 
of the same type[20]. This is based on the assumption of an underlying exponential 
distribution. This basic approach has produced reasonable results [20] since a 
constant failure rate reflects the useful life period of various components [22, p. 21].  

Four major disadvantages remain from using this average failure rate approach. 
Firstly, applying one constant failure rate to each component of a type neglects the 
component heterogeneity. Even though all components in a population are of the 
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same type, individual component characteristics such as size differ. This results in 
a failure rate which under or over estimates the actual failure rate. Secondly, the 
impact of maintenance activities cannot be identified from the failure rate. This is a 
challenge for maintenance optimization in particular. Thirdly, the failure rate 
estimation from empirical failure data, without considering the actual environment 
and stress, could cause a serious bias in the estimates [23]. Finally, possible trends 
are neglected. Consequently, the constant failure rate and the universal approach 
of applying one failure rate to all components has a significant impact on the 
accuracy. This inaccuracy negatively impacts subsequent analytical methods such 
as network reliability modelling or optimal maintenance planning [15] and other 
methods discussed in [1, sec. 2.4]. This poses the question:  

Can the accuracy of the failure rate be improved despite the limited historical data 
available? 

Generally speaking, the failure rate expresses the answer to the question: why 
certain components fail quicker or survive longer than others? The attempt to 
explain varying lifetimes demands for more information. Risk factors or 
explanatory variables are variables which the failure rate depend upon. Hence, [20] 
states that every type of component should ideally be characterised by a failure 
rate as a function of risk factors. The environment, component characteristics, and 
operational stress are such risk factors. For example, possible explanatory variables 
for power transformer failure rates can include: 

• Continuous variables such as loading, voltage, and condition measurements. 
• Categorical variables such as size, design, manufacturer, and location. 

Investigating and estimating the significance and effect of explanatory variables on 
the failure rate can improve the understanding of risk factors which results in 
better decision-making within asset management. For example, in monitoring an 
implemented maintenance strategy.   

1.5 RESEARCH OBJECTIVES 

Based on the previous sections, the central research question, which is the 
foundation of this report, can be formulated as: 

Can the failure rate accuracy on an individual component level be increased despite the 
limited historical failure data available? 

This question leads to the following research objectives (OBJ) which are to be 
solved with this report: 

• OBJ1: Investigate the impact of explanatory variables on the failure rate of 
power system components to support asset management decision-making and 
to improve failure rate accuracy and prediction.  

• OBJ2: Demonstrate that neglecting component heterogeneity leads to 
erroneous failure rate modelling and discuss risk factors which impact the 
condition and failure rate of components over time. 

• OBJ3: Develop and validate a method to calculate and predict failure rates for 
individual components without actual failure occurrence.  
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1.6 SUMMARY OF RESEARCH CONTRIBUTIONS 

1.6.1 Research Objective OBJ1 

Research objective OBJ1 is addressed by the results of [24-26]. These papers utilise 
statistical learning techniques, such as Cox regression and regression models for 
count data, to characterise the failure rate and rate of recurrence of failures 
(ROCOF) with explanatory variables for an improved failure rate accuracy and 
contribute to an increased understanding of failures. The papers investigate 
explanatory variables of solely electrical switchgear such as disconnectors and 
circuit breaker due to the data availability. However, the papers encourage further 
data analysis of other power system components for future studies. The particular 
results of each paper are summarised in the following.  

[24] discusses the difficulties of using regression approaches in the power system 
domain and illustrates how to overcome these. A population containing 1626 
disconnectors is investigated to assess the impact of preventive maintenance, PM and 
remote control availability on the failure rate. It is shown that PM has a positive 
impact whereas remote control availability has a negative effect. Moreover, the 
magnitudes of these effects are determined and can be used in further applications. 
The results show that single pole disconnectors have a 9.37 times higher failure 
rate compared to the double side break disconnector. Furthermore, the competing 
risk approach is used to distinguish the analysis among the failure modes 
manoeuvrability, current carrying, and secondary functions and how this affects 
the results. The paper demonstrates that even though the data quality is 
inadequate, valuable results have been achieved.  

[25] describes exploratory failure assessment of circuit breakers (CB) by examining 
the impact of the explanatory variables CB type, voltage level, operating mechanism, 
location, PM, and number of operations. Likewise in [24], PM has a positive impact on 
the failure rate. Moreover, the study also presents that maintenance is conducted 
more frequently for oil CB compared to 𝑆𝑆𝐹𝐹6 or vacuum CB. This might be 
explained by the general higher age of oil CB in the population. The number of 
operations within the last year before failure has a negative impact on the failure rate. 
The difference between a CB operated sixty or more times compared to zero to ten 
times is quantified with a hazard ratio of 4.338. The age at admission is also a 
significant predictor and has hazard ratio of 1.038. 

In contrast to [25], the analysis in [26] models the recurrence of CB failure as count 
data. In this approach, the recurrence of failures is investigated by applying 
regression models such as Poisson and negative binomial regression. Likewise the 
results in the single failure setting, the significance of the explanatory variables is, 
except the CB type, similar. However, the analysis revealed that the maintenance 
conducted after the first failure increases the failure rate. This is due to underlying 
problems which have not been solved properly during repair works. PM before the 
first failure, however, has a positive effect and results in an approximately constant 
ROCOF over the lifetime. The negative binomial model performs better than the 
Poisson regression model due to the zero-inflation in the failure dataset. 
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1.6.2 Research Objective OBJ2 

Addressing research objective OBJ2, [27] presents that neglected component 
heterogeneity in failure rate modelling leads to an erroneous failure rate estimation 
and understanding. To do so, two populations with different failure rates are 
simulated and the population failure rate, the observed failure rate, underlines that 
it does not reflect sufficiently the failure rate of either population. Moreover, the 
study in [27] explores the field of failure rate modelling in the power system 
domain to identify methods and explanatory variables which are commonly 
utilised to model the failure rate. Particularly, age and the environmental 
conditions have been frequently used risk factors in the literature thus far. In 
addition, statistical data driven approaches are still rarely used in the power 
system domain due to data availability and quality. Moreover, the study in [27] 
identifies the necessity to develop a practical method which can more accurately 
model the failure rate for individual components without actual failure occurrence 
such as for new components.  

1.6.3 Research Objective OBJ3 

Based on the findings in [27], a method is presented in [28, 29] to model individual 
failure rates for power system components. [28] presents the general concept with 
solely one basic function and time independence. This method is applied to a case 
study of 30 power transformers to show the general suitability. [29] presents a 
rigorous method formulation, while considering time-dependence of explanatory 
variables, and suggests, with the non-linear and the cumulative risk functions, two 
new functions. Assuming the explanatory variables to be internal and stochastic, 
the individual failures rates can be predicted with some uncertainty, which is also 
presented in [29]. The method validation is presented in section 3.3.3 of this report 
and the results are plausible and equivalent to expert judgement. 



 INDIVIDUAL FAILURE RATE MODELLING AND EXPLORATORY FAILURE DATA ANALYSIS FOR POWER SYSTEM COMPONENTS 
 

16 

 

 

 

2 Exploratory Failure Data Analysis of Power 
System Components with Regression 
Models 

Since the aim is to prevent failures from occurring, it is of importance to 
understand which explanatory variables have a significant impact on the time to 
failure. Regression analysis provides a set of statistical methods to estimate the 
relationship between explanatory variables and the outcome 'failure rate'. 
Regression models help to understand the relationship and can be used for failure 
rate modelling and prediction. All definitions and regression models presented in 
this chapter are applied in [24-26] and knowledge of these enables a better 
understanding. This chapter introduces exploratory failure data analysis with 
regression models by (1) describing possible explanatory variable types and (2) 
presenting the theory of the relative risk and count response regression models 
which (3) are applied in the case studies 1 and 2. These case studies are summaries 
of [24-26].  

2.1 EXPLANATORY VARIABLES 

Explanatory variables, predictors, or covariates are variables which might affect a 
response variable [30], in the reliability context, mostly time to failure and a failure 
indicator variable, which indicates the occurrence of a failure or censoring. The 
term covariate is often used as an alternative name for explanatory variable [30] 
but the meaning might change depending on the field of application. In this report 
and the attached research [24-29], the term covariate is primarily used due to its 
common use in reliability and survival analysis. 

Vlok [31] discusses three covariate characteristics: 

1. Time dependent and time independent, 
2. Internal and external, and 
3. Stochastic and non-stochastic. 

Understanding these covariate characteristics is essential for the selection of 
covariates in the later analysis and the interpretation of the results. Thus, this 
section gives a brief overview about covariate types and characteristics. 

2.1.1 Explanatory Variable Types and Coding 

Covariates are either quantitative or qualitative. Thus, a classification between the 
different forms is necessary. Quantitative covariates have numerical values which 
mostly arise when taking measurements, whereas qualitative or categorical 
covariates are not numerical and occur while recording features and characteristics 
of the components of interest. A quantitative covariate can be sub-classified into  

• Continuous: A real number in the form of a measurement, such as oil 
temperature or stress of a power transformer. 
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• Discrete: An integer which is obtained as a count. For example, the number of 
operations of a circuit breaker. 

Whereas the use of quantitative covariates is rather straightforward, more 
attention and preparation is required when using categorical covariates. A 
classification of categorical covariates is: 

• Nominal: No natural order among the categorises exists. Examples are the 
distinction between manufacturer, operating mechanism, and location for 
example. 

• Ordinal: A natural order exists between the categories. This is the case when 
sorting voltage levels in power grids in ascending or descending order. 

Binary or dichotomous covariates are another type of covariate which is similar to 
a categorical covariate but is limited to two classes. These classes might be 'yes' and 
'no' or if a particular feature is included or not. A coding into numerical values is 
needed when using categorical and binary covariates in regression modelling. A 
binary covariate might simply just be coded as an indicator variable into 1 or 0. As 
presented later, the value which has been coded into zero is the 'reference' value or 
group. Categorical covariates with more than two classes might be first translated 
from qualitative into numerical values such as 1,2,3, . .. and a value chosen as the 
reference group. The indicator coding approach can be used here in an extended 
form. Assuming a categorical covariate with three categories, the resulting two 
indicator variables 𝑍𝑍1 and 𝑍𝑍2[32] can be introduced such that 

 
 

 

 

To prevent dependency between the variables, the number of indicator variables is 
always one less than the number of categories. Note that sometimes quantitative 
covariates are categorised into specific groups to simplify later interpretation. A 
more detailed treatment of covariate coding is given by Klein and Moeschberger in 
[33, ch. 8.2] with several examples of coding and interpretation of covariates.  

2.1.2 Time Independent and Time Dependent Covariates  

The covariates of interest are usually selected before the observation period [33]. 
Covariates that are constant over the observation period are known as fixed or 
time independent covariates. Time dependent covariates, however, vary during 
the study period and therefore should be known before the study so that changes 
can be recorded. The distinction is even more important in the later regression 
analysis since the models differ significantly when time dependent covariates are 
included [33]. 

2.1.3 Internal and External Covariates 

An essential differentiation exists for time-dependent covariates by classifying 
them into external and internal. External covariates might be covariates which are 



 INDIVIDUAL FAILURE RATE MODELLING AND EXPLORATORY FAILURE DATA ANALYSIS FOR POWER SYSTEM COMPONENTS 
 

18 

 

 

 

constant during the study period and measured in advance, with a predetermined 
total covariate path, or when the covariate is the result of an external stochastic 
process [34, ch. 6.3]. Kalbfleisch and Prentice use in [34, ch. 6.3] the example of a 
voltage which is applied to an electrical cable for insulation testing to illustrate an 
external covariate. Internal covariates are the result of a stochastic process which is 
generated by the component under observation [34]. An important feature is that 
the covariate can only be observed while the component has not failed or is 
uncensored. A comprehensive discussion of external and internal covariates is 
given in [34, ch. 6.3]and [35, ch 9.2.4] for more information.  

2.1.4 Stochastic and Non-Stochastic Covariates 

A time varying covariate can be seen as a collection of random variables, and in 
fact, as a stochastic process. Assuming the covariate to be stochastic allows its 
prediction with methods such as time series analysis, state space models, and 
Markov chains, for example. However, the prediction of the covariate path comes 
with some level of uncertainty. In contrast, non-stochastic covariates can be 
predicted with higher accuracy. Vlok presents, in the context of residual life 
estimation [31, ch. 4.2.5], a set of parametric functions such as a linear, quadratic, 
hyperbolic, exponential, and geometric curve, which can be utilized for prediction. 
The prediction of covariate behaviour is not directly relevant for the investigation 
of covariates with regression models, however, it will be utilized in the calculation 
of individual failure rates in Chapter 3.  

