URAN (2019-2022)

Uncertainty management in fire Risk ANalyses

29/11/2019

VTT – beyond the obvious

The research is a continuum

Publicly funded NPP safety research programmes 1990 - 2014...

History of fire research projects

- RATU2: PALOTU 1995-1996
- RATU2: PALOTUB 1997-1998
- FINNUS: FISRE 1999-2002
- SAFIR: POTFIS 2003-2006
- SAFIR 2010: FIRAS 2007-2010
- SAFIR 2014: LARGO 2011-2014
- SAFIR 2018: FIRED 2015-2018
- SAFIR 2022: URAN 2019-2022

Scientific and societal impact:

- Advances in fire safety science
- Development of computational tools
- Experts for fire consultant companies
- Professor of Fire Safety Engineering at Aalto

Main topics

- Fires in electrical installations
 - Cable trays
 - Electronics cabinets
- Fire simulation
 - Fire Dynamics Simulator (FDS)
 - Probabilistic Fire Simulator (PFS)
 - Pyrolysis modelling (PyroPython)

	Sixth Edition
	Fire Dynamics Simulator User's Guide
	Kevin MeGrataa Sinne Hortikka Jason Poyd Randall McDernott Marcos Vanetta
	http://doi.org/10.06259/NEST.SP1009
~	NIST Notional butture of Standards and Technology U.S. Dourised of Generat

NIST Special Publication 1019

SAFIR2022

Uncertainty management in fire Risk ANalysis - URAN

Background and objective

Computational tools are routinely used for fire hazard analyses. The overall goals of URAN are to quantify the uncertainties related to the fire growth predictions, and to manage them by developing better models that can serve the safety assessments of nuclear facilities and installations with different lifespans.

Results exploitation and effect on safety

Result	End-user	Timescale
Quantification of uncertainty	Utilities, regulators, all users of fire-PRA	1-4 years
Prediction of ageing effects on the fire behaviour of polymeric materials	Utilities, regulators, all users of fire-PRA, manufacturers of polymeric components	5-10 years
Continuous maintenance of fire modelling tools	Technical support organizations, fire engineering companies subcontracting to utilities	immediate

Resources

- Project manager: Jukka Vaari, VTT
- VTT, Aalto
- 2019: 14 pm and 220 k€

URAN involves fire modelling in molecular, component, and plant scales. 5

Work plan

	2019	2020	2021	2022
WP1 - Fire spread	14	13.5	12	16
T1.1 Fire spread model uncertainty	5	3	3	0
T1.2 User effect analysis by benchmarking	1	0.5	1	0
T1.3 Input uncertainty in real NPP event	0	0	0	4
T1.4 Next generation of cable fire models	3	9	7	11
T1.5 OECD/NEA PRISME3 participation	2	1	1	1
T1.6 Uncertainty propagation through surrogate models	3	0	0	0
WP2 – Fire behaviour of ageing materials		4	4	4
T2.1 Ageing effects of fire retardant materials	2	1	1	1
T2.2 Thermal decomposition of aged materials	1	2	3	3
T2.3 Supporting experimental studies.	0	1	0	0
Total	17	17.5	16	20

Blue – VTT Red – AALTO Green – Both

Sources of uncertainty in fire simulations

Verification and validation

- Verification: Are we solving equations correctly?
 - Is our mathematics right?
 - Are numerical and analytical solutions the same?
- Validation: Are we solving correct equations?
 - Is our physics right?
 - Are model and experimental results in agreement?

Types of validation

- ASTM E 1355
 - 1. Blind (a priori): user is provided with a basic description of the scenario to be modeled. The problem description is not exact; the model user is responsible for developing appropriate model inputs. No experimental results available.
 - 2. Specified ('semi-blind'): user is provided with a complete detailed description of model inputs, including geometry, material properties, and fire description. No experimental results available.
 - **3**. Open (a posteriori): user is provided with a complete description of the scenario to be modeled, including experimental data.

OECD/NEA PRISME

- PRopagation d'un Incendie pour des Scénarios Multilocaux Élémentaires
- Propagation of fire for elementary multi-room scenarios
- Carried out by IRSN, France (Cadarache facility)
- Active participation by several OECD member countries
- PRISME 1: 2006-2011, 7 M€
- PRISME 2: 2011-2016, 7 M€
- PRISME 3: 2017-2021, 7 M€

PRISME 3 research topics

Smoke spread

Fire spread: electronics cabinets

Fire spread: cable trays

PRISME 3 modelling benchmark, step 1

- Fire spread in cable tray, underventilated conditions
- Open simulation

PRISME 3 modelling benchmark, step 1

Simulation	Fire Simulation Software	Institution
CFD 2	ISIS	IRSN
CFD 4	COCOSYS ²	GRS
CFD 5	FDS	NRC
CFD 6	FDS	IBMB
CFD 7	FDS	VTT
ZC 1	SYLVIA	IRSN
ZC 2	BRI2002	CRIEPI

13

PRISME 3 modelling benchmark, step 1

Data points: $y_i = sim$, $x_i = exp$.

