

87811Webinar

ENGIE Journey to qualified AM manufacturer

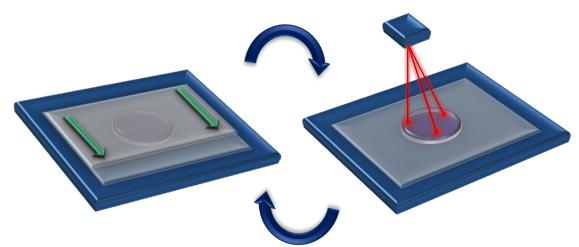
Q

Ensuring and validating selective laser process stability for qualification purposes

Energifosk– 23 September 2020 3dprinting.laborelec@engie.com Steve NARDONE

Additive Manufacturing @ ENGIE

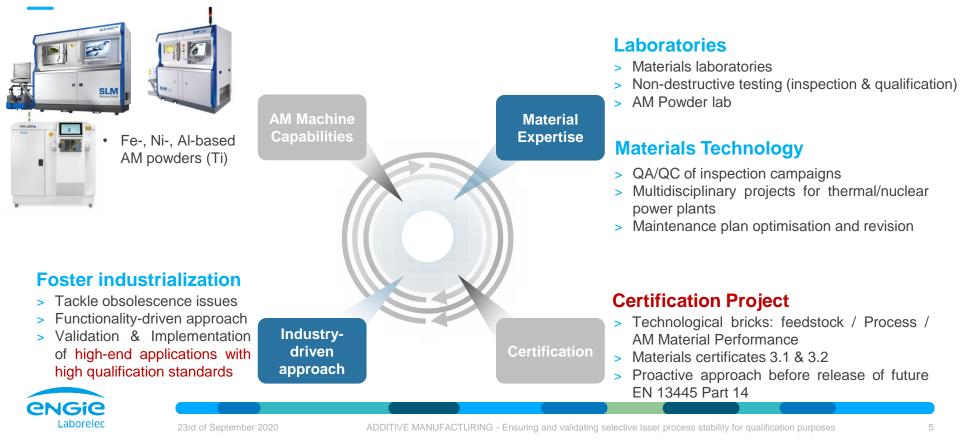
23rd of September ADDITIVE MANUFACTURING - Ensuring and validating selective laser process stability for qualification purposes

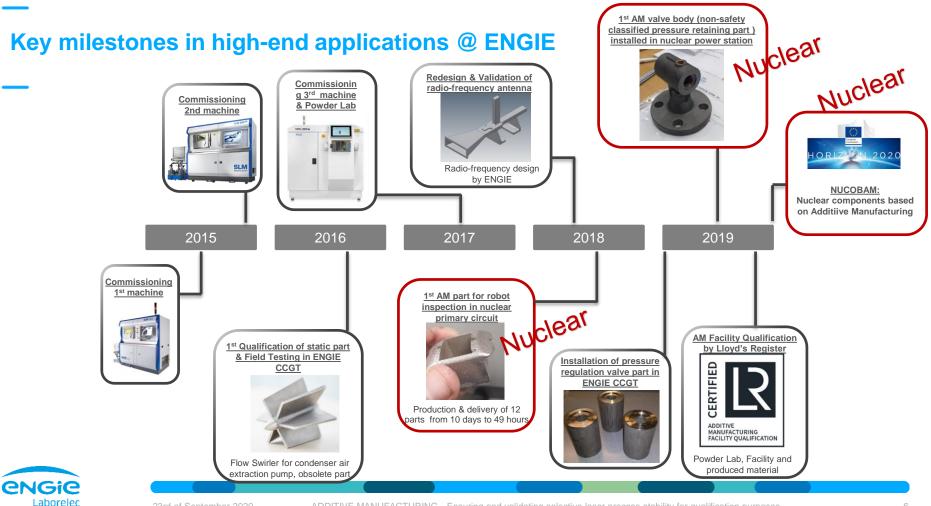

ENGIE Laborelec In a nutshell

- ENGIE Laborelec is a leading expertise and research center in electrical power technology.
- Founded in 1962, the company has over 55 years experience in the power sector.
- ENGIE Laborelec is a **cooperative company** with ENGIE and independent grid operators as shareholders.
- Our competencies cover the entire electricity value chain: generation, transmission & distribution, RES, storage, usage of the energy for the industry and other end-users.
- We put a strong focus on the energy transition and the 3D's : decentralization, decarbonization and digitalization.
- We offer specialized services, R&D and global solutions in each of these domains, to companies in all parts of the world.

