



## HTC Project 2a

New corrosion resistant materials for challenging process environments – low oxygen activities and very high temperatures

Presented by LG. Johansson and C. Geers



## **Project Organization**

- Project leader: LG Johansson, Chalmers
- Companies:





- Researchers in HTC: LG Johansson, JE Svensson, M Halvarsson, I Panas, C Geers, M. Sattari I. Panas Loli Paz (all Chalmers) Post-Doc: N Mortazavi, Chalmers/Monash
- PhD students: V.Babic, T. Sand

## Project plan

- Project Goals:
- Investigate the nitridation and carburization of high temperature alloys and the RE effect with the aim to formulate new strategies for developing alloys with superior ability to resist challenging environments and extreme temperatures
- Materials:
  - Alumina-forming alloys
  - Chromia-forming alloys

## Background

- Materials that can withstand process environments at very high temperatures without failing due to corrosion are necessary in, e.g., steel production, in thermal treatment of metals and ceramics, and in the manufacture of batteries and electronics
- Developing new materials that can withstand higher temperatures and more corrosive environments enables large energy efficiency gains
- Also, new materials with superior ability to resist high temperature corrosion will enable novel energy efficient and environmentally friendly processes and technologies





# Why are low a(O<sub>2</sub>) environments challenging?

- All high temperature alloys rely on the formation of a thermally grown oxide scale (usually Cr<sub>2</sub>O<sub>3</sub> or Al<sub>2</sub>O<sub>3</sub>) which protects the material from further reactions with the environment
- ▶ If the availability of oxygen carriers such as O₂ or H₂O is very low, the protective scale may fail to form or it will be unable to form again if damaged
- The resulting nitridation and/or carburization often limits the service life of components

## Methodology

- Furnace exposures under carefully controlled conditions (a(O<sub>2</sub>), P(H<sub>2</sub>O), T, t) Polished coupons, triplicate samples, Corrosion rate measurements
- Post-analysis of exposed samples to evaluate Corrosion morphology (SEM and TEM investigations on cross sections prepared by broad ion beam (BIB) milling and Focused Ion Beam Microscopy (FIB). SIMS, Auger and TEM provide information about crystal structure, chemical composition and image information down to a few nanometers.

## Methodology

- The combination of furnace exposures and postanalysis gives rise to ideas concerning, e.g., why a protective alumina scale fails in a certain case
- The new ideas are tested by performing <u>First</u> <u>principles calculations</u> on selected processes in the sequence of events that lead to scale failure. The calculations helps us understand and pinpoint processes that are crucial for corrosion behaviour
- Kanthal and Sandvik are responsible for the <u>alloy</u> <u>development</u> work. They also provide the materals, including commercial alloys, experimental alloys and model alloys

## Why study the RE effect?

- All alloys designed for temperatures >800 °C contain small amounts of so called reactive elements (Y, Zr, Hf, Ce, et cetera). The RE additions greatly improve the protective properties of the oxide scale and have been used for >70years. However, after perhaps 4000 scientific papers on this subject there is still no consensus as to the mechanisms behind the "RE effect"!
- During the last contract period (2014 to 2017) HTC made important contributions to this field, revealing the interplay of water and RE element particles on a FeCrAl alloy. The work is highly relevant to nitridation in environments where water is the only oxygen carrier.

### Some recent results on the RE-effect

A study of the early oxidation behaviour of alloy Kanthal APMT in  $N_2 + H_2$  with traces of  $H_2O$ at 900 °C was published in 2018

Kanthal APMT is a powder processed FeCrAl(Y) alloy with excellent oxidation properties



ARTICLES

https://doi.org/10.1038/s41563-018-0105-6

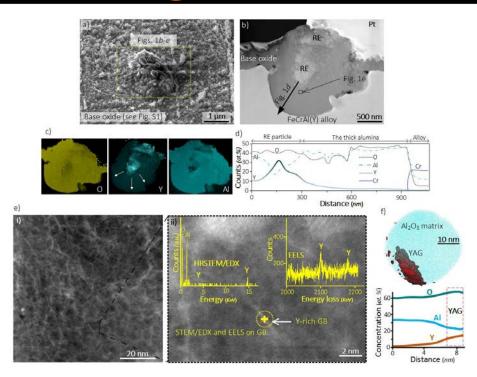
# Interplay of water and reactive elements in oxidation of alumina-forming alloys