2.2 REGRESSION MODELS IN FAILURE DATA ANALYSIS 

One approach to investigate the relationship between an outcome Y and a set of 
explanatory variables X is the use of regression models. Generally, the outcome Y, 
the dependent variable, and the explanatory variable are related by a function f 
such that 

 
2.1 

where ε is the normally distributed error term with zero means and the variance 
𝜎𝜎2. Assuming that the function f is linear, the linear regression model can be 
written as 

 2.2 

with 𝒙𝒙𝑖𝑖  = (𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2, … , 𝑥𝑥𝑖𝑖,𝑝𝑝) as a row vector of 𝑝𝑝 explanatory variables for the 𝑖𝑖-th 
component and 𝜷𝜷𝑖𝑖  = (𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑝𝑝) a column vector of 𝑝𝑝 regression parameters. 
Note that this formulation includes a regression intercept such that 𝑥𝑥1 = 1. A 
comprehensive introduction of linear regression is provided by [36], however, if 
the function f is not linear or the dependent variable Y is not continuous, other 
regression models need to be applied, such as a generalised linear regression 
model which has the same form as in eq. 2.2.  

The choice of regression model can be made based on the data type and primarily 
the dependent variable. In reliability analysis, the relationship between failure or 
degradation and a set of explanatory variables is of interest. If the outcome is a 
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component failure, a binary outcome, logistic regression seems a reasonable choice. 
However, this model would neglect the time to failure which is of particular 
interest. Therefore, Cox presented in [37] the proportional hazard model (PHM) or 
cox regression where the dependent variable is the time to failure and a censoring 
indicator regressed on the explanatory variables. This approach is similar to linear 
regression [38]and in some parts equivalent to logistic regression [39]. The failure 
rate and the ROCOF are in focus within power system reliability assessment, 
hence, regression models for these outcomes are presented in the following 
sections, which are the PHM and regression models for count data. 

2.2.1 Relative Risk Model 

The PHM is a relative risk model which is commonly applied in survival analysis 
with particular high frequency in the medical domain [40]. The aim is the impact 
assessment of explanatory variables on the failure rate. Following the notation of 
[34], let 𝑇𝑇 be the time to failure and 𝒙𝒙𝑖𝑖  = (𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2, … ,𝑥𝑥𝑖𝑖,𝑝𝑝) the vector of basic 
covariates for the 𝑖𝑖-th component with 𝑛𝑛 as the number of components in the 
population. The relative risk model is defined as  

 

2.3 

with 𝜆𝜆0(𝑡𝑡) denoted as the baseline failure rate and 𝑟𝑟(𝑡𝑡,𝒙𝒙𝑖𝑖) as the unspecified 
relative risk function. The relative risk functions can take several forms, however, 
the exponential is the most natural since it satisfies the property 𝜆𝜆(𝑡𝑡;  𝒙𝒙𝑖𝑖) ≥  0 [34]. 
Note that other functional forms might be more suitable depending on the setting. 
Choosing the relative risk function in exponential form, the model is  

 
2.4 

with 𝒁𝒁𝑖𝑖(𝑡𝑡) as a vector of derived and possibly time dependent covariates and 𝜷𝜷 the 
vector of regression parameters as before without the regression intercept. The 
covariates 𝒁𝒁𝑖𝑖(𝑡𝑡)are obtained as functions from the basic covariates 𝒙𝒙𝑖𝑖 which might 
be necessary for analysis or interpretation. The term PHM is generally used for the 
model in eq. 2.4 when the covariates are constant, thus, the relative risk function 
becomes proportional. The relative risk model has the advantage that the baseline 
failure rate 𝜆𝜆0(𝑡𝑡) can be left unspecified for the covariate assessment, hence 𝜆𝜆0(𝑡𝑡) is 
assumed to be non-parametric. Since the relative risk function is parametric, the 
overall model is semi parametric. This model has lead to the development of 
several other reliability models with covariates, which are presented in [31] and 
discussed based on their advantages and disadvantages in [41]. To apply the 
relative risk model, the following assumptions must hold: 

• The random variable time to failure is independent and identically distributed 
• Censoring must be non-informative (random) which means that components 

that are lost or not longer considered can solely leave the study due to 
unrelated reasons 
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• Given fixed covariates, the relative risk function is required to be proportional 
over time 

Model Parameter 

Applying the relative risk model requires the data to be available in the form of 
(𝑇𝑇𝑖𝑖 , 𝛿𝛿𝑖𝑖,𝒁𝒁𝑖𝑖(𝑡𝑡)). The time to failure or censoring time 𝑇𝑇𝑖𝑖  must be given and an 
indicator 𝛿𝛿𝑖𝑖 that describes that a failure has occurred (𝛿𝛿𝑖𝑖 = 1) or that the 
component is right-censored (𝛿𝛿𝑖𝑖 = 0). The vector 𝒁𝒁𝑖𝑖(𝑡𝑡) is the vector of covariates as 
aforementioned. Covariates are described in more detail in section 2.1.1.  

Estimation of Regression Parameters 

The estimation of the regression parameters β is an inferential challenge of the 
relative risk model which is described in detail in [34]. Maximum likelihood 
methods are utilized to estimate the regression parameters, also called maximum 
likelihood estimates, by maximizing the partial likelihood  

 

2.5 

with 𝑅𝑅(𝑡𝑡𝑖𝑖) =  { 𝑘𝑘: 𝑡𝑡𝑘𝑘 ≥  𝑡𝑡𝑖𝑖} as the set of components at risk at time 𝑡𝑡𝑖𝑖. The likelihood 
function 𝐿𝐿 describes the joint probability of observing the actual failures on the 
components in the study as a function of the unknown estimates β [38]. It is a 
partial likelihood because solely probabilities for components who fail are 
considered which arises due to the missing assumption about 𝜆𝜆0(𝑡𝑡). Thus, 𝛿𝛿𝑖𝑖 
indicates whether a component contributes to the likelihood (𝛿𝛿𝑖𝑖 = 1) or not (𝛿𝛿𝑖𝑖 =
0). An illustrative example of the construction of the likelihood function is 
presented in [38, sec. 3.9]. 

The construction of the likelihood function varies depending on the data set given. 
The likelihood function presented in eq. 2.5 does not consider tied time to failure 
data as in the first relative risk model proposed by Cox in [37]. For ties in the time 
to failure data, several formulations of the likelihood function have been proposed 
such as Breslow, Elfron, or the discrete-logistic likelihood [33, ch. 8.4]. A 
comparison of these methods has been conducted in [42] which recommends the 
Elfron method due to better approximations, particularly with moderate or heavy 
ties in the data set.  

Hypotheses Testing 

After the estimation, consider testing a hypothesis about the β parameters. Several 
tests exist, however, the Wald test static, the likelihood ratio test, and the score test 
are mostly used, for example in [33, 43]. In general, one might be interested in 
testing the hypothesis of a subset of β parameters. Suppose that 𝜷𝜷 = ( 𝜷𝜷1𝑇𝑇 ,𝜷𝜷2𝑇𝑇)𝑇𝑇  
with 𝜷𝜷1 as a 𝑞𝑞-dimensional vector of the β parameter of interest and 𝜷𝜷2 as (𝑝𝑝 − 𝑞𝑞)-
dimensional vector with the remaining parameter. Now, the null hypothesis is 
formulated as 
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2.6 

with 𝟎𝟎 as a vector of zeros with dimension 𝑞𝑞. In the following, the Wald test static, 
the likelihood ratio test, and the score test are briefly described. However, for a 
more profound description and derivation of the statistics the authors Klein and 
Moeschberger [33, ch. 8.5], Cox and Oakes [44, ch. 3.3], or Čížek, Härdle and 
Weron [45, ch. 5.3.3] are recommended for further reading.  

Wald Test Given the maximum likelihood estimates 𝜷𝜷�  = � 𝜷𝜷�1𝑇𝑇 ,𝜷𝜷�2𝑇𝑇�
𝑇𝑇of β, the 

inverse of information matrix I(β), which is calculated while computing the 
maximum likelihood estimates, can be partitioned as 

 
2.7 

with 𝐼𝐼11 is the 𝑞𝑞 ×  𝑞𝑞 submatrix belonging to 𝜷𝜷1. Thus, the Wald test statistic is 
given by 

 
2.8 

The distribution of the Wald test statistic, under 𝐻𝐻0, converges for large samples to 
a chi-squared distribution with 𝑞𝑞 degrees of freedom.  

Likelihood Ratio Test The likelihood test statistic is defined as 

 
2.9 

with 𝜷𝜷�𝟎𝟎  = � 𝟎𝟎𝑇𝑇 ,𝜷𝜷�2𝑇𝑇�
𝑇𝑇 and 𝑙𝑙�𝜷𝜷�� = 𝑙𝑙𝑙𝑙 [𝐿𝐿�𝜷𝜷��]. Likewise the Wald test statistic, the 

likelihood ratio statistic has a chi-squared distribution for large samples and under 
𝐻𝐻0 with 𝑞𝑞 degrees of freedom. The 𝑝𝑝-values are calculated as the tail probabilities 
of the 𝜒𝜒𝑞𝑞2-distribution. 

Score Test Testing 𝐻𝐻0 with the score statistic, suppose 𝑈𝑈1(𝜷𝜷) is the subvector of the 
first 𝑞𝑞 elements of the score function 𝑈𝑈(𝜷𝜷), the score statistic can be expressed by 

 2.10 

The score test statistic also converges to a 𝜒𝜒𝑞𝑞2-distribution with a large sample 
under 𝐻𝐻0. 

Model Selection 

Explanatory variables can be assessed in a single-variable setting individually or in 
a multiple-variable setting mutually. The latter is usually of greater interest to 
study an explanatory variable while other variables are present in the model. 
Consequently, a strategy is important to select a set of explanatory variables to 
build the best overall model. Collett discusses strategies for model selection in [46, 
ch. 3.6] and states that the failure rate function does not necessarily depend on a 
unique combination of explanatory variables. Hence, there might be a set of 
equally good models instead of one particular model. Both, Collett in [46, ch. 3.6] 
as well as Klein and Moeschberger in [33, ch. 8.7], distinguish the model selection 
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process by the purpose of the study. Briefly, this distinction is made by whether 
someone has a particular hypothesis or without any specific hypothesis and solely 
explanatory variables are used to predict the distribution of time to failure. For the 
latter, the Akaike information criterion (AIC) is a useful statistic to assess the 
model [33]. The AIC is estimated by 

 2.11 

with 𝐿𝐿� as the Log Likelihood and 𝑐𝑐 as the number of independent parameters in 
the model. A lower value of AIC is preferred when comparing the fitted models to 
each other. This statistic rewards the goodness of fit but also securing from over-
fitting by including unnecessary explanatory variables. If the number of possible 
explanatory variables exceeds a certain amount, automatic variable selection 
routines might be used. These are forward selection, backward elimination, and 
stepwise procedure. However, Collett in [46, ch. 3.6] discusses some disadvantages 
of these routines, so caution is required while applying them.  

Hazard Ratio 

When the covariates are constant over time, the ratio between two individuals 1 
and 2 is used as a possible form of interpretation of 𝛽𝛽. This hazard ratio (HR) is 
defined as 

 
2.12 

Assuming that 𝑍𝑍1(𝑡𝑡) =  0, the failure rate of the 𝑖𝑖-th individual is proportional to 
𝜆𝜆0(𝑡𝑡) with 𝑒𝑒𝑍𝑍𝑖𝑖(𝑡𝑡)𝛽𝛽. Generally, if HR =  𝑒𝑒𝑍𝑍𝑖𝑖(𝑡𝑡)𝛽𝛽 =  1 the covariate has no impact, HR<1 
the covariate has a positive impact, and HR>1 has a negative impact on the failure 
rate. Note that the confidence interval of the HR must be considered while 
interpreting the results. 