This webinar deals exclusively with the Laser Powder Bed Fusion process

Local fusion of successive metal powder layers using a high energy laser.


Simple facts


Production of 10mm-cube using 50µm-layer thickness requires:

- 200 meters of scanned lines !
- 200 layers !
- Fast and local welding process with high heating/cooling cycles

Additive Manufacturing as key enabler for operational excellence Launch of ENGIE AM Expertise Centre in late 2015

23rd of September 2020

ADDITIVE MANUFACTURING - Ensuring and validating selective laser process stability for gualification purposes

Additive Manufacturing Product Quality High-Level Overview

Process Repeatability

- Consistent product quality from build job to build job
- Powder management, storage and reuse

Process Qualification

- Process parameters optimization
- Sensitivity analysis
- Transferability from coupons
 to industrial part

Process Reproducibility

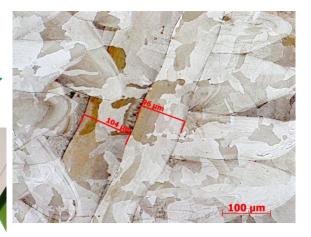
- From machine to machine (same SLM brand)
- From machine to machine (different SLM brand)

Process Stability

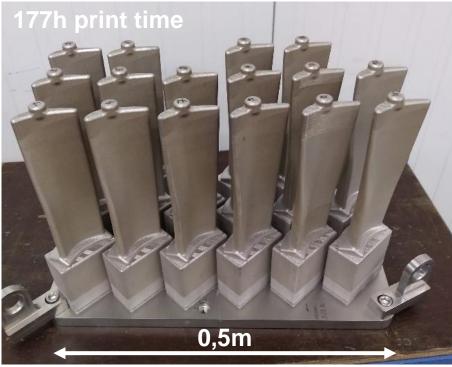
- Consistent product quality throughout the build height
- Consistent product quality on the entire build plate

ENGIE Qualification Approach for Laser Powder Bed Fusion Process

23rd of September ADDITIVE MANUFACTURING - Ensuring and validating selective laser process stability for qualification purposes


Assumptions for this Webinar

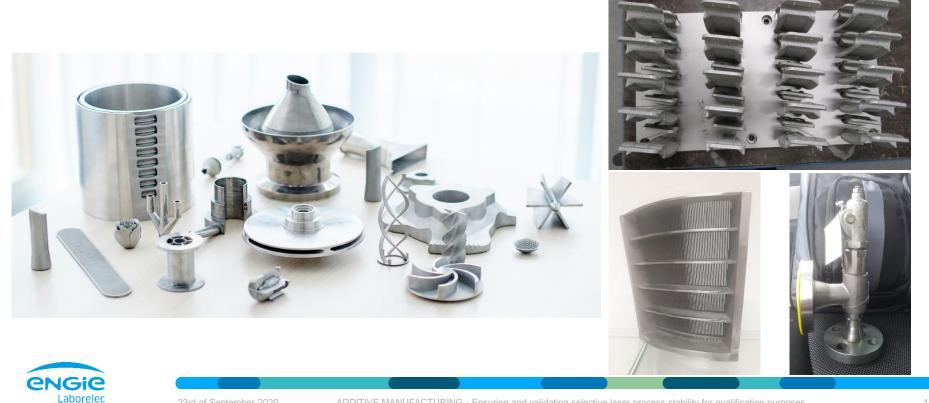
• Optimized laser process parameters already implemented during fabrication


