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Project aim:

carry out research on high temperature corrosion during combustion of
biomass and waste in order to help solve a number of corrosion problems
which restrict the development of more energy efficient processes and technologies.

increasing the predictability of corrosion attacks and component life.
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Energy policy targets for Sweden

@ Ba  The future role of Bioenergy

More total Biomass
utilization

Swedish

Ene: Agenc)
R « Base load power

« Local small scale CHP

* Important complement to

variable electricity
sources

Swedish
Energy Agency
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1996 - 2018

Understanding of
corrosion mechanisms

Multiple analytical
approach

Intelligent
exposures
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New approach!

Mechanisms
Modelling
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approach
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New approach!

- Thermodynamic modelling Sedi

- Model alloys — systematic studies of different oxidation
modes

- Microscopy — mechanisms AND input to modelling
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Boiler applications q
= =
(ol R
il
Equilibrium calculations using FactSage:

master thesis from Boras university,
Naime Vali

- FF o

Sulfur Recirculation in a Waste-to-Energy plant

Mechanisms
Modelling

Model
environment

investigation af high-te
using the CALPHAD approach
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Low
alloyed
steels

Mechanisms

Modelling Temperature

Stainless | Chromium

Environment

FeCrAl

Alumina
alloys
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Oxidation

mode

Primary protection

/ \

Protective Break down

/

Self healing

Team up Experimental And Modeling Work
on Oxidation Reaction Kinetics
TEAMWORK
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T. Jonsson, CTH, L. Mikkelsen, B&W Vélund, T. Helander, SHT, M
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Primary protection:
Stainless steels — FeCrAl alloys

M Measured thickness

& - [Mcalculated from mass gain

Oxide thickness (m)

0 T T T T T T T T
‘/GD\' 0 1 2 3 4 5 6 7 8 9
S g Time (s)

Cr oxidation at 600 °C

Ref: Jonsson, T., et al. 2013.

References:
Hallstrom, S., et al., 2013.
Pujilaksono, B., et al., 2011.
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How to model high temperature corrosion Sedi Bigdeli

The effect of crack formation Amanda Persdotter

The effect of alloying elements Johan Eklund _

KCI on the effect of secondary protection & GB’s Julien Photer Primary

Secondary

Mechanisms
Modelling
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Calphad: CALculation of PHase Diagrams

Calphad software minimize the total Gibbs energy for the system
under the defined conditions to find the equilibrium.

They collects thermodynamic information from databases which
contain Gibbs energy for each phase.

_ Thermo-Calc /4 Software
There are different Calphad-based software:

Thermo-Calc/Dictra/TC-prisma, Factsage, Pandat, etc.
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Background - examples

Calphad calculations can be
used for both analysis of the
problem/results and
predict/design materials
properties!




UNIVERSITY OF TECHNOLOGY

CHALMERS f@ The High Temperature Corrosion Centre

rediction model
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Developed tools in Teamwork project

We created a strong computational platform for thermodynamic/kinetic modelling
of high temperature oxidation.
Equilibrium calculations to understand

/ microstructure

Our current tools
can be used in Example: understating the nature of

different ways: primary protective layer in FeCrAl
model alloys using Thermo-Calc
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Equilibrium calculation in Cr-Al-O system
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Developed tools in Teamwork project

We created a strong computational platform for thermodynamic/kinetic modelling

of high temperature oxidation. Example: calculate and predict the

oxide thickness of primary and
secondary protective layers using
Dictra

Diffusion simulations to predict the phase
transformation’s kinetic and products,

Our current tools
can be used in

different ways:
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Modelling strategy - Primary and secondary protection
FeCrAl alloys
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Ref: Jonsson, T., et al. 2013.
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Secondary protection in FeCrAl alloys

a9 501 5f o Vgt T Inward spinel
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Developed tools in Teamwork project

We created a strong computational platform for thermodynamic/kinetic modelling
of high temperature oxidation.