Competing Risks 

The PHM in eq. 2.4 only considers a single failure type and thus might not be 
suitable in the power system domain where components can experience several 
failure types. Therefore, a different model, the competing risk model, is required to 
handle these cases. Assume that the 𝑖𝑖-th component can fail to a set of different 
failure types which can be denoted by the random variable 𝐽𝐽 with the index 𝑗𝑗 ∈
{1, … ,𝑚𝑚} with 𝑚𝑚 as the number of possible failure types. Let 𝒁𝒁𝑖𝑖(𝑡𝑡) denote the 
covariate vector as before. Now, the cause specific failure rate function can be 
defined, according to [34], as 

 
2.13 

which is the probability of failure that the 𝑖𝑖-th component with the covariate vector 
𝒁𝒁𝑖𝑖(𝑡𝑡) fails in the interval (𝑡𝑡, 𝑡𝑡 + 𝛥𝛥𝛥𝛥] due to the failure type 𝑗𝑗. Under the assumption 
that the failure types 𝑗𝑗 are independent and each component can fail solely to one 
particular failure type can occur, it leads to  
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2.14 

Consequently, the occurrence of two failure types must be separately defined. The 
competing risk approach is discussed in theoretical form in [34, ch. 8.2] and 
described with more practical examples in [38, ch. 9]. Kleinbaum and Klein 
describe in [38, ch. 9] two different methods to for handling competing risks. 
Firstly, a common approach is the utilisation of the PHM to analyse the failures 
and hazard ratios for each failure type separately while treating all competing 
failures as censored. Here, separate models need to be built and analysed. The 
second approach is also known as Lunn-McNeil approach which requires only one 
model to be fitted with the PHM rather than several. This model can produce 
identical results when the covariates are the same [38]. Here, the data layout must 
be augmented to carry out the analysis. However, it is referred to [38, ch. 9] for 
further description of both methods. 

Recurrent Failure Data 

In the original formulation in eq. 2.3 of the relative risk model in [37], solely single 
failures are considered and a component is removed from the study after failure 
occurrence. This is a fair assumption in clinical studies, but technical components 
can be repaired after a failure. Recurrent event data analysis investigates the 
impact of explanatory variables on the recurrent events such as failures. Let 𝑛𝑛 
denote the number of recurrent failure processes components in the study over the 
time interval [0, 𝜏𝜏] where 𝜏𝜏 is the total study time. Moreover, assume that 𝑁𝑁𝑖𝑖(𝑡𝑡) 
denotes the number of failures in the time interval [0, 𝑡𝑡] for the 𝑖𝑖-th process or 
component. Now, the cumulative sample mean function is given by [47] 

 

2.15 

Compared to the relative risk model, the pair of parameters (𝑇𝑇𝑖𝑖 , 𝛿𝛿𝑖𝑖) is replaced with 
�𝑁𝑁𝑖𝑖(𝑡𝑡),𝑌𝑌𝑖𝑖(𝑡𝑡)� in the counting process approach [48, p. 4] where 𝑌𝑌𝑖𝑖(𝑡𝑡) equals one if 
the component is observed and at risk at time 𝑡𝑡 and zero otherwise. This alteration 
in the formulation of the single-event PHM has led to several PHM extensions for 
recurrent event analysis [49]. Generally, four different approaches have been 
developed: 

1. A counting process formulation which has been developed by Andersen and 
Gill (AG) [50]. Thus, sometimes also called AG model. 

2. Prentice, Williams, and Peterson (PWP) have developed two conditional 
models which differ primarily by the time scale used [51]. These are (1) the 
conditional probability model (PWP-CP) and (2) the gap time model (PWP-
GT).  

3. Wei, Lin, and Weissfeld proposed in [52] a fourth model which is a marginal 
event-specific model. 

These models have been compared in [53]but the differences become more obvious 
when the time intervals used in each model are compared [49, p. 289] which is also 
illustrated in graphical form in [48, p. 188]. 
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2.2.2 Count Response Regression Models 

Power system components can be repaired, and several failures might occur until 
the component is replaced. A straightforward approach is to treat failures as 
counts and use count response regression models such as the Poisson or negative 
binomial model. The next two sections present such regression models. 

Poisson Regression Model 

Recall the notation 𝒙𝒙𝑖𝑖  = (𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2, … , 𝑥𝑥𝑖𝑖,𝑝𝑝) as the covariate vector with 𝑝𝑝 covariates 
for each component 𝑖𝑖. Now, 𝑦𝑦𝑖𝑖  denotes the number of failures for each component 
in an interval of length 𝜏𝜏. Note that the assumption of event occurrence is constant 
for the Poisson distribution. This rate 𝜔𝜔 is known as the intensity of a process and 
if the event is a failure, the rate is the ROCOF describe in eq. 2.2 in [1]. Therefore, 
the Poisson distribution describes the probability that a failure occurs exactly 𝑘𝑘 
times in the interval 𝜏𝜏 with 

 
2.16 

A common approach for count data modelling is to use the regression model ω =
𝑒𝑒𝑥𝑥𝑖𝑖𝜷𝜷 with 𝜷𝜷 as vector of regression parameters as previously. Note that this basic 
formulation is identical to the relative risk model in eq. 2.4. However, for the 
Poisson model, 𝑥𝑥𝑖𝑖,1 = 1, because an intercept 𝛽𝛽1 is included. The regression 
parameters are either estimated by non-linear least squares or with the maximum 
likelihood method, which is the most common choice [54]. This leads to the 
Poisson generalised linear model (GLM) with 

 
2.17 

The Poisson GLM is a non-linear regression model which has the conditional mean 
function 

 2.18 

and the conditional variance  

 2.19 

Obviously, it follows that 𝐸𝐸[𝑦𝑦𝑖𝑖  | 𝒙𝒙𝑖𝑖] =  𝑉𝑉𝑉𝑉𝑉𝑉[𝑦𝑦𝑖𝑖  | 𝒙𝒙𝑖𝑖] which means the mean is equal 
to the variance. To apply the Poisson GLM, this assumption must hold. However, 
some count data might violate this assumption. These are either under-dispersed, 
𝑉𝑉𝑉𝑉𝑉𝑉[𝑦𝑦𝑖𝑖  | 𝒙𝒙𝑖𝑖]   < 𝐸𝐸[𝑦𝑦𝑖𝑖  | 𝒙𝒙𝑖𝑖], or more commonly over-dispersed, 𝑉𝑉𝑉𝑉𝑉𝑉[𝑦𝑦𝑖𝑖  | 𝒙𝒙𝑖𝑖]  >
𝐸𝐸[𝑦𝑦𝑖𝑖  | 𝒙𝒙𝑖𝑖]. These and other count data features are more thoroughly discussed in 
[54-56]. To address data features such as overdispersion, other count regression 
models have been developed. Testing the statistical inference about the β 
parameters can be done by applying the aforementioned likelihood ratio, Wald, 
and score test. Likewise to the cox regression, the model selection can be done with 
the AIC information criterion.   
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Negative Binomial Regression Model 

The negative binomial model is frequently used to accommodate for 
overdispersion in count data [54]. Given that the count data follows a NB 
probability density function, the NB GLM is defined as  

 
2.20 

with 𝛼𝛼 as the dispersion parameter and 𝛤𝛤 is the gamma distribution. The 
conditional variance is 𝑉𝑉𝑉𝑉𝑉𝑉[𝑦𝑦𝑖𝑖|𝒙𝒙𝑖𝑖]  =  𝜔𝜔𝑖𝑖𝑎𝑎 +  𝛼𝛼 𝜔𝜔𝑖𝑖

2. Since 𝛼𝛼 ≥  0, the variance is 
greater than in the Poisson GLM. However, the conditional mean is equal 
𝐸𝐸[𝑦𝑦𝑖𝑖| 𝒙𝒙𝑖𝑖]  = 𝜔𝜔𝑖𝑖  to the Poisson model, which has the advantage that the regression 
parameters are calculated identically. The NB model is discussed in detail in [57]. 

2.3 CASE STUDY 1: ANALYSIS OF DISCONNECTOR FAILURES 

Disconnectors have two primary functions in the power system. Firstly, they are 
installed in substations to isolate other components such as circuit breakers and 
power transformer for maintenance purposes. Secondly, remote controlled 
disconnectors are installed in medium and low voltage power grids to isolate faults 
or for automatic network reconfiguration. In the latter function, they are an 
important part of automated systems or “self-healing” power systems to improve 
power system reliability and quality [58, 59]. Although disconnectors have these 
rather simple functionalities, failures can cause major outages as, for example, in 
Sweden and Denmark in 2003 [60]. The incident demonstrates that disconnectors 
should not be neglected in asset management. Therefore, [24] presents an 
investigation of a non-current breaking disconnector population in Sweden to gain 
a better understanding of explanatory variables which impact the failure rate but 
also to improve the accuracy of failure rate modelling.  

The investigated disconnector population is in operation on distribution and 
regional system levels from 6 kV to 220 kV. Totally, 1626 disconnectors with 2191 
associated work orders have been analysed from a time period of 2008 to February 
2015 to identify major failures in the population. This population included 36.1 % 
remote-controlled and 63.9 % manually operated, the disconnector is operated on-
site, disconnectors. The work orders include the following information: 

• Disconnector ID 
• Installation year 
• Voltage level 
• Remote control availability 
• Manufacturer 
• Disconnector type 
• Conducted preventive maintenance (PM) 
• General description of work order 

The initial failure analysis with descriptive statistics to identify failure modes, 
causes and location has been presented in [61]. Manoeuvrability, current carrying, 
and secondary functions have been identified as failure modes in both major and 
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minor failures. To conduct the analysis with the PHM in [24], certain data features 
such as right censoring, left-truncation, and missing explanatory variable 
information, have been addressed. For example, the age was solely given for 69 % 
of the disconnectors. This data quality has led to assumptions to better analyse the 
failure data. The major findings of the study in [24] include: 

Single variable analysis 

• The covariates voltage level, remote control, and PM are significant at the α = 0.05 
acceptance level. 

• Remote-controlled disconnectors have a higher failure rate than manually 
operated disconnectors by a factor of 2.1. 

• Age at admission is not significant. 
• A significant negative effect, compared to the double side break disconnector 

which has been selected as reference, has the vertical break (Hazard Ratio = 
5.514), knee type (Hazard Ratio = 2.960), semi-pantograph (Hazard Ratio = 
2.530), and the single pole disconnector (Hazard Ratio = 9.370).  

Multiple variable analysis 

• The multiple variable analysis has been conducted with time on study and age, 
considering the left-truncation of the data set, as survival time. The significance 
and covariate effects are similar but differ in magnitude. 

• The covariates voltage level, remote control, and PM, which have been selected 
with the stepwise regression procedure, are included in the model. PM has a 
positive and the strongest effect on the failure rate. However, the magnitude of 
the effect decreases with increased PM compared to zero PM which might be 
due to the smaller group size of the third PM category.   

• The Hazard Ratio is, compared to the reference group on the 6-20 kV voltage 
level, 0.469 and 0.612 times lower for the 40 kV and the 220 kV voltage level, 
respectively. 

• The competing risk approach is applied to test the covariates depending on the 
failure modes maneuverability, current carrying, and secondary functions. The 
covariate remote control has the greatest effect on secondary functions and 
maneuverability with 7.26 and 2.28, respectively. A reason might be the 
installed control equipment and the number of operations. However, 
unfortunately more detailed data has not been available to test these 
assumptions. 

Remarks 

Exploratory failure data analysis with the PHM has been limited in the power 
system domain thus far due to a number of challenges in data quality and 
availability. These challenges are also encountered in this case study. In spite of the 
aforementioned statistical results to improve the failure rate prediction, [24] 
addresses the data challenges and presents existing solutions to encourage other 
researchers and practitioners to apply statistical learning approaches to improve 
the accuracy and understanding of the failure rate. One key element in this case 
study, to gain the results and conduct the study, has been the strict approach to 
state clear assumptions, particularly in the definition and identification of failures. 
This is discussed in detail in [24-26]. 
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2.4 CASE STUDY 2: ANALYSIS OF CIRCUIT BREAKER FAILURES 

Circuit breakers (CB) are developed to protect and control the power system by 
breaking the current, also when a failure occurs. Consequently, CBs have at least 
one more important failure mode compared to disconnectors, which is the load 
breaking capability. 

An international survey in [62] shows that around 25 % of CB applications are in 
transformer bays, 60 % are used in overhead lines and cable bays, 10 % as bus 
couplers, and the rest are used for shunt reactors, shunt capacitors, and some other 
minor applications. The survey showed that, in particular, the CBs in shunt 
reactors and capacitor applications are operated most, and that there is a 
connection between the average number of operating cycles per year per 
application and the failure rate. Another study in [63] concludes that the average 
failure frequency increases with the number of operations and voltage level. The 
demand for high reliability of CBs [62] requires a major share of the maintenance 
budget in utilities [63], which motivates the study of a CB population in Sweden 
in[25, 26]. 