Microstructure ✓ Relative density ✓ Key mechanical properties ✓

Challenges for production of high-end components and large productions runs

Ensuring process stability, quality & reproducibility over the long term for large production runs:

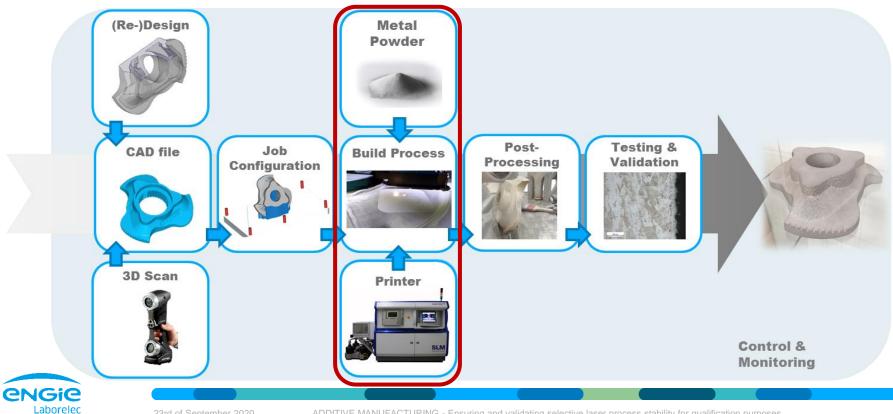
- Large components
- Heavily-loaded build platform



SIN

FATAM Project

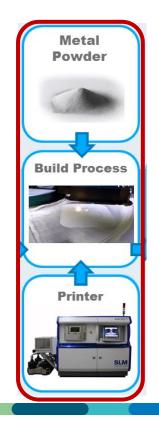
https://www.sim-flanders.be/project/fatam-icon


Challenges for production of high-end components and large productions runs

23rd of September 2020

ADDITIVE MANUFACTURING - Ensuring and validating selective laser process stability for qualification purposes

What can go wrong along the whole value chain ?


23rd of September 2020

ADDITIVE MANUFACTURING - Ensuring and validating selective laser process stability for qualification purposes

What can go wrong along the whole value chain ?

Ensuring process stability, quality & reproducibility over the long term for large production runs :

- Influence of powder batch
- Powder storage & recycling
- Influence of build location
- Influence of build height
- Transferability from coupons to industrial part
- From build job to build job

Material Feedstock for Laser Powder Bed Fusion Standardization & acceptance criteria

ISO/ASTM 52904-19

Additive Manufacturing – Process Characteristics and Performance: Practice for Metal Powder Bed Fusion Process to Meet Critical Applications

ASTM F3049-14

Standard Guide for Characterizing Properties of Metal Powders Used for Additive Manufacturing Processes ASTM F2924-14 Standard Specification for AM Ti6Al4V with L-PBF

ASTM F3055-14a

Standard Specification for AM Ni Alloy UNS N07718 with L-PBF

ASTM F3184-16

Standard Specification for AM Stainless Steel UNS S31603 with L-PBF

ASTM WK62190

AM Feedstock materials Technical specifications on metal powder

But also AMS, AWS, MPFI...

AMS7024

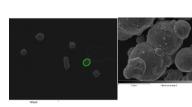
IN718 L-PBF Material Specification

MPIF Standard 28

Method for Determination of Apparent Density of Non-Free-Flowing Metal Powders Using the Carney Apparatus

No quantitative acceptance criteria in ASTM standards for L-PBF powder feedstock, except chemical composition

Material Feedstock for Laser Powder Bed Fusion Standardization & acceptance criteria