N. Mortazavi<sup>1</sup>\*, C. Geers<sup>2</sup>, M. Esmaily<sup>2</sup>, V. Babic<sup>2</sup>, M. Sattari<sup>1</sup>, K. Lindgren<sup>1</sup>, P. Malmberg<sup>0</sup><sup>3</sup>, B. Jönsson<sup>4</sup>, M. Halvarsson<sup>1</sup>, J. E. Svensson<sup>2</sup>, I. Panas<sup>2</sup> and L. G. Johansson<sup>5</sup>\*

High-temperature alloys are crucial to many important technologies that underpin our civilization. All these materials rely on forming an external oxide layer (scale) for corrosion protection. Despite decades of research on oxide scale growth, many open questions remain, including the crucial role of the so-called reactive elements and water. Here, we reveal the hitherto unknown interplay between reactive elements and water during alumina scale growth, causing a metastable 'messy' nano-structured alumina layer to form. We propose that reactive-element-decorated, hydroxylated interfaces between alumina nanograins enable water to access an inner cathode in the bottom of the scale, at odds with the established scale growth scenario. As evidence, hydride-nanodomains and reactive element/hydrogen (deuterium) co-variation are observed in the alumina scale. The defectrich alumina subsequently recrystallizes to form a protective scale. First-principles modelling is also performed to validate the RE effect. Our findings open up promising avenues in oxidation research and suggest ways to improve alloy properties.

igh-temperature alloys have many applications—for example, in jet engines, petrochemistry and materials processing—and are crucial for emerging energy technologies such as thermal solar power and solid oxide fuel cells. If unimpeded, spontaneous reaction with the environment—forming, for example, oxides, nitrides and carbides—would quickly render these alloys useless. Indeed, many industries/technologies depend entirely on materials that can sustain high temperatures without failing due to corrosion. The ability of high-temperature alloys to resist corrosion relies on the formation of a continuous, slow-growing, and adherent surface oxide the oxide scale, jusually consisting of chro-

electrochemical oxide growth has been questioned when water is the oxygen carrier<sup>26</sup>.

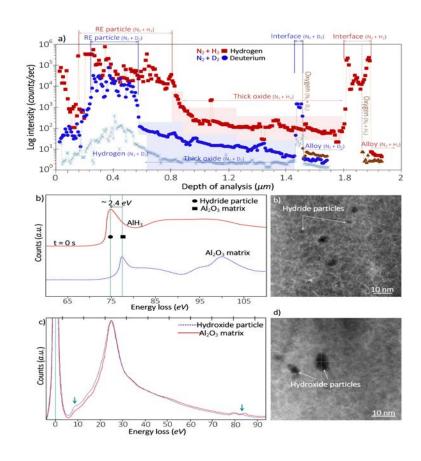

To help design alloys with improved oxidation properties we revisit several long-standing issues in alumina scale growth by combining controlled corrosion experiments with extensive high-resolution analysis and first-principles calculations. Three alumina-forming alloys were exposed in four different environments (O<sub>2</sub>, H<sub>2</sub>O/N<sub>2</sub>, H<sub>2</sub>O/N<sub>3</sub> and D<sub>2</sub>O(N<sub>2</sub>) at 900 and 1000 °C for up to 1000h. We show that the classical scenario with the cathode at the top of the scale does not apply when water is the oxidant. Thus, water is transported across the alumina scale as a formally neutral entity.

The RE element additions in the alloy are mainly present as 5 to 500 nm particles.

The image highlights an Y rich particle at the alloy surface which has become incorporated into the Al<sub>2</sub>O<sub>3</sub> scale, forming an oxide nodule.

While the centre of the nodule consists of Y<sub>2</sub>O<sub>3</sub>, the periphery consists of nanocrystalline, metastable alumina.

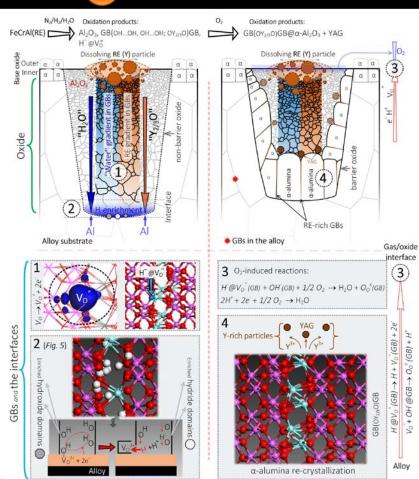
The nano-grain boundaries are enriched in Y<sup>3+</sup>.