The CB population includes 2622 components which have been under observation 
from 2008 to 2015. The failure and maintenance information has been extracted 
from the internal asset management system of a utility in the form of 4496 work 
orders. The work orders include information such as: 

• CB ID 
• Installation year 
• Voltage level from 40 kV to 400 kV 
• Remote control availability 
• Manufacturer 
• CB Type: oil, 𝑆𝑆𝐹𝐹6, and vacuum  
• Conducted preventive maintenance 
• Geographical area of operation 
• Number of operations in each year from 2008 to 2015 
• Operating mechanism: hydraulic, mechanical spring, watch spring 
• General description of work order 

The population is investigated with the assumption that CBs are non-repairable in 
[25] and that the CB are repairable in [26].  

CB Failure Analysis with PHM 

The findings of [25] can be summarised as follows:  

• A one-way analysis of variance (ANOVA) test shows that the means of the 
maintenance intensity (MI) in [maintenance tasks/time-on-study] is different 
depending on the CB type. The oil type CBs experience the highest MI 
followed by 𝑆𝑆𝐹𝐹6 and vacuum CB. Moreover, age at admission and MI are 
moderately correlated.  

The single variable analysis shows that: 

• Age at admission is significant with a Hazard Ratio of 1.014, 
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• The origin of the CB (manufacturer) has no impact on the failure rate,  
• There is no significant difference between the CB types, 
• The covariate MI has a positive and significant impact on the failure rate for all 

categories, 
• The operating mechanism has no significant impact on the failure rate, 
• Remote-controlled CB do not have a higher failure rate, however, the group 

size of manual CB is with less than 10 % very low. 

The results of covariate assessment in the multiple variable analysis are: 

• The analysis is conducted with time-on-study and age adjusting for left-
truncation as survival time. The MI has a positive impact and the number of 
operations within the last year (#OLY) a negative impact on the failure rate in 
both approaches. 

• The negative impact of #OLY is increasing with the number of operations. A 
CB with more than 60 #OLY has a 6.322 times higher failure rate than a CB 
which is operated less than ten times within the last year. 

• The Hazard Ratio of age at admission is estimated with 1.038. Thus, the 
relative risk between two CB with an age difference of ten years would be 1.46. 

• When time-on-study is used as time to failure, the oil CB type has a positive 
impact compared to the 𝑆𝑆𝐹𝐹6 type. However, this result might be because the oil 
CB are generally older and more maintained. 

CB Failure Analysis with Regression Models for Count Data 

Since the CBs under investigation are usually repaired, a second study has been 
conducted in [26]. If recurrent failures are treated as counts, regression models 
such as Poisson and negative binomial regression can be applied. The major results 
are: 

• In general, the negative binomial regression has a better model fit, compared to 
the Poisson regression, primarily due to the over-dispersion and the zero-
inflation in the count data. 

• In the single variable setting, the operating mechanism and the total number of 
operations has no significant impact on the recurrence of failures, thus, they are 
not further considered in the multiple variable setting. 

• The covariates MI, age at admission, mean number of operations per year, and 
voltage level are significant and included in the final model. 

• The ROCOF of a CB operated more than 50 times per year is 2.33 higher 
compared to a CB operated less than 50 times per year. 

• The MI is divided into MI before the first failure and after the first failure. The 
results show that there is an opposite effect. Maintenance conducted before the 
first failure has a positive impact and the maintenance after the first failure has 
a negative impact on the ROCOF. Investigating the CB with many recurrent 
failures revealed that an underlying problem exists which is not solved 
properly during the maintenance tasks. 

Remarks 

Case Study 2 focuses less on data quality and availability challenges but explores 
the CB failure dataset in greater depth, primarily because more exploratory 
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variables are given. The case study is divided by the assumption of non-repairable 
and repairable CB which is presented in[25, 26], respectively. One important factor 
in analysing failure data has been found to be the variation of assumptions and the 
exploration of failure data by different tools instead of relying on one single 
analysis. This approach leads to further insight into the data and additional 
knowledge is gained for design and operation of the components. Reference [26] 
exemplifies this by the negative impact of higher frequency of maintenance after 
the first failure. It is shown that this is an indication of an underlying CB failure 
which has not been properly repaired during the first maintenance and 
consequently occurs again. 



 INDIVIDUAL FAILURE RATE MODELLING AND EXPLORATORY FAILURE DATA ANALYSIS FOR POWER SYSTEM COMPONENTS 
 

30 

 

 

 

3 Individual Failure Rate Modelling 

The application of statistical regression models in failure rate estimation and 
prediction in the power system domain is restricted by failure data availability and 
quality which has been concluded from the literature study in [27]. As a result, 
methods are required that improve the failure rate accuracy despite the limited 
failure data available. This chapter starts by demonstrating that improved failure 
rate accuracy can be gained through individual failure rates for components 
instead of using population failure rates. The concept of population and individual 
failure rates is presented and demonstrated based on an example. Thereafter, all 
relevant factors and methods which have been used to improve failure rate 
accuracy are shown and discussed based on the findings in [27]. These findings 
underline the need to develop a method which can improve failure rate accuracy 
without requiring actual failure data. Therefore, this chapter follows by presenting 
the method developed in [28, 29] to calculate individual failure rates within 
populations without actual failure occurrence. The general method is presented 
and followed by a validation of the concept. The method is further applied in the 
Case Studies 3 and 4, which are the summarised results of [28, 29]. 

3.1 POPULATION AND INDIVIDUAL FAILURE RATES 

Recall the definition of the failure rate 𝜆𝜆 (𝑡𝑡)  =  𝑓𝑓(𝑡𝑡)/𝑅𝑅(𝑡𝑡) in eq. 2.4 [1] and how it is 
observed by testing 𝑛𝑛 identical components and recoding the time to failure for 
each one. The failure rate is calculated from these 𝑛𝑛 lifetimes, thus, it reflects the 
failure rate from a population perspective. This can be demonstrated with two 
examples. Firstly, consider the population of 25 power transformers rated greater 
than 25 MVA from section illustrated in Figure 2.3 in [1]. The population is 
simulated, according to [20], with an average failure rate of 𝜆𝜆 =  0.03. In Figure 2.3 
in [1], the actual lifetimes of each component, the estimated distribution function 
F(t) with confidence intervals, the non-parametric estimate of F(t), and the failure 
rate λ(t) are shown. A question to ask for the failure rate would be: “ What is the 
probability that this component will fail in the next interval (𝑡𝑡, 𝑡𝑡 + 𝛥𝛥𝛥𝛥]?” [22, p. 19]. 
The obvious reply would be 'a constant failure rate of 0.03' because an exponential 
distribution is assumed. However, the previous question seems misleading since it 
asks for a specific component. Focusing on several components and considering 
being in year 40, it would be expected that the failure rate is higher for power 
transformer 11 to 15 which all fail soon after rather than for 23 to 25 which have a 
lifetime longer than 100 years. Even though the failures are often assumed to be 
random, the natural individual variations among the components should not be 
ignored [64]. Generally, [64] argues that it is tempting to consider the population 
failure rate as an individual failure probability over time. This becomes a particular 
challenge when populations have subgroups with different failure rates. This has 
been observed in a study regarding failure data of conductors, cables, and power 
transformers in [65]. Here, the observed population failure rate increases first and 
declines later. Particularly, this declining failure rate leads to a false perception. Let 
the second example illustrate this problem. For this purpose, the example from [66, 
67] is used with some modifications. Suppose a population can be divided into two 
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subpopulations which are characterised by the failure rates 𝜆𝜆𝑝𝑝,1(𝑡𝑡) and 𝜆𝜆𝑝𝑝,2(𝑡𝑡) and 
let 𝑅𝑅𝑝𝑝,1(𝑡𝑡) and 𝑅𝑅𝑝𝑝,2(𝑡𝑡) be the corresponding survival functions. Moreover, the 
proportion of components still operating at time 𝑡𝑡 is represented by 

 
Figure 3: The left part of the figure depicts the population failure rate which is observed as the result of two 
different subpopulations with 𝝀𝝀𝒑𝒑,𝟏𝟏(𝒕𝒕)=0.03 and 𝝀𝝀𝒑𝒑,𝟐𝟐(𝒕𝒕)= 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏 ∗ (𝟎𝟎.𝟎𝟎𝟎𝟎 ∗ 𝒕𝒕)𝟑𝟑.𝟓𝟓−𝟏𝟏 for subpopulation 1 and 2, 
respectively. The right part of the figure shows the survival functions of both subpopulations plus the relative 
share 𝒑𝒑(𝒕𝒕) of the subpopulations over time. 

 

 
3.1 

with 𝑝𝑝0 as the proportion of the subpopulation 1 at time 𝑡𝑡 = 0. Now, the resulting 
population failure rate can be defined as 

 3.2 

Here, the population is divided into two subpopulations with a constant failure 
rate 𝜆𝜆𝑝𝑝,1(𝑡𝑡) = 0.03 and an increasing failure rate  𝜆𝜆𝑝𝑝,2(𝑡𝑡) = 0.105 ∗ (0.03 ∗ 𝑡𝑡)3.5−1 
based on a Weibull distribution with scale parameter 𝛽𝛽 =  1/𝜆𝜆 =  1/0.03 = 33.33 
and shape parameter 𝛼𝛼 =  3.5. The proportion of subpopulation 1 at 𝑡𝑡 = 0 is 𝑝𝑝0 =
0.5. The results are shown in Figure 3 for the population failure rate and the 
corresponding survival functions. This example illustrates how the population 
failure rate over- or underestimates the failure rate of the subpopulations. In the 
first interval up to 20 years, the observed population failure rate overestimates the 
failure rate for subpopulation 2 but underestimates it for subpopulation 1. This 
change after 20 years when 𝜆𝜆𝑝𝑝,2(𝑡𝑡)  further increases which results in a 
simultaneous increase in the population failure rate. However, after 39 years the 
population failure rate decreases again because the 𝑝𝑝(𝑡𝑡) increases, since more 
components of subpopulation 2 fail. If the population failure rate is interpreted as 
an individual risk, one would observe a declining failure rate even for the 
remaining 37 % of the subpopulation 2 components. This would lead to an 
incorrect perception about subpopulation 2 since these components still follow 
𝜆𝜆𝑝𝑝,2(𝑡𝑡).  

3.1.1 Heterogeneity in Populations 

The previous examples underline the importance to have a clear distinction 
between the population and individual failure rate and that the failure rate should 
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be interpreted cautiously [64]. Consequently, for a measure of relative risk, it is 
important to describe the heterogeneity among components. To do so, the concept 
of heterogeneity and its source needs to be understood. Heterogeneity is the 
difference or diversification of components in a particular population. Therefore, 
the identification of component characteristics, which differentiate one component 
from another, is essential to understand the concept. From a survival analysis 
viewpoint in medical research, Aalen described three sources of heterogeneity in 
[64]: 

• Biological differences which are present from the beginning, 
• A weakness as the result from the stresses of life as a dynamic concept, and 
• Taking into consideration if a disease is in a early or late stage.  

Unobserved individual heterogeneity is also called frailty in survival analysis [64]. 
However, transferring this concept to technical power system components, the 
sources of heterogeneity are:  

• Component specific variances from the commencement of operation (static 
factors), 

• Induced frailty as the result of load and other stresses from being in operation 
(dynamic factors),  

• Consideration of the condition, the physical state, of a component over time 
which might range from “good” to “bad” and is the result of static and 
dynamic factors over time.  

The individual failure rate is, hence, a function of the static factors, dynamic 
factors, and the condition which is in itself a function of the historical impact of the 
static and dynamic factors in the interval (0, 𝑡𝑡]. Consequently, the three sources 
static factors, dynamic factors, and the component condition are of interest to 
accurately model the failure rate. Note that the condition is dependent on the static 
and dynamic factors which are discussed in detail in [27]. Therefore, a literature 
study has been conducted in [27] to investigate which factors have been modelled 
thus far. These factors and their importance on a component's condition 
development are schematically illustrated in Figure 4 and described in more detail 
in the following section. 
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Figure 4: Abstract illustration of the Impact Magnitude of static and dynamic factors on a component's 
condition development and failure rate over time based on [27] 

3.1.2 Relevant Factors 

The literature review in [27] revealed a set of factors which have been used in 
failure rate modelling of power system components. Ekstedt argued in [68] that no 
consistent categorization of failure rate factors exists in the literature thus far. 
Therefore, this section describes and categorises relevant factors which are 
characteristic of the population heterogeneity. The selection is based on factors 
used in failure rate modelling and the investigation of historical failure statistics. 
Generally, the factors can be categorised into static population and dynamic 
individual factors as aforementioned. The static population factors describe the 
properties which are given from the commencement and do not vary over time. 
Moreover, static factors cannot be controlled after the component is put into 
operation. On the contrary, the dynamic individual factors characterise the effect of 
time dependent factors on an individual component over time and consequently 
lead to a unique condition development. Dynamic factors can be, to some extent, 
controlled while the component is in operation. Even though the distinction is 
similar to the classification of time independent and time dependent explanatory 
variables in section 2.1.1, different terminology is chosen to more clearly 
distinguish between general population attributes and factors which impact the 
component condition. Primarily dynamic individual factors make a component 
unique in a population since these factors are difficult to control.  