Sample Thief

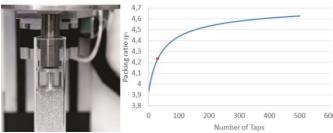
Sample Divider

Particle Size Distribution by Laser Diffraction

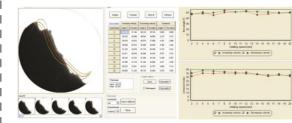
Particle Morphology by

Scanning Electron Microscopy

2 4 6 8


Hall flow, Carney flow and apparent density

Archimedes density testing


Metal Powder Characterization based on ASTM F3049-14

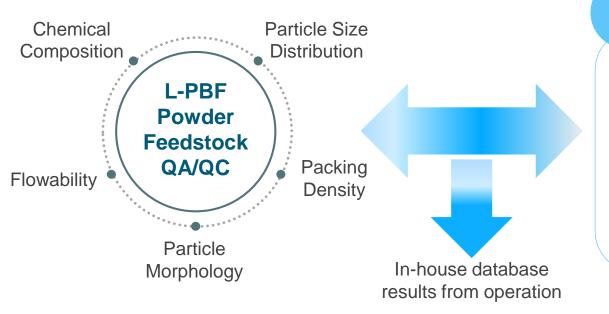
Semi-quantitative chemical analysis

by Scanning Electron Microscopy

Semi-automatized tapped density method producing compaction curve as a function of number of taps for a SLM metal powder

Automated measurements of dynamic angle of repose, providing cohesive index and flowing angles for different shearing stresses

New Metal Powder Characterization Methods


Rheometer, shear cell, wall friction

23rd of September 202

Mechanical

Sievina

Material Feedstock for Laser Powder Bed Fusion Standardization & acceptance criteria

Powder storage (moisture) & traceability

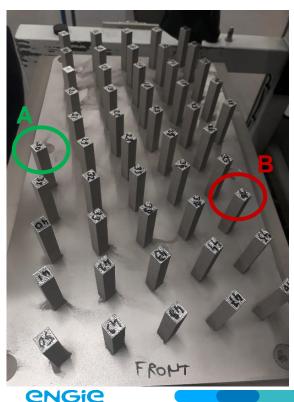
- Batch-to-batch evaluation
- Batch life assessment (recyclability)

<u>GOAL</u>: Correlate AM Powder batch features with processability & AM Material Performance

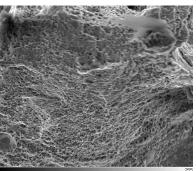
Formulation of Acceptance Criteria / Quality Indicators / Process Window for L-PBF Powders

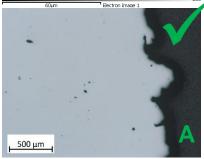
What can go wrong along the whole value chain ?

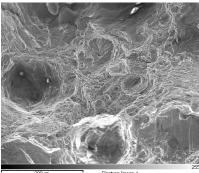
Influence of build location & build height

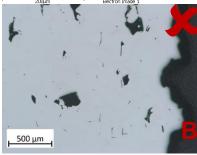

Large quality discrepancy for heavy-loaded platform without careful machine finetuning, even with optimal laser process parameters

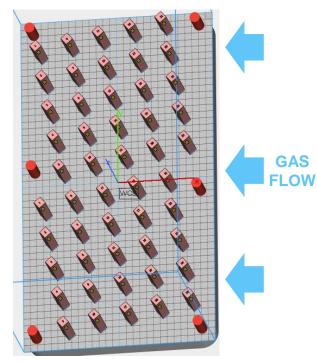
23rd of September 2020


ADDITIVE MANUFACTURING - Ensuring and validating selective laser process stability for qualification purposes


Process Stability Challenge: Homogeneous properties over the platform !


Laborelec


Large quality discrepancy for heavy-loaded platform without careful machine fine-tuning, even with optimal laser process parameters


Impact testing 136 J vs. 16 J

Process Stability Challenge: Homogeneous properties over the platform !

