

COSI: CO-simulation model for safety and reliability of electric systems in flexible environment of NPP

Poria Divshali, (VTT) John Millar (Aalto)

28/10/2020 VTT – beyond the obvious

Nuclear Power Plant

Combination of several systems

VTT

NORTH

NORTH

Nuclear Power Plant Model

VTT

Nuclear Power Plant Model

Electric

Motor

Electric

Motor

Fluid

Outlet

Pump

Fluid +

Pumppukuorma: T=kw^2

Internal Electrical System Model

• Each pump model by a Torque (T)

 $T = k \cdot w^2$

Pumppukuorma: T=kw^2

Internal Electrical System Model

• Each pump model by a Torque (T)

 Internal Electrical System Model
 Each pump model by a Torque (T) T = k . w^2

• Transmission grid model by Ideal or Thevenin equivalant

 Internal Electrical System Model
 Each pump model by a Torque (T) T = k . w^2

• Transmission grid model by Ideal or Thevenin equivalant

Thermomechanical model

- Apros has electrical system modeling, however limited to
 - Main component models
 - General studies, for example just symetrical studies
 - It is not popular/standard amoung power system experts

Objective

Provide supporting analyses for safety case:

- A detailed multi-physic simulation model for on-site electric power system of NPP interfaces to the off-site high voltage power system model and to thermal, reactor-physical and automation models.
- COSI will develop plant specific co-simulation models starting with FORTUM's models and integrating later TVO's and possible Fennovoima models.
- The simulation platform will be utilized for evaluation the adequacy and balance of safety requirements of the electrical systems in NPP in the cases of faults and disturbances

COSI Project Plan for 2020

WP1: COSI Simulation platform architecture

Poria Divshali, VTT

14/09/2020 VTT – beyond the obvious

Exchange Layout (1)

Power System Simulator e.g. Simulink

• Turbine / Generator

Exchange Layout (3)

• Pump / Turbine

Power System Simulator e.g. Simulink

Exchange Layout (4) • Motor (common) Pump Coupling **Power System Simulator** e.g. Simulink $\frac{d}{dt}\omega = \frac{1}{2H} \left(T_e - F\omega - T_m \right)$ $\frac{d}{dt}\theta = \omega$ Rotational speed fT= 98.09 kg/s P* 0.8ber T= 20.0°C 2.0ber 19.2*C P[#] rad/sec CM WF YD11D001B1 to round/sec St.CM Tmech YD11D001B <Rotor speed (wm)> CM WF YD11D001B <Electromagnetic torgue Te (N*m)> CM_Te_YD11D001B Asynchronous Machine without saturation1 \geq Mechanical Power 1% Pnom 1 **Apros**

New motor pump operation mode added to Apros

Co-simulation challenges which should be answered in architecture

- Data Exchange layout among simulators
- Time step handling between simulators

Each Simulator must follow its internal time step, which is totally different in these tools.

Co-simulation challenges which should be answered in architecture

- Data Exchange layout among simulators
- Time step handling between simulators
- Data exchange intervals between two simulators

Co-simulation challenges which should be answered in architecture

- Data Exchange layout among simulators
- Time step handling between simulators
- Data exchange intervals between two simulators
- Protocol of data exchange between simulators

Protocol of data exchange between simulators

Different simulators in electrical power system of NPP

- MATLAB/Simulink
- PowerFactory DigSILENT
- PSCAD
- . . .

Different simulators in transmission power systems

- PowerFactory DigSILENT
- PSS/E
- PSCAD
- •
- Apros

Open Platform Communications (OPC) standard

Architecture design

Co-simulation challenges which should be answered in architecture

- Data Exchange layout among simulators
- Time step handling between simulators
- Data exchange intervals between two simulators
- Protocol of data exchange between simulators
- Initialising of all Simulators in steady-state
 - Load Apros IC
 - Load Simulink IC
 - Start master program from steady-state condition

Preliminary Co-Simulation (1)

Power System in Simulink (Generator and Motors)

Preliminary Co-Simulation (2)

Turbine and Pumps Models in Apros

25

Preliminary Co-Simulation (3)

Improve the master code to a more user friendly version

• For changing the model need to update just the lay-out file

```
%% Generators Model
% Lavout.GenSet = ( 1)Name , 2) Parameters , 3) Inputs, 4)Output;
% 1)Name : Exact Name in Appros and Simulink
% 2) Parameters: [ 2-1)G PSet ]
   % 2-1)G_PSet_: Initialize seting for Pelectrical (PeoSet) (pu)
% 3) Inputs: [ 3-1)G Pmech ]
   % 3-1)G_Pmech_ : Initialize Mechanical power of Turbine (MW)
% 4) Output: [ 4-1)G_POS_, 4-2)G_W_ ]
   % 4-1)G POS : Initialize valve position
   % 4-2)G W : Initialize rotation speed (RPM)
Layout.GenSet = {'MG0001' 0.9 166.5 [0.51 3000]};
%% BasicPump Model
% Layout.BasicMotor = ( 1) Name , 2) Inputs, 3)Output;
% 1) Name : Exact Name in Appros and Simulink
% 2) Inputs: St.BM_Pmech_...: Initialize Mechanical Power (kW) of Motor
$ 3) Output: BM WP ...: Initialize Speed of Motor (%)
Layout.BasicMotor = {'RM11D001', 15.72, 98.03};
%% CommonFump Model
% Layout.ComMotor = [ 1) Name , 2) Inputs, 3)Output;
                 1 .
```