Static Population Factors 

Component Specific Variance The term component specific variances describe the 
diversity of components within a population of the same type. These are attributes 
such as size, length, and material which describe the component. For example, 
overhead lines might be characterised by length and conductor type and a power 
transformer by power rating. 
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Ageing Based Power system components are built for a particular lifetime and 
might be modelled with a lifetime distribution under the constraint that they are 
operated within the predefined set of operating conditions. Hence, the general 
ageing can be modelled with lifetime distributions which applies to all components 
in the population.  

Origin Based Origin or manufacturing based factors describe how a non-
conformity during the design and manufacturing process impact the failure rate. 
For example, incorrect design or poor quality management can lead to early 
component failures. Typical characteristics might be model, manufacturing year, or 
manufacturer. 

Installation Method The process of how a component is installed has an impact on 
early component failures or might lead to higher stress during the operation.  

Dynamic Individual Factors 

Environmental Impact The location and environment a power system component 
is operated in influences the lifetime. A general categorization of this 
environmental effect might be into: (1) the constant and varying impact on the 
wear and (2) the somewhat random appearance of certain events which cause 
direct failures. The surroundings such as temperature, water, wind and other 
weather features predominantly affect the wear. These weather related factors vary 
over time and hence are dynamic. On the contrary, random events which lead to 
direct component failures are often weather events with a higher magnitude. Other 
constant factors are location, usual seasonal variations, vegetation, or construction 
work. Vegetation or animal related factors also can cause direct failures. 

Operational Stress Induced weakness resulting from operational stress in form of 
overload or erroneous operation increases the failure rate of components. 
Examples of these factors might be the current load, load history, amount of 
operations, and time in operation. 

Maintenance Impact Maintenance activities consist of supervision, prevention and 
detection of failures to retain or restore the functioning state of a component [22]. 
Preventive maintenance, therefore can improve the condition and operating 
environment to decrease the failure rate. However, incorrect maintenance could 
have a negative impact on the failure rate. Corrective maintenance, in contrast, is 
conducted after component failure and restores the component to a functioning 
state. This type of maintenance is not considered here.  

Condition-Based The physical or 'health' state of a component is the condition 
which is an indicator of the ability to resist operational stresses. When the 
condition is 'as new', the component is considered to have the strength to 
withstand the external forces it is designed for. During the lifetime, the preceding 
factors cause degradation of the condition over time and reduce its ability to 
withstand external forces.  
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3.2 METHODS FOR FAILURE RATE ESTIMATION FOR INDIVIDUAL 
COMPONENTS 

This section presents approaches to model the failure rate of components based on 
individual characteristics as presented in the preceding section. These consist of 
the PHM, Markov models, Bayesian Updating Scheme, and a practical approach 
based on empirical data. The presented methods are described briefly, and an 
example of the failure rate estimation is given. 

3.2.1 Proportional Hazard Model 

The relative risk model or PHM, when the explanatory variables are fixed, is 
described in section 2.2.1. This model is primarily used to investigate the effect of 
explanatory variables on the failure rate. However, after the regression coefficients 
are estimated, the resulting risk function acts multiplicatively on the failure rate 
when considering the model in eq. 2.4. Therefore, the failure rate of an individual 
component might be computed based on the set of its explanatory variables. Let 
the results of Table IV in [24] serve as an illustrative example. Having the three 
covariates geographical area, maintenance intensity, and number of operating within the 
last year to be significant, the failure rate for component 𝑖𝑖 can be formulated as 

 

3.3 

Assuming a baseline failure rate with 𝜆𝜆0(𝑡𝑡) = 0.01, according to the average failure 
rate for CBs in [20], the failure rate of a CB within geographical area 3, maintenance 
intensity category 1, and number of operations within the last year category 1 is  

 
3.4 

The failure rate for the remaining 𝑛𝑛 − 1 components can be calculated likewise. 
Applying the relative risk model enables a better failure rate characterisation based 
on the investigated factors. However, this is often not feasible due to data 
requirements. Even though the relative risk model modifies the baseline failure 
rate to get an individual failure probability, the unobserved individual 
heterogeneity might be neglected in survival analysis which has become a major 
concern [64]. The argumentation and examples have been given in section 3.1 and 
the general theory is known as frailty theory and presented, for example, in [67]. 
Aalen discusses the topic and presents some models to consider the unobserved 
heterogeneity in [64]. A simplistic model is a proportional model where the 
individual failure rate is the product of a specific quantity Q and the baseline 
failure rate 𝜆𝜆0(𝑡𝑡) such that 

 3.5 

In this basic model, Q is a random variable over the population. Aalen argues that 
the population failure rate is observed in a population, which is the result for the 𝑛𝑛 
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number of individuals with varying values of Q. This model primarily considers 
the given differences from the start and solely extracts parts, but it could give 
useful insights [64]. The frailty variable Q (t) might be modelled as a stochastic 
process or as a first-passage-time model. These are not further presented here and 
it is referred to [40, 64, 67]. 

Remarks 

Given sufficient failure data and explanatory variables, the Cox regression is the 
most suitable method to investigate the impact of explanatory variables on the 
failure rate of power system components. After developing a model, the failure 
rate can be more accurately modelled and predicted for each individual 
component under the assumption that the historical population is equal to the one 
in operation. If, however, a technological design change has happened and the 
actual components are different, then the prediction has its limitations. 
Furthermore, this method is especially useful to assess past asset management 
decisions and what impact these have on the components in operation. However, 
the general challenge of data quality and availability continues to be the main 
challenge for the application of this tool in the power system domain. It is 
recommended to further apply regression models to gain valuable insight into 
failure occurrences despite the high level of effort required to gather the data. 

3.2.2 Markov Models and Hidden Markov Models 

Markov models are a useful mathematical technique to model repairable 
components. Further benefit of Markov models is the non-necessity of historical 
failure data as long as the failure rate and repair rate are given as transition rates. 
However, this applies solely to a two state Markov model and is a good 
application example of the failure rate. Considering a Markov model with several 
states to model a deterioration process of an individual component, the transition 
rates have to be determined differently. In this application, the transition 
probabilities can be computed from life-histories, manufacturer information, 
historical condition monitoring data, and the deterioration function [69]. 
Afterwards, the probability of failure in each state is determined to estimate the 
overall failure rate. For example, Velasquez-Contreras developed in [70] a five state 
Markov model, including the states new, normal, defective, faulty, and failed, to 
model the deterioration process of a power transformer to calculate the failure rate 
for an asset management framework.  

In contrast to the classical Markov model, the Hidden Markov model (HMM) 
assumes that the state cannot be directly identified. A practical illustration is the 
identification of the dielectric strength of the insulation material in a power 
transformer. The difficulty in directly identifying the insulation material strength 
and diagnostic measurements such as dissolved gas analysis is applied to provide 
insightful information. These condition monitoring data can be utilised to calculate 
the states. The condition-based failure rate estimation with a discrete HMM has 
been demonstrated in [69]. The HMM utilizes a sequence of observations that are 
the result of an underlying or 'hidden' Markov process to calculate the transition 
rates between the condition states. The steps to determine the transition rates 
according to [71] are as follows: 
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• Define the number of all observable and non-observable states. 
• Determine the following parameters:  

× The Markov transition matrix with state transition probabilities 𝐴𝐴 =
 {𝑎𝑎𝑖𝑖𝑖𝑖}, 𝑎𝑎𝑖𝑖𝑖𝑖  =  𝑃𝑃(𝑋𝑋𝑡𝑡+1 = 𝑗𝑗 | 𝑋𝑋𝑡𝑡 = 𝑖𝑖), 1 ≤  𝑖𝑖, 𝑗𝑗 ≤  𝑁𝑁 where 𝑁𝑁 is the component's 
deterioration level and 𝑋𝑋𝑡𝑡 is the current state. 

× The probability of obtaining an observation with a observation symbol 𝑀𝑀 
at a specific state is 𝐵𝐵 =  � 𝑏𝑏𝑗𝑗(𝑘𝑘)� with 𝑏𝑏𝑗𝑗(𝑘𝑘) =  𝑃𝑃(𝑜𝑜𝑡𝑡 =  𝑣𝑣𝑘𝑘|𝑋𝑋𝑡𝑡 =  𝑗𝑗, 1 ≤  𝑗𝑗 ≤
 𝑁𝑁, 1 ≤  𝑘𝑘 ≤  𝑀𝑀 where 𝑜𝑜𝑡𝑡 is the current observation.  

× Suppose the latest observation is given, then the initial state distribution 
can be calculated with 𝛱𝛱 =  𝜋𝜋𝑖𝑖 with  𝜋𝜋𝑖𝑖 =  𝑃𝑃(𝑋𝑋𝑖𝑖 =  𝑖𝑖), 1 ≤  𝑖𝑖 ≤ 𝑁𝑁. 

• The final step is the calculation of the optimal parameter 𝜆𝜆 =  { 𝐴𝐴,𝐵𝐵,𝛱𝛱 } by 
maximizing the likelihood of the observation 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑝𝑝(𝑂𝑂 | 𝜆𝜆). Here, the Baum-
Welch algorithm is applied. 

The transition matrix 𝑷𝑷 can be built after the estimation of the transition rates. The 
state probability vector is denoted with 𝑃𝑃(ℎ𝑇𝑇)  =  [𝑃𝑃1(ℎ𝑇𝑇) … 𝑃𝑃𝑁𝑁  (ℎ𝑇𝑇)] where ℎ =
1,2,3, … and 𝑇𝑇 is the time increment. The elements of the state probability vector are 
the probabilities that a component is in a specific deterioration state at time T. For 
example, when the component is in the first state at time 𝑡𝑡 = 0 then 𝑃𝑃(0)  =
 [1 0 …  0]. Now, the probability can be computed so that a component is in any 
deterioration level at time ℎ𝑇𝑇 with 𝑃𝑃(ℎ𝑇𝑇) = 𝑃𝑃(0) ∗ 𝑃𝑃ℎ. Finally, the failure rate is 
calculated as 

 
3.6 

Example 

The HMM is applied to three power transformer case studies [70-72]. All authors 
utilised dissolved gas analysis results to develop the model. In [71], the authors 
used a sample size of 10 transformers over a time of 7 years to train the model and 
calculate the transition probabilities. The calculated failure rate is depicted in 
Figure 5. One drawback of the HMM is that, to determine the transition rates, it is 
necessary that the component has been in all deterioration states as defined. 
Moreover, the definition of the states itself can be challenging when only limited 
knowledge about the deterioration process is available. 

Remarks 

Even though the HMM is theoretically a method to model the failure rate on an 
individual level, practically this is difficult. Condition monitoring data need to be 
gathered over such a long interval that the component has been in all predefined 
stages such as a failure. Particularly, for power system transformers on 
transmission level, this seems to be unrealistic due to the long-lifetimes and 
generally low failure probability. Moreover, it is tempting from a practical 
perspective to apply the same model to all other components in operation instead  
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Figure 5: Estimated failure rate based on HMM and dissolved gas analysis data [71] 

 

of gathering condition monitoring data for each. Therefore, the HMM is not very 
suitable to model individual failure rates due to the practical implications.   

