

Outline

- History of HIP
- Hot isostatic pressing
- The effect of HIP
- The HIP press and system safety
- High pressure heat treatment
- HIP in Additive Manufacturing
- Summary and Questions

The Origin of HIP

- Hot isostatic pressing was developed at Battelle Memorial Institute,
 Columbus Laboratories, Columbus, Ohio in 1955.
- The HIP (originally called gas-pressure bonding) was used in an isostatic diffusion bonding process for cladding of nuclear fuel elements.
- Initially hot wall HIP, max. temperature 830°C & pressure 69 MPa

FIGURE 19. COMPLEX BERYLLIUM PREFORM FORMED BY HIP. INTERNAL HOLE
WERE FORMED BY DEFORMABLE TOOLING

Courtesy of: Prof. Olle Grinder, PM Technology AB (deceased)

Quintus Technologies – the origin

INNOVATION LEGACY FROM 1950

PIONEERING THE INDUSTRY

MATERIAL DENSIFICATION

SHEET METAL FORMING

Hot Isostatic Pressing principles

Isostatic Pressing

- Isostatic pressing is a forming process that applies equal pressure in all directions on a product, compacting the workpiece uniformly from all sides
 - This results in maximum uniformity of density and microstructure without the geometrical limitations of uniaxial pressing
- Hot Isostatic Pressing (HIP) is used to fully consolidate parts at elevated temperatures.
 - Temperatures are usually 500-2,000°C (932-3,632°F)
 - Pressures are usually 100-200 MPa (15,000 to 30,000 psi)
 - Gas used is typically argon

- The densification process is a combination of
 - Plastic deformation
 - Creep
 - Diffusion

Design of Quintus® pressure vessels - Core Technology

Pre-stressed thin-walled cylinder

No pressure

Pressure

- Wire wound vessel gives a reduced footprint whilst decreasing the frequency needed for safety inspections
- The Patented Quintus URC® furnace technology includes a fan or nozzle for forced convection cooling
- High cooling rates allow combined heat treatment cycles

URC® and URQ® are registered trademarks of Quintus Technologies AB

What is Hot Isostatic Pressing used for?

- Densification of products produced by
 - Additive Manufacturing / 3D printing
 - Casting
 - Metal Injection Moulding (MIM)
 - Cladding
 - Diffusion bonding

- Compaction of powder
 - Powder billets
 - Tool steel
 - Near-Net-Shape (NNS)

Courtesy of: MTC Powder Solutions

What does Hot Isostatic Pressing achieve?

- A 100% dense material
- Improved material properties
 - Fatigue
 - **Ductility**
- Reduced scatter in material properties
 - Predictive component life
 - Low weight design
- Decreased scrap loss

The effect of HIP

As-printed material

- Internal defects as-printed
 - Lack-of-fusion porosity
 - Gas porosity etc.
 - Oxides
 - Micro cracks
- Internal defects
 - Stress concentrations
 - Crack initiation points
- Negative influence on
 - Fatigue
 - Ductility
 - Fracture toughness

Effect of pore elimination

- With the pores removed the mechanical properties improve
 - Increased yield and tensile strength
 - Increased ductility
 - Much improved fatigue life, often by 10-100x
 - Lowers the scatter level of the properties
- Improved machined surface quality
- Improved form stability
 - Less thermal stresses
- Lower rejection rates
 - Saves poor quality components

Example: EBM AM 316L

- Powder bed fusion gives relatively high as-printed densities
 - HIP still have a large effect on the fatigue properties

Variations in AM – Build plate position

- Example (EBM T64):
 - Sample position on the build plate =>
 - Variation in porosity

Courtessy of Oak Ridge National Lab

Typical effect on strength

Ultimate tensile and yield strength before and after HIP, for typical nickel-base superalloys.

The scattering decreases 3 to 4-fold

Data courtesy of Howmet Corp.

Typical effect on ductility

Ductility before and after HIP, for typical nickel-base superalloys

The minimum values increase 3 to 4-fold

Data courtesy of Howmet Corp.