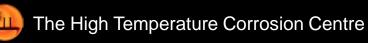

Concentration gradients show that Y<sup>3+</sup> is transported towards the scale /alloy interface, across the "messy" alumina.

The only source of the oxygen neessary for growing  $Al_2O_3$  is  $H_2O$ 

H(D) gradients measured by SIMS show that "water" is also transported across the "messy" alumina


Evidence for both H<sup>+</sup> and H<sup>-</sup> in alumina






Using First – Principles calculations, we discovered a process by which H<sub>2</sub>O and Y<sub>2</sub>O<sub>3</sub> are *jointly transported* along the nanograin boundaries in the messy alumina.

Reaction between Al in the alloy and alumina creates oxygen ion vacancies in alumina that play a key part in the transport



3/19/2019



# Summary

# The High Temperature Corrosion Centre

### What else...

#### Nitridation of FeCrAl

Oxid Met (2017) 87:321–332 DOI 10.1007/s11085-016-9703-3



#### ORIGINAL PAPER

Properties of Alumina/Chromia Scales in N<sub>2</sub>-Containing Low Oxygen Activity Environment Investigated by Experiment and Theory

Christine Geers<sup>1</sup> · Vedad Babic<sup>1</sup> · Nooshin Mortazavi<sup>2</sup> · Mats Halvarsson<sup>2</sup> · Bo Jönsson<sup>3</sup> · Lars-Gunnar Johansson<sup>1</sup> · Itai Panas<sup>1</sup> · Jan-Erik Svensson<sup>1</sup>

#### 3rd element effect

#### **RSC Advances**



#### **PAPER**

View Article Online
View Journal | View Issue



Cite this: RSC Adv., 2018, 8, 41255

## Transition metal attenuated mechanism for protective alumina formation from first principles†

Vedad Babic, 10 \* Christine Geers and Itai Panas

A mechanistic perspective on the growth of protective oxides on high temperature alloys at elevated temperatures is provided. Early, defect rich transient alumina is understood to form by outwards diffusion of oxygen vacancies and electrons. The impact of transition metal (TM) ions (Sc, Ti, V, Cr, Mn, Fe, Co, Ni) on the oxygen vacancy diffusion and electron transport in  $\alpha$ -alumina was studied by employing density functional theory. Activation energies for electron transfer  $E_A(ET)$  between oxygen vacancies in pure as well as TM doped  $\alpha$ -alumina were subject to analysis, and similarly so for the TM and charge dependent activation energy for oxygen vacancy diffusion  $E_A(V_O)$ .  $E_A^{(C)}(ET)$  were found to be  $\alpha = 0.5$  at while 2 at  $\alpha = 0.5$  at was obtained. The higher and lower  $E_A^{(C)}(V_O)$  values correspond to

### Theoretical study of hydrogen in Al<sub>2</sub>O<sub>3</sub>

Electrocatalysis (2017) 8:565-576 DOI 10.1007/s12678-017-0368-8



#### ORIGINAL ARTICLE

Fates of Hydrogen During Alumina Growth Below Yttria Nodules in FeCrAl(RE) at Low Partial Pressures of Water

Vedad Babic 1 · Christine Geers 1 · Bo Jönsson 1,2 · Itai Panas 1

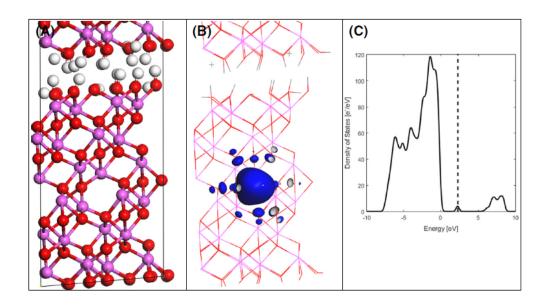
### Oxide scale grains' coarsening

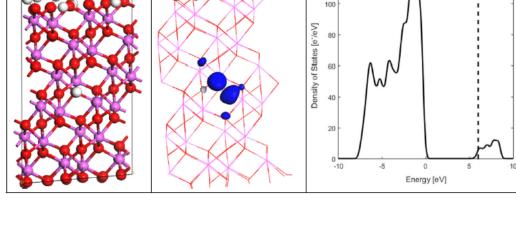
Oxidation of Metals (2019) 91:55–75 https://doi.org/10.1007/s11085-018-9867-0