3.2.3 Bayesian Reliability Modelling 

Generally, the scarcity of failure data in the power system domain creates the 
demand for methods which enable certain lifetime predictions with limited failure 
data. Bayesian methods for reliability analysis are an approach to gain additional 
insights by combining “ prior” information with some observed data to make 
inferences [23]. The basic principle in a reliability context is presented in [22, ch. 13] 
and [23, ch. 14] and is illustrated in the following. Suppose the random variable 𝑋𝑋 
with the corresponding probability density function 𝑓𝑓(𝑥𝑥,𝜃𝜃), θ ∈ 𝛺𝛺 where 𝛺𝛺 is a 
subspace of the 𝑟𝑟-dimensional Euclidean space. Moreover, θ is understood as the 
realisation of a random variable 𝛩𝛩 with the density 𝑓𝑓𝛩𝛩(𝜃𝜃) which is interpreted as 
the “beliefs” about the value of 𝛩𝛩 prior to any observation. Therefore, 𝑓𝑓𝛩𝛩(𝜃𝜃) is 
known as the prior density of 𝛩𝛩 and let 𝑓𝑓𝑋𝑋|𝛩𝛩 (𝑥𝑥 | 𝜃𝜃) denote the conditional density 
of 𝑋𝑋. Following the theoretical concept in [22, ch. 13], the joint density of 𝑋𝑋 and 𝛩𝛩 is 

 3.7 

Now, having the marginal density of 𝑋𝑋 with 

 
3.8 

which leads to the conditional density of 𝛩𝛩, given 𝑋𝑋 = 𝑥𝑥, is 

 
3.9 

This can be seen as a basic form of Bayes's theorem. Since this expression states the 
belief regarding the distribution of 𝛩𝛩, after having observed 𝑋𝑋 = 𝑥𝑥, it is called the 
posterior density of 𝛩𝛩. Recall that when X is obtained, the density 𝑓𝑓𝑋𝑋(𝑥𝑥) is constant 
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in eq. 3.9. Consequently, this resulting proportionality between 𝑓𝑓𝑋𝑋|𝛩𝛩 (𝑥𝑥 | 𝜃𝜃) and 
𝑓𝑓𝑋𝑋|𝛩𝛩  (𝑥𝑥 | 𝜃𝜃) ∗ 𝑓𝑓𝛩𝛩 (𝜃𝜃) can be expressed as 

 3.10 

This method is also often called the Bayesian updating scheme, which originates 
from the fact that the information about the parameter 𝜃𝜃 is updated. Moreover, this 
is an iterative process because the prior distribution of 𝜃𝜃 is updated to the posterior 
distribution 𝜃𝜃, given 𝑋𝑋 =  𝑥𝑥 as soon as new information X is obtained and the 
posterior distribution becomes the new prior distribution.  

Bayesian methods also enable the prediction of future component failures within a 
particular population. These failures are predicted by using the Bayesian posterior 
predictive distribution [23, ch. 14.6] which is  

 
3.11 

The Bayesian method as updating the prior plus predicting the future density, is 
illustrated in graphical form in [73, Fig. 3.2].  

Examples 

Bayesian Updating in combination with failure rate prediction has been applied for 
overhead transmission [74] and distribution [15, 75] lines, and power transformers 
[76]. In [74], the number of overhead line failures are modelled with a Poisson 
process where the prior is a Gamma distribution which is updated with the 
number of occurred failures over a six year period. Similar, but in combination 
with log-linear regression, [75]  is using a hierarchical Bayesian Poisson regression 
to estimate individual failure probabilities for distribution lines. The authors 
include the length, age, load and tree density as possible explanatory variables. In 
a rather general approach, the feasibility of Bayesian updating in power 
transformer failure rate estimation is shown in [76]. Here, condition monitoring 
information in the form of power transformer oil and gas samples over a time 
horizon of 8 years is used, to update the shape parameter α in the Weibull failure 
rate function while assuming that the condition measurements follow a normal 
distribution.  

Remarks 

Bayesian Updating presents accurate results, particularly, on the modelling of the 
failure rate of overhead lines by using historical failures of each line and external 
explanatory variables such as weather. However, the general approach of updating 
the Weibull distribution parameters based on condition monitoring data should be 
seen as an idea rather than a suitable method since a few simple assumptions have 
been made to show the idea rather than a complete method. However, more 
development of the general method might lead to better results.  
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3.2.4 Failure Rate Modelling based on Inspection Data 

An empirical approach to model the failure rate based on component inspection 
data has been presented in [20]. Brown argued that the failure rate should be 
modelled ideally as a function of critical parameters. However, assessment of the 
failure rate with regression techniques as presented in Chapter 2 is difficult due to 
limited data availability and the often poor data quality. Therefore, a failure rate 
model has been found to empirically fit the data best with an exponential function 
such that 

 
3.12 

where 𝑆𝑆 is the condition score and 𝐴𝐴,𝐵𝐵, and 𝐶𝐶 are the function parameters which 
are calculated from the failure rate at the best, average, and worst inspection 
outcome. The condition score 𝑆𝑆 is computed by 𝑆𝑆 = ∑ 𝑤𝑤𝑝𝑝𝑟𝑟𝑝𝑝/𝑘𝑘

𝑝𝑝=1 ∑ 𝑤𝑤𝑝𝑝𝑘𝑘
𝑝𝑝=1  with the 

relative importance weight 𝑤𝑤𝑝𝑝 ∈ {1,10} and the inspection outcome score 𝑟𝑟𝑝𝑝 ∈ {0,1} 
with 0 as the best, 0.5 the average, and 1 as the worst inspection outcome. The 
natural pairs are the failure rates 𝜆𝜆(0), 𝜆𝜆(0.5), and 𝜆𝜆(1). Having these three failure 
rates, the parameters for the failure rate function are determined by [20] 

 
3.13 

 
3.14 

 3.15 

Whereas the average failure rate 𝜆𝜆(0.5) is often available for different component 
types, the failure rates for the best and worst condition are difficult to determine 
[20]. Therefore, Brown presents these for a range of component types in [20] and a 
more detailed benchmarking in [19]}. In Figure 6, the component failure rates are 
depicted for power transformer, disconnector, and CB dependent on the condition 
score.  

Example 

This method is illustrated based on 3 transmission power transformers which are 
used in the case study of [77] and are also part of [29]. To calculate the condition 
score of these power transformers, the condition ratings for gas and oil analysis 
and paper ageing have been utilized. Converting the condition score or health 
index from 0-100, from very poor to very good, to 0-1 and inverting the scale, the 
failure rate for these power transformers can be calculated based on 3.12. The 
results are shown for the period 2002 to 2016 in Figure 7 and all power 
transformers are below 𝜆𝜆0.5 =  0.03. 
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Figure 6: Empirical component failure rate functions based on a condition score for power transformers rated 
greater 25 MVA 𝝀𝝀𝑷𝑷𝑷𝑷>𝟐𝟐𝟐𝟐 (𝑺𝑺) and smaller 25 MVA 𝝀𝝀𝑷𝑷𝑷𝑷<𝟐𝟐𝟐𝟐 (𝑺𝑺), disconnectors 𝝀𝝀𝑫𝑫𝑫𝑫𝑫𝑫 (𝑺𝑺), and CB 𝝀𝝀𝑪𝑪𝑪𝑪 (𝑺𝑺) which are 
presented in [20] 

 

This method, which is based on historical component failure data, is the most 
practical approach. If the condition score of a component can be accurately 
determined, it is beneficial for power system operators. However, the condition 
score and particularly the determination is also its weakness. Expert knowledge is 
required to define the criteria and importance weights for the condition score. 
Moreover, equal information must be gathered for all components to make the 
results comparable.  

3.2.5 Discussion 

All aforementioned methods have the mutual aim to model and predict the failure 
rate accurately. As Brown argued in [20, p. 783], the failure rate should be 
characterised preferably through a regression model which assesses each internal 
and external explanatory variable. Therefore, the PHM seems to be the preferable 
option since it not solely models the failure rate but also investigates the statistical 
significance of the explanatory variables. However, this requires failure data of the 
population of interest which is often difficult to gather due to long lifetimes and 
decisions to replace components before they fail. Markov and HMM estimate the 
failure rate depending on the deterioration state of the individual component, 
however, it is essential that the component has been in each deterioration state 
before, which makes the data requirements even higher than with the PHM.  
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Figure 7: Computed failure rates for three transmission power transformers rated greater 25 MVA based on a 
health index score presented in [77] 

 

Bayesian statistical methods, on the contrary, require less actual failure data and 
are therefore an alternative approach. This method combines previous process 
knowledge with data such as condition monitoring or failure statistics [73]. 
However, an assumption about the prior distribution is required for this 
parametric method, which might be difficult in certain cases.  

The empirical failure rate model developed by [20] and presented in the preceding 
section is the most straightforward method. This heuristic method combines 
historical failure data with expert knowledge and experience about most power 
system component types to model the failure rate over a condition score. Although 
straightforward, a challenge is the consistent definition of the condition score 
which the failure rate is mapped to. Depending on the criteria defined and 
available, the overall condition might be over- or underestimated if not a sufficient 
amount of criteria is selected. Moreover, the presented failure rate data in [20] for 
the best, average, and worst inspection outcome might be general but does not 
necessarily have to be accurate for the population of interest due to developments 
in component design, for example. 

These limitations underline that a method, which does not require failure data and 
the parametric assumption about the sample data used, would be beneficial in 
improving failure rate modelling. 

3.3 INDIVIDUAL FAILURE RATES WITHIN POPULATIONS 

This section presents the concept of Individual Failure Rates which has been 
developed in the[28, 29]. [28] formulates the time-independent model and 
describes the method in a practical context of a power transformer population. The 
case study includes 30 power transformers with six single time condition 
measurements and is summarized in section 3.4. [29] presents a more rigorous 
formulation of the method considering time-dependence and introduces the risk 
functions. Furthermore, the individual failure rates are forecasted by applying 
time-series analysis to predict the stochastic internal covariates or condition 
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measurements. Hence, the approach is applied to a population of twelve 
transmission power transformer which is presented in section 3.5. 

3.3.1 Modelling Assumptions and Constraints 

The preceding section presented various methods to calculate failure rates for 
components based on internal and external explanatory variables. However, these 
methods are often difficult to apply within the power system domain. From a 
general perspective of statistical data driven approaches, the authors of [78] 
conclude with a literature review that a number of challenges remain before 
existing methods can be applied to practical systems. The authors primarily 
identify that there is  

• the necessity to develop models with limited amount of data available, for 
example, when new components are operated, 

• the fusion of several input data sources such as condition information, 
• the investigation of how external factors can be incorporated into the models 

and how they impact the condition information, 
• the development of a model which considers all failure modes of a single 

component. 

These four challenges are particularly relevant in the power system domain due to 
the long lifetimes of the components and poor data quality which leads to a limited 
amount of historical data [20]. The resulting consequences are a shortage of failure 
data, records of component characteristics, and long-term environmental and 
condition monitoring information. Therefore, the method to calculate individual 
failure rates is based on the limited data available considering the challenges in the 
power system domain. The method has been developed under the following 
assumptions: 

• Solely homogeneous populations are considered such as the population of a 
particular component type 

• No failures have occurred in the population until time 𝑡𝑡 
• The components are non-repairable 
• At least a single condition measurement has been obtained 
• The condition monitoring information is a valid failure indicator 
• The same condition monitoring information has been gathered from all 

components 
• The population or baseline failure rate and failure mode statistics are equal to 

historical data of previous populations 

3.3.2 Method 

Assume a homogeneous population of 𝑛𝑛 non-identical power system components 
without failure occurrence until time 𝑡𝑡. Le𝜆𝜆0(𝑡𝑡)t be the baseline failure rate, also 
known as population failure rate, computed from historical failure data of a 
comparable population η with 𝑚𝑚 distinct failure types 𝑗𝑗 ∈ {1, … ,𝑚𝑚}. Let 𝒙𝒙𝑖𝑖,𝑗𝑗(𝑡𝑡)  =
(𝑥𝑥𝑖𝑖,𝑗𝑗1(𝑡𝑡), 𝑥𝑥𝑖𝑖,𝑗𝑗2(𝑡𝑡), … , 𝑥𝑥𝑖𝑖,𝑗𝑗𝑘𝑘(𝑡𝑡))  be the vector of 𝑘𝑘 internal covariates which are related 
to failure type 𝑗𝑗 of the 𝑖𝑖-th component with 𝑖𝑖 ∈ {1, … ,𝑛𝑛} and 𝒙𝒙𝑖𝑖,𝑗𝑗(𝑡𝑡) the vector of all 
𝑑𝑑 covariates of component 𝑖𝑖 with 𝑑𝑑 = ∑ kj𝑚𝑚

𝑗𝑗=1 . Recall the definition of the failure 
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type specific failure rate in eq. 2.13. Following the competing risk approach in eq. 
2.14, each failure type 𝑗𝑗 can occur but separately, such that 

 
3.16 

The method is based on the form and idea of eq. 3.16 but must be clearly 
distinguished from the regression model within survival analysis.  