Example: calculate possible phases and

flux of different species to explain the
Our current tools inward spinel formation in secondary
can be used in protection using Thermo-Calc

different ways:

\ Equilibrium calculations to predict possible
phases and explain the process,
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Equilibrium calculations for inward spinel

Fel0Cr3Al

~ 54 ym

Equilibrium calculations for
all model alloys:

master thesis Kiran Mayee;
Poster today!
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Developed tools in Teamwork project

We created a strong computational platform for thermodynamic/kinetic modelling
of high temperature oxidation.

Example: calculate possible phases
formed during real processes in boilers

Our current tools using FactSage

can be used in
different ways:

\ Equilibrium calculations to predict possible
phases and explain the process,
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Boiler applications

:
I y

S0, reacts with corrosive
alkali chlorides to non-
corrosive alkali sulfates

SO, + H,0, - H,S0,
§
Hydrogen Peroxide scrubber
+ Sulturic Acid

sulphur recirculation in a bio plant

Sultur-
Recirculation

Slide Show  Programs Tools About

gl Equilibrium calculations

Yoge 7.2 U using FactSage:
master thesis from
Boras university, 1§
Naime Vali, poster g
today! '

iscosil
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Conclusions

» We can use computational thermodynamics to predict and understand the
oxidation.

» We can also use our experimental knowledge to improve efficiency of our
modelling.

We can build a strong bridge between experiment and modelling
for the complicated phenomenon of multicomponent oxidation to
design new materials and work towards predicting service life!
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Waterwall corrosion T2 [Fe &t Mn Mo P S
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Conditions:

* Low alloyed steels: Fe-2.25Cr-1Mo (T22)
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» Relatively low temperatures (<(400 °C ﬂ ﬂ
* High levels of: %DJ

% chlorine(KCI, HCI)

< alkali (K, Na)

» heavy metals (Pb, Zn)
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How is this studied?

Mass gain study

* TGA (kinetics) P Primary regime .
° Initiation(24 hOUf'S) Protective Break down
4
Self-healing Secondary regime
4 N
T
Furnace
Sample : /
. 5% O, + 20% H,0 + N,

[ o Secondary (KCl): Ref. + 0.1 mg/cm2KCI(s)



CHALMERS

UNIVERSITY OF TECHNOLOGY

Mass gain study

e Parabolic growth

- diffusion
« Gro lﬂ

controlled

(global k,?)

. Deviation from parabolic

- ot
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L4
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How is this studied?
Mass gain study =P Microstructural investigation

* TGA (kinetics)
* Initiation(24 hours)

Outlete——— "‘_“ ::" fm—
T i
/8
Furnace ‘\;\‘ N £

SIS .Z‘j sﬁi :
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What causes the transition?
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What causes the transition?

* Cracks form during oxide growth? M

whiskers

e Local corrosion attack?

 Delamination / lateral cracks
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What causes the transition?

e Cracks form during oxide growth? M

e Local corrosion attack?

 Delamination / lateral cracks

= Global? M

= During oxide growth? M
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e g8 s
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How to model high temperature corrosion Sedi Bigdeli

The effect of crack formation Amanda Persdotter

The effect of alloying elements Johan Eklund _

KCI on the effect of secondary protection & GB’s Julien Photer Primary

Secondary

Mechanisms
Modelling

Tertiary

Collaboration between projects:
HTC1a — Critical Corrosion Phenomena
TEAMWORK

KME 709, 711, 720
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Challenges with FeCrAl alloys

Temperature Applications
A R : .
An a-alumina scale forms at temperatures 2 CIMMAIRY M rone T N
Heating elements above ~900 °C that protects the gllo cCon drj 'EJ I t&, (,tl.l.)rl
1400°C P y / T
t
1200°C
1000°C
800°C
600°C 9 At lower Temperatures

» Metastable forms of alumina may form

400°C « Not as protective as a-alumina
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Research strategy