Typical effect on fatigue

Fatigue life before and after HIP, for T6 Aluminum alloys

Fatigue life increases 10 to 100-fold

Data courtesy of Bodycote

High Pressure Heat Treatment

Conventional post process of an AM part

Conventional post process of AM

- Stress relieving for removal of part from build plate
- Hot Isostatic Pressing for defect elemination
- Solutionize and quench
- Aging/tempering for mechanical properties

High Pressure Heat Treatment of an AM part

One HIP system can take care of the full post process, which gives:

- Excellent process controll
- Reduced total process costs
- Improved Quality control
- Diminished downtime & leadtime
- Beneficial effects on the microstructure

HIP System productivity - Uniform Rapid Cooling, URC®

Cooling rates: 150-500 °C/min

- URC[®] increases HIP productivity drastically
- With the URC® solution, high pressure heat treatment can be applied directly in the HIP
- With URC®, 50-100% faster cycle times can be achieved

URC® and URQ® are registered trademarks of Quintus Technologies AB

HIP System productivity - Uniform Rapid Quenching, URQ®

Cooling rates: 500-3 500 °C/min

- URQ enables HIP quenching
- Heat treatment steps included in HIP cycle
- Physical properties in the material can be controlled

HIP System productivity - Uniform Rapid Quenching, URQ®

Benefits compared to conventional heat treatment

- Programmable temperature distribution
 - Excellent temperature accuracy during both heating and cooling
- Reduced thermal stresses
 - Low thermal gradient
 - No cracking
- No distortion of complex products or products with different material thickness
- The high pressure remains during quenching
 - Slower phase transformation kinetics in the Fe-C system
 - Delays perlite transformation → lower cooling rate needed
 - Increased hardenability

Thermal stresses salt bath (60s)

Thermal stresses URQ (60s)

Increase productivity in the AM process flow

- ⁰ Removal of stresses created by printing process
- ¹ Removal of porosity and improvement of fatigue resistance
- ² Adjustment of material properties
- ³ For specific alloys

Porous Printing and HPHT = Lean Additive Manufacturing™

L-PBF Ti6Al4V

Print Speed, V _s		Build time	Density	
Standard	100%	24h 8min	99.3%	
High Speed	167%	17h 15min	97.76%	
Improvement	67%	26%		
Cost saving vs c	>50%			

Source: Herzog et al., MRS Spring Meeting 2019, April 22nd–26th, Phoenix

HIP cycle		Cycle time	UTS, MPa	Elong. %	Density
² Stress Relief	(no-HIP) 675°C, 2h, Furnace cool	2h	1049±204	≈4%	99.8%
1,2Standard	920°C, 100MPa, 2h, Furnace cool	8h	900±20	14.5%	99.99%
² Tailored #1	800°C, 200MPa, 2h, URC®	4h 48min	960±12	13.3%	100%
² Tailored #2	950°C, 170MPa, 2h, URQ® + (High Pressure Aging 540°C,1100 bar 4h)	5h 6 min (12h 15min)	1030±10	11%	100%

¹Source: Industrial standard for Titanium ASTM B348, ASTM F3001

URC® and URQ® are Registered Trademarks of Quintus Technologies AB

²Source: Ahlers et al., EuroPM Special Interest Seminar November 2019

Conclusions

- HIP technology provides manufacturers with
 - Control of material properties.
 - Increased productivity with Uniform Rapid Cooling or Uniform Rapid Quenching
- Combining HIP and Heat Treatment
 - Shorter lead times
 - Higher productivity
 - Improved material properties
- Fatigue is greatly improved by HIP
 - EBM and SLM deposited powder gives same results after HIPing
- The yield strength can be increased by a simple optimization of the HIP parameters (pressure, temperature, time)
- Standards/specifications from the conventional manufacturing processes e.g. the casting industry might not be optimal for AM
- If the parts/material are to be HIPed the printing process can be adjusted for this
 - No need to print to >99.5 % density, i.e. print faster!
 - Printing with a larger line off-set also makes the printing process faster!
- With optimized printing parameters for HIP and optimized HIP parameters for AM, the highest strength can be achieved
 - Think <u>HIP</u> from the beginning!!