#### ORIGINAL PAPER



# Impact of Grain Boundary Density on Oxide Scaling Revisited


Christine Geers 1 · Itai Panas 1


Received: 6 February 2018 / Published online: 28 August 2018 © The Author(s) 2018

(C)

### Theoretical study of hydrogen in Al2O3

What to do with the released hydrogen from the oxidation of aluminium by water





Oxygen vacancy in Al2O3 in the vicinity of a hydroxilated interphase creates accessible states at the Fermi level of alumina

Hydrogen can be deposited into the vacancy as hydride

$$\begin{cases} H_2O(g) + (OH)_{11}H@Al_2O_3(V_O)_2(slab) \rightarrow (OH)_{12}@Al_2O_3(H@V_O)_2(slab) \\ H_2O(g) + H^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}_{O,surface} + OH^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}_{O,surface} + 2V^x_O \rightarrow 2OH^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}_{O,surface} + 2H^{\:\raisebox{3.5pt}{\text{o}}}_O \end{cases} \Delta E = -0.26 \text{ eV}$$

# The High Temperature Corrosion Centre

### What else...

#### Nitridation of FeCrAl

Oxid Met (2017) 87:321–332 DOI 10.1007/s11085-016-9703-3



#### ORIGINAL PAPER

Properties of Alumina/Chromia Scales in N<sub>2</sub>-Containing Low Oxygen Activity Environment Investigated by Experiment and Theory

Christine Geers<sup>1</sup> · Vedad Babic<sup>1</sup> · Nooshin Mortazavi<sup>2</sup> · Mats Halvarsson<sup>2</sup> · Bo Jönsson<sup>3</sup> · Lars-Gunnar Johansson<sup>1</sup> · Itai Panas<sup>1</sup> · Jan-Erik Svensson<sup>1</sup>

#### 3rd element effect

#### **RSC Advances**



#### **PAPER**

View Article Online
View Journal | View Issue



Cite this: RSC Adv., 2018, 8, 41255

## Transition metal attenuated mechanism for protective alumina formation from first principles†

Vedad Babic, 60 \* Christine Geers and Itai Panas

A mechanistic perspective on the growth of protective oxides on high temperature alloys at elevated temperatures is provided. Early, defect rich transient alumina is understood to form by outwards diffusion of oxygen vacancies and electrons. The impact of transition metal (TM) ions (Sc, Ti, V, Cr, Mn, Fe, Co, Ni) on the oxygen vacancy diffusion and electron transport in  $\alpha$ -alumina was studied by employing density functional theory. Activation energies for electron transfer  $E_A(ET)$  between oxygen vacancies in pure as well as TM doped  $\alpha$ -alumina were subject to analysis, and similarly so for the TM and charge dependent activation energy for oxygen vacancy diffusion  $E_A(V_O)$ .  $E_A^{(C)}(ET)$  were found to be  $\alpha = 0.5$  at while 2 at  $\alpha = 0.5$  at was obtained. The higher and lower  $E_A^{(C)}(V_O)$  values correspond to

### Theoretical study of hydrogen in Al2O3

Electrocatalysis (2017) 8:565-576 DOI 10.1007/s12678-017-0368-8



ORIGINAL ARTICLE

Fates of Hydrogen During Alumina Growth Below Yttria Nodules in FeCrAl(RE) at Low Partial Pressures of Water