GAS

Charpy V-notch toughness values over the build platform using optimized laser process parameters

	87	70	61	66	32			
	54	74	49	75	47			
	79	76	69	54	61			
	73	77	89	47	35			
	73	33	52	60	45			
76	71	85	78	49				
65	65	92	64	39				
61	82	56	35	42				
58	47	50	25	27				
40	49	33	23	24				
Charpy V patch toughpage in Joula								

Charpy V-notch toughness in Joule

23rd of September 2020

Process Stability over build height & Process Transferability

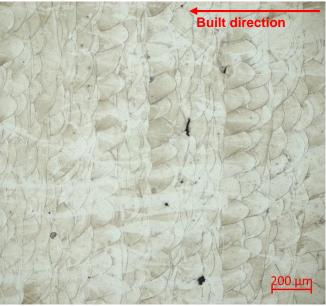
Full height samples

 Process Stability
 Consistent product quality throughout the build height

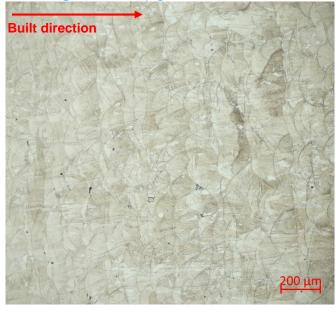
	107	108	104	109	108
	110	109	103	115	128
	104	111	104	135	140
	100	102	114	133	76
	113	106	87	121	55
112	111	109	112	118	
107	106	97	118	99	
111	118	112	142	85	
106	108	111	114	132	
104	102	110	116	130	

Big blocks

 Process Qualification
 Transferability from coupons to industrial part



	yield strength (MPa)	tensile strength (MPa)	elongation (%)	reduction of area (%)
average	434	571	45.8	59.9
stdev	18	26	6.5	11.1



Process Stability over build height & Process Transferability Microstructure

Before gas flow upgrade

After gas flow upgrade

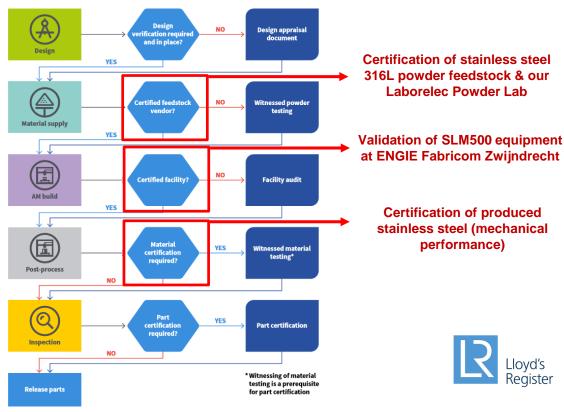
After gas flow upgrade and corresponding parameter optimisation, the visible melt pools after etching seem to be less pronounced and more homogeneous in size

ENGIE Certification Project

Successful ENGIE Facility and Powder Lab Certification by Lloyd's Register on 10.09.2019

- Technological bricks:
 - Feedstock
 - Process
 - AM Material Performance
- Material certificates 3.1 & 3.2
- Proactive approach before release of future EN 13445-14

Relative Archimed	es Dens	sity – Laborelec Proc	edu	re LBE0411	13339					
		Average		Standard deviation		Comments				
Results		99,43%		0,13%		8 measurements of 15mmx15mmx15mm cubes from qualification platform				
Tensile properties										
		Condition	Yie 0,2		Ultimate Ten Strength	sile	Elongation at break A5	Reduction of Area	Comments	
ASTM F3184-16	Min.	Solution annealed	205	5 MPa	515 MPa		30%	30%	In all build directions	
Results – XY build direction		Solution annealed	379 ± 8 MPa		614 ± 3 MPa		48 ± 2 %	60±3%	Based on 5	
Results – 45° build direction		1	382± 3 MPa		606 ± 3 MPa		52 ± 2 %	63±3%	specimens for each	
Results – Z build direction		370± 7 MPs)±7MPa	566 ± 9 MPa		57±3%	65±3%	build direction, as per ASTM E23 with Ø6mm	
Hardness										
		Condition	Measurement				Comments			
ASTM F3184-16		Not mentioned	tioned							
ASTM A240/A240M-06b	Max,	Solution annealed	217	217 HB						
Results		Solution annealed	185 ± 8 HV0,5			16 measurements per cube on 2 cubes				
Charpy V-notch im	pact tes	sting								
Condition			Charpy Impact Energy		1	Lateral expansion		Comments		
ASTM F3184-16		Not mentioned								
Results – XY build direction		Solution annealed 1		12	2J / 130J / 132J		1,78mm / 1,82mm / 1,	88mm	Based on 3 specimens for each build direction, as per ASTM E23	