Normalized single-point error:

$$\epsilon_{local} = \frac{(y - y_0) - (x - x_0)}{x - x_0}$$

Normalized global error:

$$\epsilon_{global} = \frac{\|\vec{y} - \vec{x}\|}{\|\vec{x}\|} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - x_i)^2}{\sum_{i=1}^{n} (x_i)^2}}$$

PRISME 3 modelling benchmark, steps 2&3

^{29.11.2019} VTT – beyond the obvious

Fire behaviour of ageing materials

- LARGO 2014: Literature review & some experiments
 - General impression: ageing reduces fire risk
- FIRED 2015: Thermal ageing experiments
 - No significant changes in fire behaviour
- FIRED 2016: Radiation ageing experiments
 - TGA & DSC: no significant effects
 - Cone calorimeter: decreased time to ignition, increased peak HRR, increased effective heat of combustion
- "Topic should be studied further" 29.11.2019 VTT - beyond the obvious

Fire behaviour of ageing materials

- Recent review by Vahabi et al, Polym. Int. 64 (2015) 313-328
 - According to the wide range of ageing conditions, polymers and FRs, ageing can lead to a decrease, no change or even an increase in flame retardancy.
 - Irradiation generally increases the peak HRR in cone calorimeter tests
 - Effects suggested but not proven: chain scission, crosslinking, filler degradation, filler migration, interactions between crosslinking agent and fire retardant

Modelling background

SAFIR2018-FIRED

URAN WP2 main idea

VTI

Polyethylene pyrolysis

Free-radical chain mechanism

 \mathbf{k}_{i} \sim CH₂CH₂-CH₂CH₂ $\sim \rightarrow \sim$ CH₂CH₂ $\bullet + \bullet$ CH₂CH₂ \sim Initiation Ρ R,• R_n• kβ \sim CH₂CH₂CH₂• \rightarrow \sim CH₂• + CH₂=CH, Unzipping (UZ) R,• R_p• k_H $\sim \mathrm{CH_2CH_2} \bullet \ + \ \sim \mathrm{CH_2CH_2CH_2CH_2CH_2} \sim \xrightarrow{\mathrm{CH_2CH_3}} \ - \ \mathrm{CH_2CH_2CH_2CH_2CH(\bullet)CH_2} \sim$ R,• Р R.• k_β' \sim CH₂CH₂CH₂CH(•)CH₂ $\sim \rightarrow \sim$ CH₂CH₂• + CH₂=CHCH₂ \sim R,• R_• $\sim \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}(\mathrm{CH}_{2})_{x-4}\mathrm{CH}_{2}\bullet \xrightarrow{k_{1,x}} \sim \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}(\bullet)\mathrm{CH}_{2}\mathrm{CH}_{2}(\mathrm{CH}_{2})_{x-4}\mathrm{CH}_{3}$ R_p• R,∙' k_{β} " $\rightarrow \sim CH_2 \bullet + CH_2 = CHCH_2CH_2(CH_2)_{x-4}CH_3$ R_p•

Random Scission (RS)

Back-Biting (BB)

Polyethylene pyrolysis

Polyethylene pyrolysis

Simulated system: 10 x 9000

Isoconversional methods

 Reaction rate at a constant extent of conversion is only a function of the temperature

Isoconversional analysis

29.11.2019 VTT – beyond the obvious

25

Isoconversional analysis

Oxidative degradation mechanism

Initiation:

- $RH \rightarrow R \cdot + H \cdot$
- $\delta ROOH \rightarrow \alpha R \cdot + \beta ROO \cdot$

Propagation:

- $R \cdot + O_2 \rightarrow ROO \cdot$
- $ROO \cdot + RH \rightarrow ROOH + R \cdot$

Termination:

• $R_1 \cdot + R_2 \cdot \rightarrow R_1 - R_2$

Cross-linking

- $R_1 \cdot + R_2 OO \cdot \rightarrow R_1 O O R_2$
- $R_1OO \cdot + R_2OO \cdot \rightarrow R_1-O-O-R_2 + O_2$

29.11.2019 VTT - beyond the obvious

Radiative initiation Oxidative initiation, with chain scission

First Name Surname firstname.surname@vtt.fi +358 1234 5678 @VTTFinland
@your_account

www.vtt.fi

29/11/2019