Suppose the frequency of each failure type 𝑗𝑗 is known from population η, the 
vector 𝛼𝛼 =  (𝛼𝛼1, … ,𝛼𝛼𝑚𝑚) denotes the proportion of each failure type 𝑗𝑗 with the 
property ∑ αj = 1𝑚𝑚

𝑗𝑗=1 . Moreover, given that ∑ λ0j(t) =  λ0(t)∑ αj𝑚𝑚
𝑗𝑗=1

𝑚𝑚
𝑗𝑗=1 , the 

competing risk approach can then be written as 

 
3.17 

Furthermore, it is assumed that each covariate is solely related to one failure type 
𝑗𝑗 and that the vector 𝒙𝒙𝑖𝑖,𝑗𝑗(𝑡𝑡)  ∈  ℜ>0 is assumed to be a valid failure indicator of 𝑗𝑗. 
Moreover, each internal covariate in vector 𝒙𝒙𝑖𝑖,𝑗𝑗(𝑡𝑡)  has a measurement uncertainty 
vector 𝝆𝝆 =  (𝜌𝜌1,𝜌𝜌2, … 𝜌𝜌𝑚𝑚). The measurement uncertainty ρ describes the assurance 
of successfully measuring the internal covariates. This leads to the time dependent 
model 

 
3.18 

where 𝒁𝒁𝑖𝑖,𝑗𝑗(𝑡𝑡)  = (𝑍𝑍𝑖𝑖,𝑗𝑗1(𝑡𝑡),𝑍𝑍𝑖𝑖,𝑗𝑗2(𝑡𝑡), … ,𝑍𝑍𝑖𝑖,𝑗𝑗𝑘𝑘(𝑡𝑡))  is a vector of time dependent 
covariates derived from 𝒙𝒙𝑖𝑖,𝑗𝑗(𝑡𝑡). This notation is useful since the basic covariates 
might be transformed such that 𝒁𝒁𝑖𝑖,𝑗𝑗(𝑡𝑡)  = g(𝒙𝒙𝑖𝑖,𝑗𝑗(𝑡𝑡)) where g depends on the internal 
covariate data being chosen. This transformation might be needed to describe the 
risk functions. The model parameter ρ is described in detail in [28] and the risk 
function in eq. 3.18 is further described in the following section. 

The risk function 𝑟𝑟𝑗𝑗(𝑡𝑡;𝒁𝒁𝑖𝑖,𝑗𝑗(𝑡𝑡)) is the factor which differentiates the 𝑖𝑖-th component 
from the population failure rate 𝜆𝜆0(𝑡𝑡). Since 𝑟𝑟𝑗𝑗(𝑡𝑡;𝒁𝒁𝑖𝑖,𝑗𝑗(𝑡𝑡)) > 1  causes an increase, 
𝑟𝑟𝑗𝑗(𝑡𝑡;𝒁𝒁𝑖𝑖,𝑗𝑗(𝑡𝑡)) < 1  a decrease, and 𝑟𝑟𝑗𝑗(𝑡𝑡;𝒁𝒁𝑖𝑖,𝑗𝑗(𝑡𝑡)) = 1  an unaltered failure rate, this 
function is a relative risk function. Assuming that the condition of the 𝑖𝑖-th 
component is a valid risk of failure indicator, the function 𝑟𝑟𝑗𝑗(𝑡𝑡;𝒁𝒁𝑖𝑖,𝑗𝑗(𝑡𝑡))  adjust the 
population failure rate by utilizing the internal covariates 𝒁𝒁𝑖𝑖,𝑗𝑗(𝑡𝑡). The initial 
background of the risk function is described in [28] and illustrates the idea that in a 
homogeneous population which is operated under the same operating conditions, 
the component which differs from the population features has an increased or 
decreased failure rate. Hence, the 'reference group' required for the relative risk 
function, here the population reference condition, is the average population 
condition calculated from the internal covariates. Depending on how an internal 
covariate describes the failure probability, the function space is large. While [28] 
solely introduces a positive or negative linear risk function due to the time-
independence, [29] presents two additional risk functions when the covariate 
history 𝑋𝑋𝑝𝑝(𝑡𝑡) =  �𝑥𝑥𝑝𝑝(𝑢𝑢): 0 ≤ 𝑢𝑢 <  𝑡𝑡 � is given. Based on these covariate histories, 
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the vectors 𝑪𝑪�and 𝑽𝑽� are computed which are the average population condition and 
variance for each covariate 𝑝𝑝 ∈ {1, … , 𝑘𝑘}, respectively.  

The arithmetic means 𝑪𝑪� of all internal covariates is the reference measure and can 
be compared to the current measurements 𝒁𝒁(𝑡𝑡). Since multiple covariates can be 
related to failure mode 𝑗𝑗, the overall risk function is calculated by 

 3.19 

where 𝑺𝑺�𝑡𝑡;𝒁𝒁(𝑡𝑡)� = 𝑆𝑆1�𝑡𝑡;𝒁𝒁𝟏𝟏(𝑡𝑡)�, … , 𝑆𝑆𝑘𝑘�𝑡𝑡;𝒁𝒁𝑘𝑘(𝑡𝑡)� is the vector of all 𝑘𝑘 risk functions 
which are related to 𝑗𝑗, and 𝒘𝒘 = {𝑤𝑤1, … ,𝑤𝑤𝑘𝑘} ∈ ℜ>0  is the weight score with the 
property 𝒘𝒘1k×1 = 1. The calculation is described in greater detail in [29], which 
also presents the three proposed risk functions, which are the linear, non-linear, 
and the cumulative risk function.  

 
Figure 8: Graphical illustration of possible risk functions 

 

Linear Risk Function 

This risk function can be either positive or negative and describes the relationship 
between covariate and failure rate as linear. An illustration of this is shown in 
Figure 8 a.). This function can be applied in the time dependent as well as in a time 
independent setting. Before this function can be defined, the basic covariates need 
to be transformed such that 

 
3.20 

if there is a linear positive relationship and  

 
3.21 

if a linear negative relationship between covariate and failure rate exists. The 
vector 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) describes the incipient component condition. Having transformed 
the basic covariates, the positive linear function is defined as  

 3.22 

and the negative linear function as 
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3.23 

Non-Linear Risk Function 

A possible failure indication might be the magnitude of change over time of the 
internal covariates. An abrupt change of the internal covariate can be an indication 
of an increased risk of failure, whereas a constant change over time shows normal 
behaviour. This is illustrated in Figure 8 b.). Thus, a risk is identified when the rate 
of change alters over time, which is described by the second derivative of 𝑋𝑋𝑝𝑝(𝑡𝑡). 
The basic covariate 𝑥𝑥𝑝𝑝(𝑡𝑡) needs to be standardized such that 

 
3.24 

with 𝜎𝜎𝑝𝑝 as the standard deviation of covariate 𝑝𝑝. Now, the risk function can be 
modelled with 

 3.25 

with the exponential form to satisfy the failure rate property 𝜆𝜆 (𝑡𝑡; 𝑥𝑥(𝑡𝑡))  ≥  0.  

Cumulative Risk Function 

The volatility of an internal covariate is another risk indicator which can be 
described by the cumulative deviation of 𝑍𝑍𝑝𝑝(𝑡𝑡) from the expected condition value 
𝑪𝑪𝒑𝒑����. Figure 8 c.) depicts the difference between a stable and volatile covariate path 
over time. An example of such a covariate is the gas production in power 
transformers over time. Standardising the covariate with  

 
3.26 

first, where the common scale is two times the standard deviation to consider 
solely significant deviations from the mean, the cumulative risk function can be 
defined as 

 
3.27 

Selection of Risk Function 

Selecting the risk function is based on the risk behaviour of the covariate. The 
general behaviour of different covariate risks is illustrated in Figure 8. The 
following risk behaviours indicate which risk function to select from the set 
suggested.  

• High deviation from population The most straightforward description of risk 
is the deviation of one particular covariate from the population average value. 
Here, the linear risk function is the standard choice. Depending on the 
covariate this might be linear positive, the higher the measurement value is the 
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worse the condition is, or linear negative, the lower the measurement value is 
the more possible it is that the covariate indicates an upcoming failure.   

• Abrupt change If the covariate path suddenly changes from its approximately 
constant path, this might be an indication for an increased probability of 
failure. Then the non-linear risk function is most suitable.  

• High volatility If a risk of failure of a component is reflected best with the 
volatility in a particular covariate, the cumulative risk function is suitable to 
describe this risk type. To identify the risk besides the general noise of the 
covariate, the covariate is normalised as aforementioned. 

Risk Function Weight Score 

The 𝑘𝑘 risk functions in 𝑺𝑺�𝑡𝑡;𝒁𝒁(𝑡𝑡)� must be combined with w to a single function 
𝑟𝑟(𝑡𝑡;𝒁𝒁(𝑡𝑡))  as shown in eq. 3.19. As described in [28], the weight 𝑤𝑤𝑝𝑝 is calculated 
with 

 
3.28 

where 𝑐𝑐𝑝𝑝 ∈ ℜ>0 is the weight score of covariate 𝑝𝑝 and describes the significance as 
a failure indicator. Depending on the amount of historical covariate and failure 
data available, different approaches are possible to determine 𝑐𝑐𝑝𝑝, such as Cox or 
logistic regression or the determination by expert knowledge.  

Individual Failure Rate Prediction 

Given the covariate history 𝑋𝑋𝑝𝑝(𝑡𝑡), the covariate behaviour can be modelled with 
different methods to estimate the future value 𝑋𝑋𝑝𝑝(𝑡𝑡 + τ) with 𝜏𝜏 >  0 periods ahead. 
This covariate behaviour is either stochastic or non-stochastic and can be modelled 
with time series analysis, state space models, and Markov Chains if stochastic, and 
parametric functions if non-stochastic, as presented in [31]. Stochastic covariate 
behaviour can be predicted with a certain confidence level whereas non-stochastic 
covariates can be predicted with a higher accuracy. [29] illustrates the prediction of 
individual failure rates by using univariate time series analysis to forecast the 
covariate behaviour. This approach can be summarised into the following steps: 

• Create a covariate behaviour model based on 𝑋𝑋𝑝𝑝(𝑡𝑡) using techniques for 
stochastic or non-stochastic covariates, 

• Forecast 𝑋𝑋𝑝𝑝(𝑡𝑡 + τ) with τ periods ahead,  
• Use Monte Carlo simulations to calculate 𝑐𝑐 sample path of 𝑋𝑋𝑝𝑝(𝑡𝑡 + τ), 
• Compute an average covariate behaviour path with an upper and lower 

confidence level. 
• Calculate the Individual Failure Rates based on these three covariate paths. 

The result is a prediction of the Individual Failure Rate with an upper and lower 
confidence interval which enables different interpretations and allows the selection 
of an Individual Failure Rate based on the operator's preferable risk behaviour. 
Hence, the operator can choose a risk-neutral approach by choosing the average 
forecasted path, and a risk-seeking or risk-averse approach by choosing the upper 
or lower confidence level path.  
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3.3.3 Validation 

After having developed a method for failure rate estimation, validation of the 
results is essential to show the accuracy. Generally, the validation of component 
failure rates is connected to certain challenges such as the randomness of failure 
occurrences primarily due to environmental impacts, the lack of failure data 
because outages are expensive or a risk to general safety. Therefore, components 
are replaced before failure or controlled experiments are conducted to simulate 
certain failures which are imprecise due to the absence of actual operating 
conditions. These general challenges have been discussed in more detail for failure 
type detection with machine learning techniques in [79, ch. 8].  

The proposed method estimates a failure probability for each component in a 
population and if a threshold value 𝛾𝛾𝛾𝛾[0,1] for the failure rate is set, the component 
might be classified as failed or near failure. Consequently, Bayes' theorem might be 
applied to evaluate the performance of diagnostic tests [80, ch. 1.3]. Let B denote a 
fault state of the component and 𝐵𝐵�  that the component is not in a fault state. In 
addition, A is the event that the method predicts a failure and 𝐴̅𝐴 is the event that a 
failure is not predicted. This should describe that the method is actually able to 
predict positively or negatively a failure and a component actually experiencing a 
failure. Hence, the aim is to quantify the error of the method. To validate the 
proposed method, a population of power transformer in a Swedish county is 
investigated. General population data is given in Table 1, and a single time 
condition measurement is available in the form of gas analysis results such as the 
total combustible gases (TCG) which are hydrogen (𝐻𝐻2), methane (𝐶𝐶𝐻𝐻4), acetylene 
(𝐶𝐶2𝐻𝐻2), ethylene (𝐶𝐶2𝐻𝐻4), ethane (𝐶𝐶2𝐻𝐻6), and carbon monoxide (𝐶𝐶𝐶𝐶). Applying the 
expert weights to the measurements according to [81], the failure statistics 
according to [82] likewise as in case study 3, setting 𝜆𝜆0(𝑡𝑡) = 0.02, the individual 
failure rates can be computed with eq. 3.18. The results are depicted in Figure 9.  