Vedad Babic 1 · Christine Geers 1 · Bo Jönsson 1,2 · Itai Panas 1

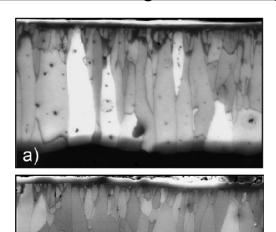
### Oxide scale grains' coarsening

Oxidation of Metals (2019) 91:55–75 https://doi.org/10.1007/s11085-018-9867-0

#### ORIGINAL PAPER

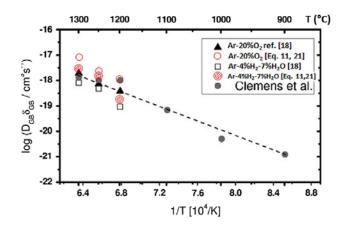


# Impact of Grain Boundary Density on Oxide Scaling Revisited

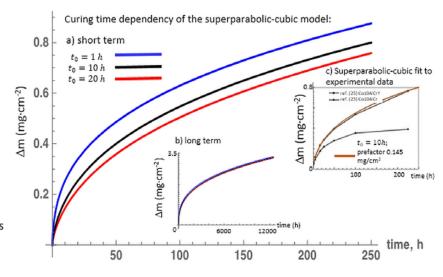

Christine Geers 1 · Itai Panas 1

Received: 6 February 2018 / Published online: 28 August 2018 © The Author(s) 2018

# CHALMERS UNIVERSITY OF TECHNOLOGY

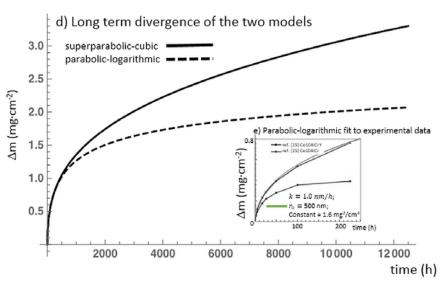

### Grain boundary transport -

How is oxide growth changing with time dependent changing grain boundary density




Young, Naumenko, Niewolak, Wessel, Singheiser, and Quadakkers
Materials and Corrosion 2010. 61, No. 10

 $2 \mu m$ 




Reading and analysis of mass gain data with two mathematical models



Superparabolic – cubic model

 $X \approx k(grains\ coarsening)$ 



Superparabolic – cubic model vs. Parabolic-logarithmic model

 $X \neq k(grains\ coarsening)$ 

# The High Temperature Corrosion Centre

### What else...

#### Nitridation of FeCrAl

Oxid Met (2017) 87:321–332 DOI 10.1007/s11085-016-9703-3



#### ORIGINAL PAPER

Properties of Alumina/Chromia Scales in N<sub>2</sub>-Containing Low Oxygen Activity Environment Investigated by Experiment and Theory

Christine Geers<sup>1</sup> · Vedad Babic<sup>1</sup> · Nooshin Mortazavi<sup>2</sup> · Mats Halvarsson<sup>2</sup> · Bo Jönsson<sup>3</sup> · Lars-Gunnar Johansson<sup>1</sup> · Itai Panas<sup>1</sup> · Jan-Erik Svensson<sup>1</sup>

#### 3rd element effect

#### **RSC Advances**



#### **PAPER**

View Article Online
View Journal | View Issue



Cite this: RSC Adv., 2018, 8, 41255

## Transition metal attenuated mechanism for protective alumina formation from first principles†

Vedad Babic, 10 \* Christine Geers and Itai Panas

A mechanistic perspective on the growth of protective oxides on high temperature alloys at elevated temperatures is provided. Early, defect rich transient alumina is understood to form by outwards diffusion of oxygen vacancies and electrons. The impact of transition metal (TM) ions (Sc, Ti, V, Cr, Mn, Fe, Co, Ni) on the oxygen vacancy diffusion and electron transport in  $\alpha$ -alumina was studied by employing density functional theory. Activation energies for electron transfer  $E_A(ET)$  between oxygen vacancies in pure as well as TM doped  $\alpha$ -alumina were subject to analysis, and similarly so for the TM and charge dependent activation energy for oxygen vacancy diffusion  $E_A(V_O)$ .  $E_A^{(C)}(ET)$  were found to be  $\alpha = 0.5$  at while 2 at  $\alpha = 0.5$  at was obtained. The higher and lower  $E_A^{(C)}(V_O)$  values correspond to

### Theoretical study of hydrogen in Al<sub>2</sub>O<sub>3</sub>

Electrocatalysis (2017) 8:565-576 DOI 10.1007/s12678-017-0368-8



#### ORIGINAL ARTICLE

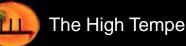
Fates of Hydrogen During Alumina Growth Below Yttria Nodules in FeCrAl(RE) at Low Partial Pressures of Water