Model FeCrAl alloys — tailor made for biomass and waste fired boilers

Investigate effect of Cr content
e  Secondary protection

* Investigate effect of Al content
Secondary protection

* Investigate effect of minor additions of other
elements (RE, Si, etc.)

e Secondary Protection
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Experimental procedure

Al-effect
» Polished samples exposed in TGA system Alloy Fe Cr (wt-%) Al (wt-%)
e 600°C —_
« 48 hours Fel8Cr Bal. 18 0
» K,CO, deposited on surface to break primary protection Fel8CrlAl  Bal. 18 1
) Fel8Cr3Al  Bal. 18 3
» Cross sections of exposed samples prepared (BIB) and analyzed using FeigcréAl  Bal 18 V
Scanning Electron Microscopy (SEM) i
[, _/f:z:tivegas Cr-eﬁ:ect
Alloy Fe Cr (wt-%) Al (wt-%)
Balance 8 TG expOSU re
\ : e Fe5Cr3Al  Bal. 5 3
, e =" FelOCr3Al  Bal. 10 3
silica tube G -
e - Fel8Cr3Al  Bal. 18 3
‘?’ Lo 3 Fe25Cr3Al  Bal. W 3
Q::D f’ — — — — —
fii a ] —
2 L7

Sample . ; : i Exposure time (h)

Heated tube
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Research strategy

Model FeCrAl alloys —tailor made for biomass and waste fired boilers

* Investigate effect of Al content
*  Secondary protection

. nvestigate effect of Cr content

*  Secondary protection

* Investigate effect of minor additions of
other elements (RE, Si, etc.)

»  Secondary Protection
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Kinetics - Cr-effect

7 Cr-variation
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L
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Kinetics - Cr-effect

« No difference in growth rate upon adding 5 or 10 wt% Cr
Cr-variation
sseese Fe5C3Al
5]
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Kinetics - Cr-effect

* No difference in growth rate upon adding 5 or 10 wt% Cr
; Cr-variation ~ . . -
ceeees Fe5CAA + Addition of 18 wt% Cr results in a drastic reduction in growth
rate
6 == == = Fe10Cr3Al » Critical Cr-content between 10 and 18 wt%
== w= [Fe18Cr3Al ﬂﬂ_f.-
5 o
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Kinetics - Cr-effect

* No difference in growth rate upon adding 5 or 10 wt% Cr

; Cr-variation . . . .
essees FE5CBA » Addition of 18 wt% Cr results in a drastic reduction in growth
o= == = Fo10Cr3Al rate N
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= T s?
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Kinetics - Al-effect

« Addition of Al significantly reduces the growth rate of the iron-rich oxide
 Improves secondary protection

; Al-variation

------ Fe18Cr
6 o= e e Fo18Cr1Al

= a= Fol8Cr3Al

5 e Fo18CreAl
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Combined Cr- and Al-effect

Ith lierb 1 1 tecti t 600 °C
as earlier been s ; AI ‘Varlatlon rotection) a

eessss Fe18Cr
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Combined Cr- and Al-effect

. Al-variation

When reaching the critical Cr- N
content, Al addition has a large effect = = Fel8CiA
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The influence of Cr on the secondary protection in
FeCralloys- O, + H,0at600° C

12 +
——Fe
——Fe2.25Cr
10 A —A - Fel0Cr
— -%--Fel8Cr Fe-2.25Cr/Fe-10Cr
NE —%—Fe25Cr
% Fe-18Cr
£
c
.g Pujilaksono, B.,
] Jonsson, T., Heidari, H.
o et al. Oxid Met (2011) 75:
= 183.

0 20 40 60 80 100 120 140 160

Exposure time (h)
* Increased incubation time

|:> Synergistic effects between elements in
e Minor or no influence on secondary FeCrAl alloys
protection
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Research strategy

Model FeCrAl alloys — tailor made for biomass and waste fired boilers

* Investigate effect of Cr content
e  Secondary protection

* Investigate effect of Al content
e  Secondary protection

nvestigate effect of minor additions of o
elements (RE@ etc.)