Table 1: Power transformer population data used in validation of individual failure rates 
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Figure 9: Computed individual failure rates for a population of 92 units with actual failure occurrence for 
component number 14 and 35 

 

 
Figure 10: Computed individual failure rates for 117 units with actual failure occurrence based on the 
published data in [83] 

 

Two power transformers have been identified with a failure in the population. 
Component 14 has experienced a bushing failure and has been put out of operation 
for some time while the component has been repaired. The gas analysis has been 
conducted after the failure but before it has been put in operation again. This 
component with 𝜆𝜆14 = 0.036 still has the second highest failure rate and has been 
classified as a failure, even though the measurement has been taken after the 
failure and is not fully representative. Component 35 has been diagnosed with 
overheating and damaged insulation material and is classified as a failure. The 
estimated individual failure rate for component 35 is 𝜆𝜆35 = 0.210 which is ten 
times higher than the population failure rate 𝜆𝜆0 = 0.02.  Given solely the gas 
analysis results and no further information about other possible failure modes, the 
threshold value is set to 𝛾𝛾= 0.04, which is two times higher than the population 
failure rate and suggests a warning for further investigation. The evaluation results 
of the individual failure rate method are presented in Table 2. Now, the two 
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conditional probabilities P(A|B) and P(A|𝐵𝐵�) are calculated. P(A|B) describes the 
positive response given that a failure has occurred, thus, the larger this conditional 
probability is, the more sensitive the test is [80, ch. 1.3]. In contrast, P(A|𝐵𝐵�) 
describes the conditional probability that a positive response is detected while the 
component does not have a failure. Hence, the smaller P(A|𝐵𝐵�) is or the larger 
P(𝐴̅𝐴|𝐵𝐵�) is, the more specific is the method. Furthermore, the measured positive 
predictive rate (PPV), calculated as PPV = P(B|A)= P(A|B)*P(B)/P(A), and the 
negative predictive value (NPV), defined as NPV = P(𝐵𝐵�|𝐴̅𝐴)= P(𝐴̅𝐴|𝐵𝐵�)*[1-P(B)]/[1-
P(A)], are presented in all Tables. These two criteria have also been called false 
positive rate and false negative rate [80, ch. 1.3]. The sensitivity for the population 
is with 0.5 rather low, however, the amount of failures is limited, which is similar 
to general component failure data as aforementioned. Therefore, known failures 
from other populations are utilized to validate the method further. To do so, the 
published gas analysis data in [83] with failure classification is utilized and the 
estimated individual failure rate for this components is shown in Figure 10Figure 
9. To compare the evaluation results, the health index method proposed in [81] is 
used as a benchmark. The evaluation of the individual failure rate method with 
additional failures is presented in Table 3 and the failure identification with the 
health index in Table 4. The evaluation results are similar with a sensitivity of 
0.7731 and 0.7478 for the individual failure rate method and the Health Index 
method, respectively. This shows that the individual failure rate method is a 
plausible predictor of actual failures even though the failure detection with the 
individual failure rate method is dependent of the threshold value 𝛾𝛾. 

Table 2: Results of individual failure rate prediction compared to actual faults in population 

 

 
Table 3: Results of individual failure rate prediction of population with extra added faults published in [83] 
with threshold value γ= 0.1 
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Table 4: Results of individual failure rate prediction of population with additional faults published in [83] with 
health index gas analysis classification according to [81] 

 

3.3.4 Discussion 

The proposed method uses the population failure rate, failure statistics, and 
condition monitoring data to calculate an individual failure rate. In contrast to 
other methods presented in section 3.2, no actual failure data, assumptions about 
the sample data distribution, or the definition of condition scores or thresholds is 
required.  

Theoretical Limitations 

Generally, comparing the individual failure rate results to other methods as in [28], 
such as Health Indices, strengthens the plausibility of the concept. However, the 
validation of the individual failure rates remains difficult due to the limited 
amount of failure data in combination with an overall set of condition monitoring 
data. Furthermore, the fusion of multiple covariates to one failure mode and an 
increased set of risk functions should be improved. Whereas the set of risk 
functions solely needs to be extended, the weighting of covariates should be 
independent of expert knowledge and therefore the development of a new method 
is suggested. Particularly, [29] illustrated that the risk functions have an impact on 
the computed results and affects possible decision making or the outcome of 
additional system calculations. However, [29] also demonstrates that using 
different risk functions widen the understanding of the failure rate and 
consequently, provide a better risk perception.  

Practical Aspects 

The practical aspects of the method, in an asset management context, have been 
primarily presented in [28]. If the individual failure rates are utilised for 
subsequent system reliability calculations or in maintenance optimization, the 
additional accuracy also further improves the computations. Directly applied to 
maintenance and replacement decision making, the individual failure rates, 
generally as all failure rates, need to be correctly interpreted. To do so, thresholds 
might be set to support the decision making process. Since individual failure rates 
provide no linguistic condition classification such as Health Indices, the user is 
engaged to interpret and understand the individual failure rates which prevents 
immature decision making. Generally, the individual failure rates provide 
additional insights into risk management of power system components and could 
be especially utilised for new components. This would have great value for asset 
management software tools in practice. 
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3.4 CASE STUDY 3: TIME INDEPENDENT CALCULATION OF INDIVIDUAL 
FAILURE RATES FOR POWER TRANSFORMER POPULATIONS  

[28] presents a case study of a Canadian power transformer population with 30 
units based on the published condition monitoring data in [84]. The population 
failure rate is constant with 𝜆𝜆0(𝑡𝑡) = 0.02 [1/year] and the failure statistics for vector 
α are based on findings in [82]. The following single condition measurements have 
been obtained such as water content in oil, acidity, oil breakdown voltage, 
dissipation factor, dissolved combustible gases, and 2-Furfuraldehyde. These 
covariates indicate the condition of the liquid and solid insulation of a power 
transformer and reflect winding failures. All risk functions are calculated with the 
positive linear function but the negative linear risk function has been chosen for 
the breakdown voltage. The results are presented in detail in [28] but also 
illustrated in Figure 11. Transformer 19, with 𝜆𝜆19(𝑡𝑡) =  0.1373, the highest failure 
rate of the population. In [84], this transformer is determined to be in a 'very bad' 
condition. Comparing the value to the empirical results in [20] which provide a 
failure rate of 0.14 for distribution transformer under 25 MVA with a 'worst' 
inspection outcome, the results are plausible.  

 
Figure 11: Individual failure rates for transformers 1-30 with the initial average failure rate of 0.02 and a 
confidence interval of 95% 

3.5 CASE STUDY 4: ESTIMATION AND PREDICTION OF TIME DEPENDENT 
INDIVIDUAL FAILURE RATES   

The condition monitoring data of twelve transmission power transformers over the 
time period from 2002 to 2015 have been utilized to calculate Individual Failure 
Rates for each component in the population in [29]. The operation time of the 
power transformers vary between twelve and forty-five years and the basic 
covariates are: (1) breakdown voltage (BDV), (2) dissipation factor or tan delta, (3) 
water content, (4) acidity in the oil, and the (5) total combustible gases (TCG) 
which have been obtained in yearly intervals. The population failure rate has been 
assumed with 𝜆𝜆0(𝑡𝑡) = 0.02 and the failure statistics for vector α are based on 
findings in [82] as in case study 3. 

The individual failure rates are computed using different risk functions. Firstly, a 
positive linear risk function has been chosen for measurements 1,2, and 4 and a 
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negative linear risk function for measurement 3, because a decreasing BDV 
indicates a declining condition and increased probability of failure. For 
measurement 5, a non-linear risk function has been chosen because an abrupt 
increase of the TCG is associated with a higher probability of failure. The results of 
the 12 power transformers are depicted in Figure 12 a.) and b.). Secondly, the 
cumulative risk function is assigned to all covariates and the results are depicted in 
Figure 12 c.) and d.). 

 
Figure 12: Estimated individual failure rates with suggested risk functions over the time period 2002 to 2015. 
a.) Individual failure rates for transformers 1-6 with a positive linear risk function for measurement 1, 2, and 4, 
a negative linear for measurement 3, and the non linear risk function for measurement 5. b.) Individual failure 
rates for transformers 7-12 with a positive linear risk function for measurement 1, 2, and 4, a negative linear 
for measurement 3, and the non linear risk function for measurement 5. c.) Individual failure rates for 
transformers 1-6 calculated with the cumulative risk function for all measurements. d.) Individual failure rates 
for transformers 7-12 calculated with the cumulative risk function for all measurements. 
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4 Conclusion and Future Work 

4.1 CONCLUSION 

This report has the objective to improve the accuracy of failure rate modelling for 
enhancement of power system reliability assessment tools such as maintenance 
optimization. Primarily, this is achieved by addressing the three research objectives 
presented in section 1.5. 

The first objective is the investigation of the impact of risk factors or explanatory 
variables on the failure rate of power system components, which includes [24-26]. 
Depending on how failures are defined and recorded, regression models such as 
Cox regression and regression models for count data are applied to investigate the 
failure rate and ROCOF of a disconnector and circuit breaker population. The 
studies show that preventive maintenance, remote control availability and the 
disconnector and circuit breaker type, among others, have a significant impact. 
Quantifying these effects by using regression models, the failure rate can be more 
precisely modelled based on external and internal risk factors but also component 
characteristics. Therefore, the first research objective provides enhanced 
understanding of the risk factors and the results can be used to gain higher failure 
rate accuracy. 

One result of [27] is that statistical data driven methods are still rarely applied in 
the power system domain due to the lack of failure data. Addressed by [27], the 
second research objective reviews the literature for methods and risk factors that 
have been frequently used in the power system domain for failure rate modelling. 
Primarily, the environmental impact in form of the weather is modelled. The 
exponential and Weibull distribution are still the most commonly used models to 
model the general ageing. Furthermore, the importance to distinguish between 
population and individual failures rates is demonstrated by an illustrative 
example. This shows the necessity to develop a method which is able to estimate 
the failure rate on an individual component level, in spite of the limited failure 
data.  

The third research objective is the development of such a method to calculate 
individual failure rates by using the population failure rate, failure statistics, and 
condition monitoring data. This development is presented in [28, 29]. The general 
suitability of the method is demonstrated in time-independent context in [28], 
whereas [29] presents the method for time-dependent cases, providing a more 
strict formulation, introducing into the concept of risk functions, and presenting 
the prediction of individual failure rates. Both case studies present accurate results. 
Moreover, the individual failure rates are validated on actual failure data in a time-
independent setting in section 3.3.3. The results show that the individual failure 
rates deliver accurate estimates and could be used for failure classification with 
similar accuracy to health indices based on expert knowledge. Overall, the 
proposed method satisfies the necessity to estimate the risk of new components 
where little historical data is available. Even though more data might become 
available by the use of more Smart Grid technology and data records, power grid 
operators, particularly transmission system operators, have an interest to replace 



 INDIVIDUAL FAILURE RATE MODELLING AND EXPLORATORY FAILURE DATA ANALYSIS FOR POWER SYSTEM COMPONENTS 
 

55 

 

 

 

their components with a safety margin. Thus, failure data will constantly be rare 
and the individual failure rate method, a useful tool.  

4.2 FUTURE WORK 

Generally, the exploratory failure analysis should be applied to more power 
system component types. Moreover, to gain a better understanding of if the 
findings in [24-26] are of a general nature rather than particular results of the case 
studies alone, more disconnector and circuit breaker populations should be 
examined as well as other component types. Since the applied regression models 
required different data types, a comparison between these methods with particular 
focus on power system components would be of value. This gives a better 
overview on which failure and condition monitoring data must be actually 
recorded over time.  

The individual failure rate method, however, should not solely be applied to more 
component types, but also suggests further improvement in form of a larger set of 
risk functions. Moreover, there is the need of better importance quantification of 
condition measurements and more population data is required to further validate 
the method in a time-dependent setting. Thus far, the historical stress and load is 
considered in the actual condition measurement of the component, however, the 
current load should be considered in future applications as well. 
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INDIVIDUAL FAILURE RATE  
MODELLING AND EXPLORATORY 
FAILURE DATA ANALYSIS FOR  
POWER SYSTEM COMPONENTS 
This report presents how the failure rate accuracy can be improved despite  
limited failure data available to improve maintenance optimization. 

Firstly, regression models are applied which can be used to model, predict, and 
characterise the failure rate and failure intensity for power system components. 
These are applied to two case studies of disconnector and circuit breaker failure 
data. 

The results contribute to an improved modelling of the failure rate on indivi-
dual level but also improve the understanding of risk factor’s impact on compo-
nent failures. However, the aforementioned regression models have rarely been 
applied in the power system domain due to the limited failure data. 

Secondly, the report presents a method to calculate and predict individual  
failure rates despite the limited occurrence of actual failures which is of parti-
cular advantage for new components.
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