Vedad Babic 1 · Christine Geers 1 · Bo Jönsson 1,2 · Itai Panas 1

### Oxide scale grains' coarsening

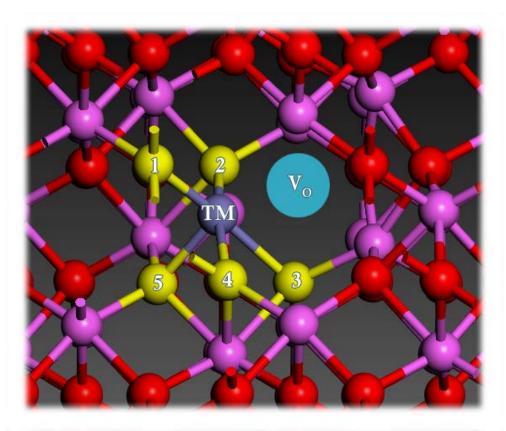
Oxidation of Metals (2019) 91:55–75 https://doi.org/10.1007/s11085-018-9867-0

#### ORIGINAL PAPER




# Impact of Grain Boundary Density on Oxide Scaling Revisited

Christine Geers 1 · Itai Panas 1


Received: 6 February 2018 / Published online: 28 August 2018 © The Author(s) 2018





### Third element effect – Crucial for the formation of a well protective $\alpha$ -alumina scale

- The impact of transition metal (TM) ions (Sc, Ti, V, Cr, Mn, Fe, Co, Ni) on:
  - the oxygen vacancy diffusion
  - electron transport in a-alumina was studied by employing DFT



- Electron mobility during oxidation along grain boundary vacancies is not limiting
- Oxygen vacancy diffusion is rate limiting during oxide growth
- 3d elements such as iron or chromium show different affinities to vacancies
- A high affinity to neutral vacancies can accumulate defects from the nucleating alumina at TM
- lacktriangle  $\alpha$ -alumina formation can allocate its vacancies while growing at TM

# The High Temperature Corrosion Centre

### What else...

#### Nitridation of FeCrAl

Oxid Met (2017) 87:321–332 DOI 10.1007/s11085-016-9703-3



#### ORIGINAL PAPER

Properties of Alumina/Chromia Scales in N<sub>2</sub>-Containing Low Oxygen Activity Environment Investigated by Experiment and Theory

Christine Geers<sup>1</sup> · Vedad Babic<sup>1</sup> · Nooshin Mortazavi<sup>2</sup> · Mats Halvarsson<sup>2</sup> · Bo Jönsson<sup>3</sup> · Lars-Gunnar Johansson<sup>1</sup> · Itai Panas<sup>1</sup> · Jan-Erik Svensson<sup>1</sup>

#### 3rd element effect

#### **RSC Advances**



#### **PAPER**

View Article Online
View Journal | View Issue



Cite this: RSC Adv., 2018, 8, 41255

## Transition metal attenuated mechanism for protective alumina formation from first principles†

Vedad Babic, 10 \* Christine Geers and Itai Panas

A mechanistic perspective on the growth of protective oxides on high temperature alloys at elevated temperatures is provided. Early, defect rich transient alumina is understood to form by outwards diffusion of oxygen vacancies and electrons. The impact of transition metal (TM) ions (Sc, Ti, V, Cr, Mn, Fe, Co, Ni) on the oxygen vacancy diffusion and electron transport in  $\alpha$ -alumina was studied by employing density functional theory. Activation energies for electron transfer  $E_A(ET)$  between oxygen vacancies in pure as well as TM doped  $\alpha$ -alumina were subject to analysis, and similarly so for the TM and charge dependent activation energy for oxygen vacancy diffusion  $E_A(V_O)$ .  $E_A^{(C)}(ET)$  were found to be  $\alpha = 0.5$  at while 2 at  $\alpha = 0.5$  at was obtained. The higher and lower  $E_A^{(C)}(V_O)$  values correspond to

### Theoretical study of hydrogen in Al<sub>2</sub>O<sub>3</sub>

Electrocatalysis (2017) 8:565-576 DOI 10.1007/s12678-017-0368-8



#### ORIGINAL ARTICLE

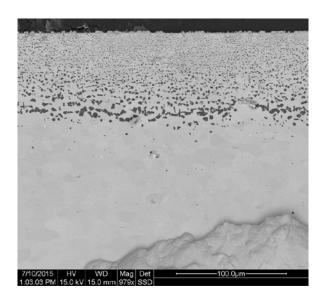
Fates of Hydrogen During Alumina Growth Below Yttria Nodules in FeCrAl(RE) at Low Partial Pressures of Water