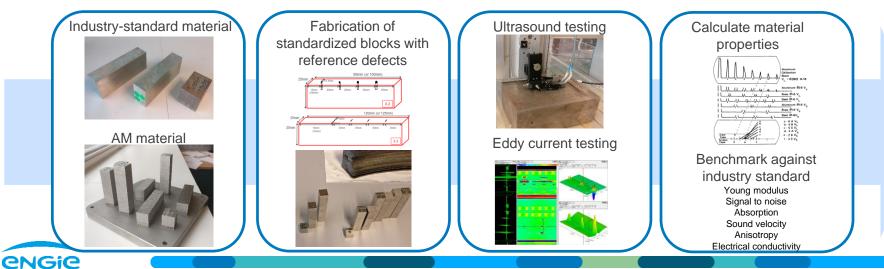


ENGIE Certification Project

Our Main Goal

- Achieving ENGIE AM Facility **Qualification & Material Certification**
- Material Certificate linking Powder Batch, Machine/Process & Formed Material

• Delivery of material certificate 3.1 or 3.2 for 316L material under Lloyd's Register label

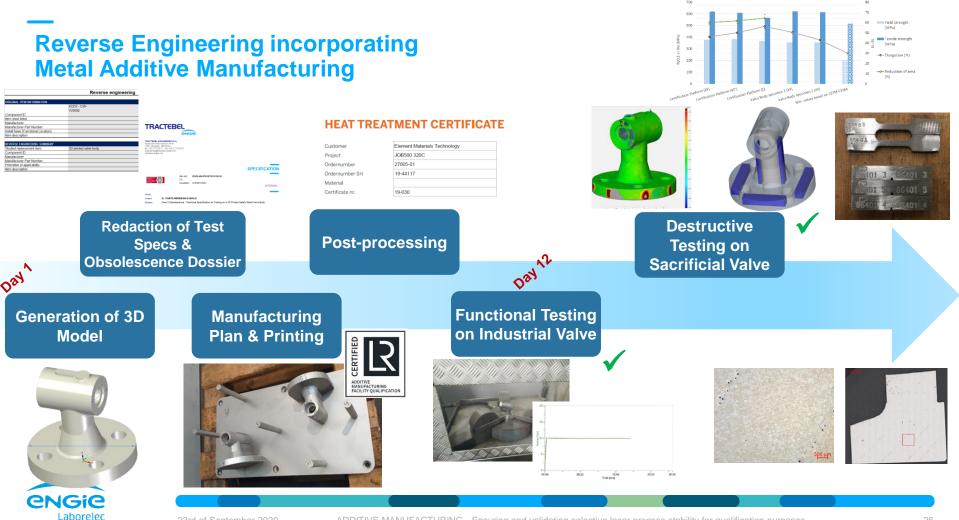


Lloyd's Register

Additive Manufacturing Product Quality and Control Off-line / non-destructive

Material properties determine inspectability for UT and EC

- New manufacturing technology leads to unique challenges and material properties
- Codes and regulations require inspection of critical components
- Benchmark AM material against industry-standard materials (forging and casting)


Laborelec

Implementation of qualification approach to tackle ENGIE obsolescence challenges

23rd of September ADDITIVE MANUFACTURING - Ensuring and validating selective laser process stability for qualification purposes

23rd of September 2020

ADDITIVE MANUFACTURING - Ensuring and validating selective laser process stability for qualification purposes

Reverse Engineering incorporating Metal Additive Manufacturing

23rd of September 2020

ADDITIVE MANUFACTURING - Ensuring and validating selective laser process stability for qualification purposes

Any Questions ?

23rd of September ADDITIVE MANUFACTURING - Ensuring and validating selective laser process stability for qualification purposes