* Secondary
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Effect of Silicon

 Minor Si-addition greatly reduce oxide growth rate
 Improves secondary protection

Addition of Si

8
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Summary

@ CHA‘E!W Enﬁ ,.m The High Temperature Corrosion Centre
® Possible to largely affect the growth rate of the iron-rich oxide by alters— —

— Reduced material degradation in harsh environments
— Reduced dependence on primary protection (chromia/alumina)

Conclusions

)
» Formation of fast-grawing orice [Secondary
protection]

® Synergistic effects between Cr and Al
— Critical Cr content has to be exceeded to achieve beneficial effect] === I e

= tering the sloy compositian may hve gt efectz on ~  For producing a reliable fifetime prediction model
it

— Minor or no effect of Cr-addition on the secondary protection in th / E,pexn.a.,,mdedu,e \

Thermobalance

“ ()
B PR~
® Understanding how alloying elements affect the oxidation rate is|==::" ~ f::ﬁ:m( '[”
reliable lifetime prediction model "’*"“‘““f‘liéc?ﬁii%?léy

® Minor Si-additions has great influence on the growth rate of the iron-ri(:

J

Microstructural investigation
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How to model high temperature corrosion Sedi Bigdeli

The effect of crack formation Amanda Persdotter

The effect of alloying elements Johan Eklund _
Primary

KCI on the effect of secondary protection & GB’s  Julien Phother

Secondary

Mechanisms
Modelling
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Primary protection

/ \

Protective Break down

/ N

Self healing |"Secondary protection

/ N\

Protective Break down
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Secondary protection
304L - 600 °C - SRF boller

Flue gas temperature ~750 °C
Concentration KCI+NacCl in flue gas: ~100 ppm

24 hours
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500 pm
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KClI source

100 um
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Primary protection
«Tertia

Break down
/ ?
‘ Secon%wy protection ]

N\

Protective } [ Break down }

» regime

/

Protective

Self heali
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Role of chlorine in accelerated corrosion

CHIGHN SEBMRS TRIN K & RUREIRS) & Y N a S plaBls s sif ISt o>
mechanisiestrely R Bhalormstio eseRditgorrosion

24th of April — 10:00 am
Chalmers University of Technology
Chemistry and Chemical Engineering building
10:an

Merddéalenthmal @antiitaeOgaz
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IS it
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https://www.tescan.com/
en-us/technology/gaia3

3D EDX reconstruction showing corrosion through Cr plating on steel
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How to model high temperature corrosion Sedi Bigdeli
The effect of crack formation Amanda Persdotter
The effect of alloying elements Johan Eklund _
KCI on the effect of secondary protection & GB’s Julien Photer Primary

Secondary

Mechanisms
Modelling
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Corrosion rate

v

D "’

Life time of component
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Energy policy targets for Sweden

e T e sion during combustion of
number of corrosion problems

@ @ The future role of Bioenergy °S.

More total Biomass

, utilization
+ Base load power

increasing the predictability of corr s Loga] smallscale CHP

* Important complement to

variable electricity
sources

SANDVIK| £ .. Sumitomo
& < SHE EW

KANTHAL  Valmet > Qs

Part of Sandvik Group
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Future work

* Improve the understanding of the mechanisms

- - The
* Cr-, Al- and Si-effects in FeCrAl alloys High-Temperature
» Synergistic effects in FeCrAl alloys Corrosion Center
- .u‘/ﬂ--' -
femmrzz T TTTITTC0 P il

Microstructural analysis

/i Thermo- Calc.
4255, Sofows

Modeling: _ _ St
. . Basic calculation procedure

Thermodynamic calculation

Kinetic simulations

Expaosure time (h
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