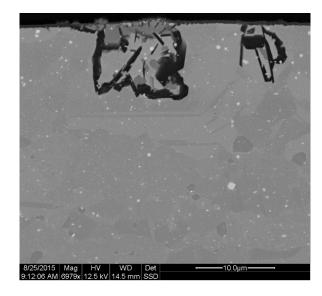
Vedad Babic 1 · Christine Geers 1 · Bo Jönsson 1,2 · Itai Panas 1

### Oxide scale grains' coarsening

Oxidation of Metals (2019) 91:55–75 https://doi.org/10.1007/s11085-018-9867-0

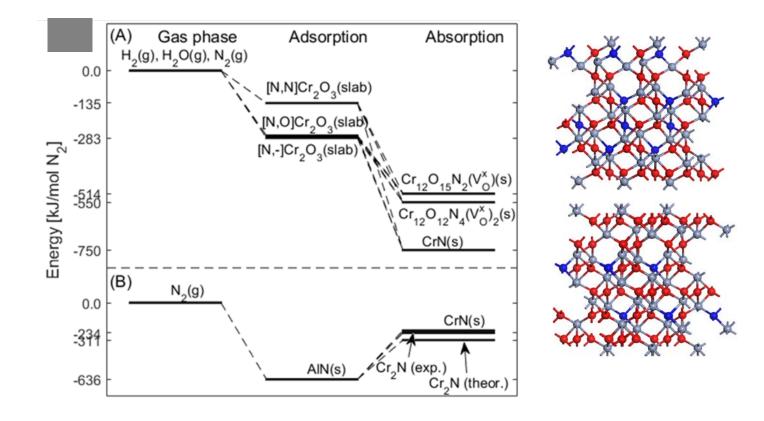
#### ORIGINAL PAPER





# Impact of Grain Boundary Density on Oxide Scaling Revisited

Christine Geers 1 · Itai Panas 1

Received: 6 February 2018 / Published online: 28 August 2018 © The Author(s) 2018





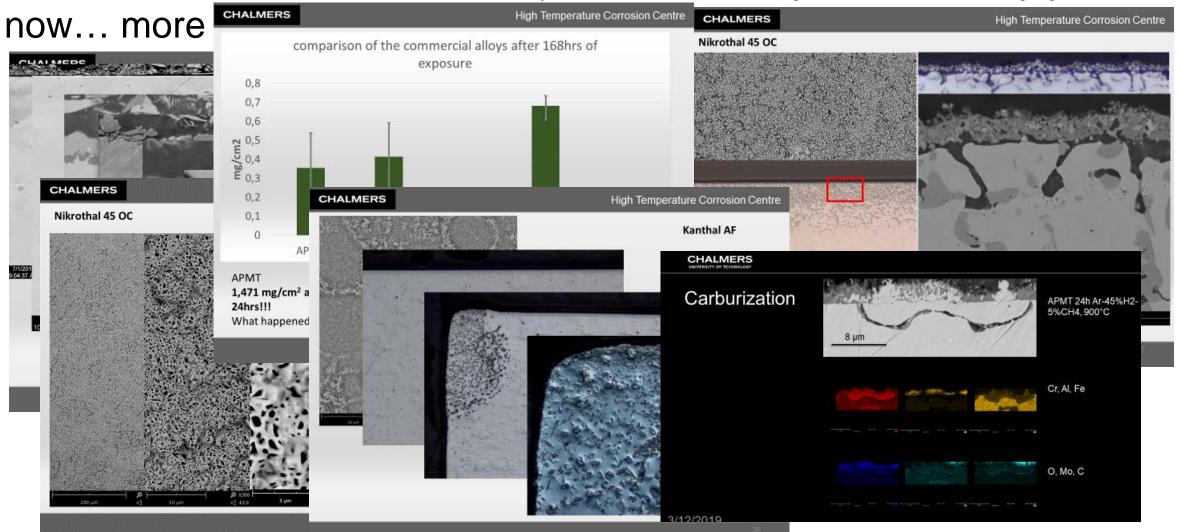



### Nitridation in low pO2 environments on FeCrAls and FeNiCrAls

- Chromia renders surface defects in a continuous alumina scale:
- Chromia is nitrogen transparent under these conditions.





