

SMHI

Evaluation of seasonal forecasting skill over Sweden

CONPHYDE multimodel

for seasonal streamflow forecasting

Improve the coverage and forecast skill

	Existing	Development
Coverage	Selected catchments	Whole of Sweden at ~10 km ²
Model	HBV	S-HYPE
Initialisation frequency	Monthly	Weekly

Forecast skill

S-HYPE

- Developed since 2009
- ~36000 sub-catchments (average of 10 Km²)
- ~300 variables

Data

Temperature and precipitation data (PTHBV)

- Gridded 4x4 km data
- Interpolated from measurement stations
- Daily resolution

Stream runoff and water level

~350 stations

Station-corrected model
 Best possible forecast initialisation

- Station-corrected model
- Re-analysis period
 To be able to evaluate the results

- Station-corrected model
- Re-analysis period
- Ensemble Streamflow Prediction (ESP) strategy
 - ~ Climatological forecasts

Period	1981 – 2016
Ensemble members	25 random years
Initialisation frequency	4 times a month
Temporal resolution	1 week

- Station-corrected model
- Re-analysis period
- Ensemble Streamflow Prediction (ESP) strategy
- Continuous Ranked Probability Skill Score (CRPSS)
 Similar to the Mean absolute error (MAE) but for probabilistic forecasts

- Station-corrected model
- Re-analysis period
- Ensemble Streamflow Prediction (ESP) strategy
- Continuous Ranked Probability Skill Score (CRPSS) ESP vs runoff climatology (reference)

Forecasting skill Temporal distribution

Lead time

Forecasting skill Spatial distribution (i)

11

Forecasting skill Spatial distribution (ii)

12

Forecasting skill Temporal aggregation

Forecasting skill

Catchment flow indices

- Spatial patterns of forecast skill
- Can forecast skill be coupled with catchment flow indices? E.g. base flow index (BFI):

- Hydrological regionalisation based on 15 flow indices
- Can streamflow predictability be related to hydrological regions based on these indices?

Forecasting skill

Skill vs. hydrological regions

In short

Evaluation of seasonal forecasting skill over Sweden

- Seasonal forecasts with S-HYPE are skilful across Sweden
- Increasing initialisation frequency contributes to keep a high forecast skill
- Streamflow predictability can, to some extent, be coupled with hydrological regions based on flow indices