

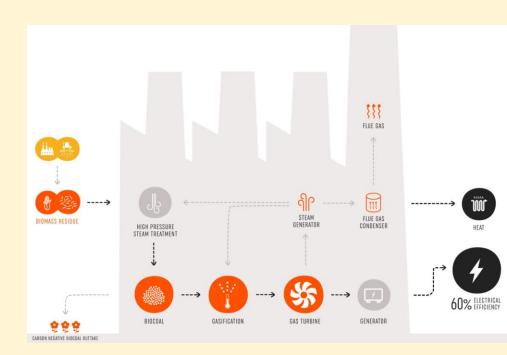
High temperature corrosion during gasification of biomass and waste

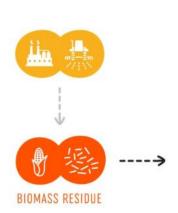
Rikard Norling

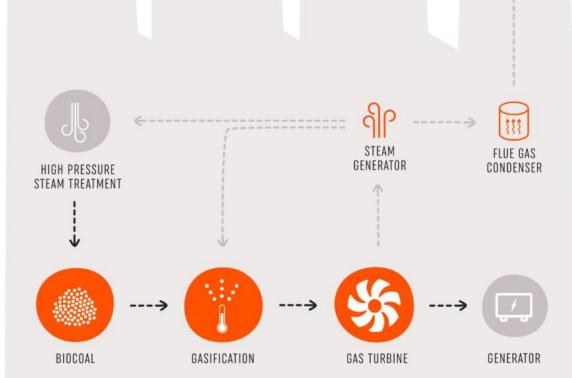
12.03.2019

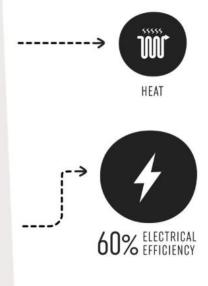
High temperature corrosion during gasification of biomass and waste

Background - Gasification


- Use for heat and power production
- Use for producing synthesis gas (CO/H_2)



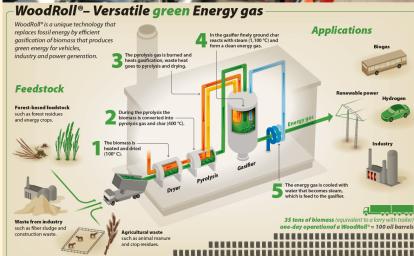

The technology by Phoenix Biopower


Use for heat and power production

- High-pressure steam treatment and gasification of biomass
- Combustion in a gas turbine for power generation
- Optimised heat integration

\$\$\$

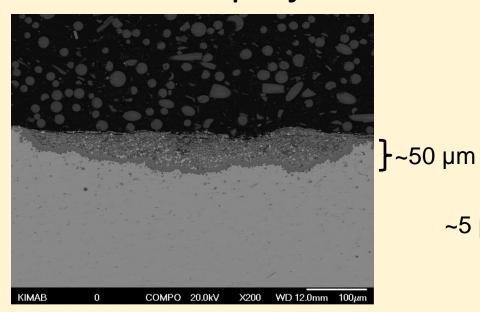
FLUE GAS



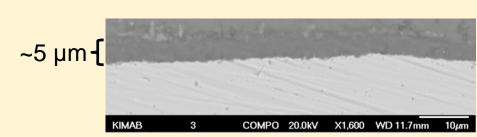
The technology by Cortus Energy

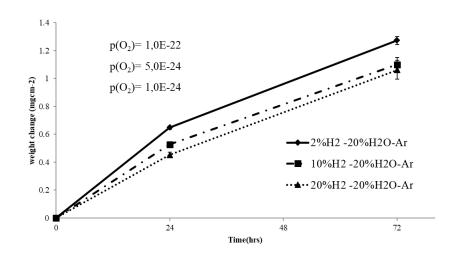
 Use for producing synthesis gas (CO/H2)

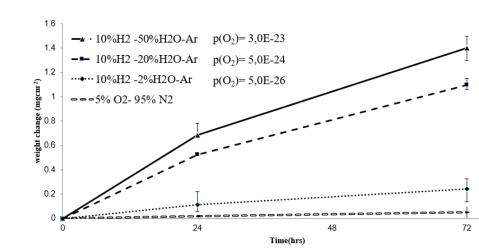
- Pyrolysis converts biomass into pyrolysis gas and char
- Pyrolysis gas is combusted to generate heat for the gasification
- Gasification of char with steam


WoodRoll®- Versatile green Energy gas WoodRoll® is a unique technology that **Applications** replaces fossil energy by efficient In the gasifier finely ground char gasification of biomass that produces reacts with steam (1,100 °C) and form a clean energy gas. **Biogas** green energy for vehicles, The pyrolysis gas is burned and industry and power generation. heats gasification, waste heat goes to pyrolysis and drying. Feedstock Renewable power Hydrogen Forest-based feedstock During the pyrolysis the such as forest residues Energy gas biomass is converted into and energy crops. pyrolysis gas and char (400 °C). The biomass is Industry heated and dried (100° C). Gasifier pyrolysis The energy gas is cooled with Dryer water that becomes steam, which is feed to the gasifier. **35 tons of biomass** (equivalent to a lorry with trailer) Waste from industry one-day operationof a WoodRoll® = 100 oil barrels such as fiber sludge and Agricultural waste construction waste. such as animal manure and crop residues.

- Material exposures have been made in the Cortus' gasifier in Köping
 - Very high temperature, ~1100 °C
- Biomass-based feedstock




310 S – Deep corrosion attack



Kanthal APM – Thin Al oxide layer

- Lab exposures at Chalmers
- The effect of H₂ and H₂O

- Lab exposures at Chalmers
- The effect of H₂ and H₂O

- Marginal chromia formers, e.g. 304L, can be subject towards accelerated corrosion in low oxygen activity environments.
- Breakaway may be triggered by a deep chromium depletion of the alloy substrate.
- The chromium depletion was deeper in H₂-H₂O environment than it is in, e.g. dry O₂, because the pure chromia scale formed in H₂-H₂O environment grew faster than the (Fe_x,Cr_{1-x})₂O₃ scale formed in air and dry O₂.

The present new project - Contents

Research on high temperature corrosion in plants for gasification of biomass and waste

- Material degradation by oxidation, corrosion and/or carburisation in environments with low oxygen activity
 - Studies of influence of the gas environment and/or of corrosive deposits
 - Studies of the relation of the degradation attack to alloy type (Fe-base or Ni-base), alloying elements, microstructure and/or oxide type (chromia or alumina)

The present new project - Contents

A number of important research topics of particular interest have been identified. These include the following that may be addressed in the project:

- Influence of very high water content in the gas (~ 60 vol.%)
- Influence of very high temperatures (~ 900-1100 °C)
- Influence of KCl at intermediate temperatures (~ 400-500 °C)

Thank you for listening!