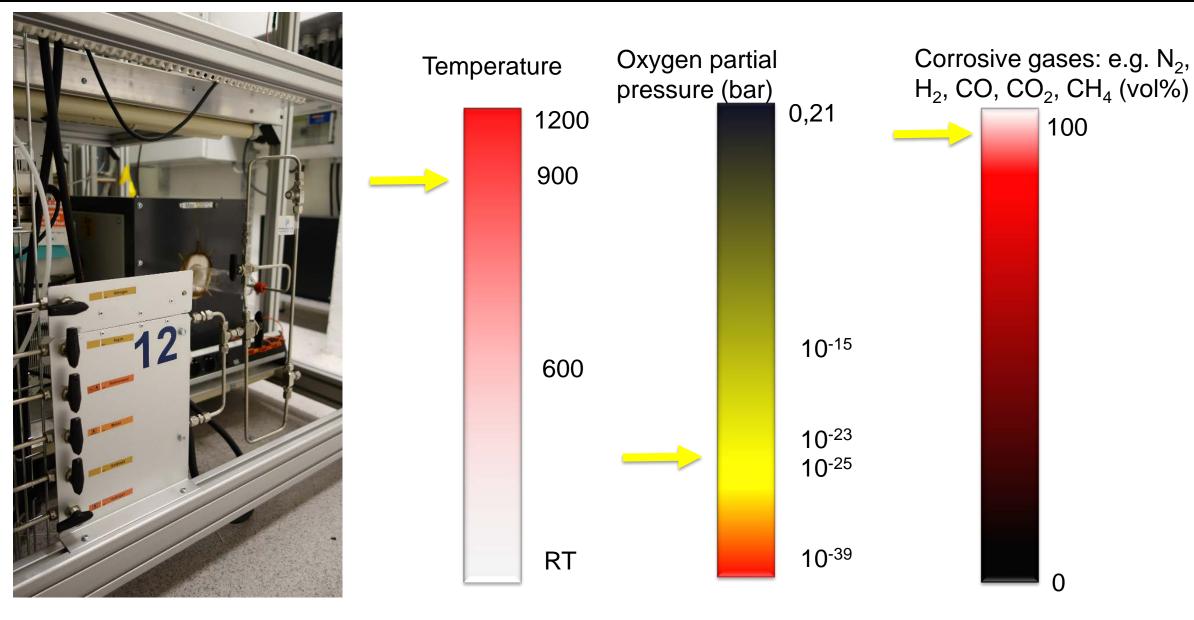

Acknowledgement for the Theoretical work via first principle (DFT):

Prof. Itai Panas

Ph.D. candidate Vedad Babic

# !!! Ph.D. Thesis Defense – 29<sup>th</sup> May 2019, Chalmers !!!

Project output is not yet finished and needs to be put into context of the found models and mechanisms (three manuscripts are in the pipeline








Ongoing laboratory work will constantly improve our understanding

Loli Paz and Tommy Sand 2019 -





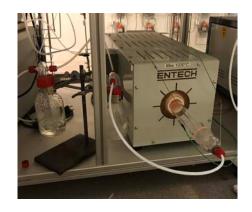
## Exposure settings

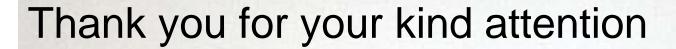
### Materials

#### **Alumina formers:**

- Kanthal APMT
- Kanthal AF
- Nikrothal PM58
- Alloy 197
- Alloy 198

#### **Chromia formers:**


- 253MA (21Cr, 11Ni, Si, Ce)
- 310 (25Cr, 20Ni)
- San31 HT (20Cr, 30Ni)
- 353MA (25Cr, 35Ni, Si, Ce)
- San70 (16Cr, 70Ni)


## **Temperatures**

800°C 900°C 1100°C

### **Time**

1 week 4 weeks







Max (Bill)

Proposition of Diagna, Spair 43

Incommend of States, Spair 43

Incommend of States, Spair 43



# CHALMERS UNIVERSITY OF TECHNOLOGY