Preliminary Co-Simulation Results (1)

Voltage @ Motor Terminal

Preliminary Co-Simulation Results (2)

Motor 1

Preliminary Co-Simulation Results (3)

Motor 2

Preliminary Co-Simulation Results (4)

14/10/2020

Preliminary Co-Simulation Results (5)

Generator

WP2: Simulation Study Matti Lehtonen, Aalto

14/09/2020 VTT – beyond the obvious

WP 2 Simulation studies

VTT

Internal grids

Loviisa 1

Internal grids

Loviisa 1

• Find the steady state condition using separate models

Internal grids

Loviisa 1

- Find the steady state condition using separate models
- Update Apros model by adding required transmitter
 - For all motors and Generators

Selecting output component XXXX_PU1 P_SPEED_OLD

Name based on instruction e.g. for basic pump: (speed as in put) BM_WP_XXX

rad/sec to round/sec

Internal grids

Loviisa 1

• Find the steady state condition using separate models

St.CP_Tmech

- Update Apros model
- Update Simulink model
 - For all motors and Generators
 - Input

St.CP_Tmech_

Name based on instruction e.g. for comon pump: St.CP_Tmech_XXX 14/09/2020 VTT – beyond the obvious

rad/sec to round/sec

Internal grids

Loviisa 1

• Find the steady state condition using separate models

St.CP_Tmech

- Update Apros model
- Update Simulink model
 - For all motors and Generators
 - Input

St.CP_Tmech_

Name based on instruction e.g. for comon pump: St.CP_Tmech_XXX 14/09/2020 VTT – beyond the obvious

Internal grids

Loviisa 1

- Find the steady state condition using separate models
- Update Apros model
- Update Simulink model
- Update the layour file in master program

```
%% Generators Model
% Layout.GenSet = { 1)Name , 2) Parameters , 3) Inputs, 4)Output;
% 1)Name : Exact Name in Appros and Simulink
% 2) Parameters: [ 2-1)G PSet ]
   % 2-1)G_PSet_: Initialize seting for Pelectrical (PeoSet) (pu)
% 3) Inputs: [ 3-1)G Pmech ]
    % 3-1)G Pmech : Initialize Mechanical power of Turbine (MW)
% 4) Output: [ 4-1)G_POS_, 4-2)G_W_ ]
    % 4-1)G POS : Initialize valve position
    % 4-2)G W : Initialize rotation speed (RPM)
Layout.GenSet = {'MG0001' 0.9 166.5 [0.51 3000]};
%% BasicPump Model
% Layout.BasicMotor = { 1} Name , 2) Inputs, 3)Output;
% 1) Name : Exact Name in Appros and Simulink
$ 2) Inputs: St.BM Pmech ...: Initialize Mechanical Power (kW) of Motor
% 3) Output: BM WP ...: Initialize Speed of Motor (%)
Layout.BasicMotor = {'RM11D001', 15.72, 98.03};
%% CommonPump Model
% Layout.ComMotor = [ 1) Name , 2) Inputs, 3) Output;
```

1 .

COSI – recent Aalto activities

So far

• Brushing up on transmission system basics

- Modelling nodes
- Modelling lines
- 3-phase power flow basics, noting that we will be dealing with asymmetric scenarios
- Gleaning Fingrid data from QGIS-related files (→Excel (done) →some other database format?)
- Learning and slowly building up a simple network in Simulink (some 'steady-state' success)

Possible directions for transmission model development

Aalto University School of Electrical Engineering

How far we get in this roadmap will depend on time and benefit - noting that we are aiming for minimum sufficient transmission models that are relevant to the nuclear power station of interest.

Visualising data in QGIS

Data has been extracted from QGIS (&/or .dbf files and Energiavirasto)

Line data

1											
2		1:load,	2:generator,	3: Swing, 4:	disconnect	ed bus		WGS84			
3	bus_id	type	station_id	voltage	name	Station name	comments	×	Y	pl	ql
4	20101	2	234	110	KS1	KRISTIINA		21.33021	62.255	50.2176	8.03482
5	20016	4	279	110		FLYB-CKIN HAARA	Not connected	21.37614	62.292	97.829	15.6526
6	20352	2	356	110	KD	KRISTINESTAD		21.37629	62.292	17.0222	2.72355
7	30074	1	356	21	KD_TER1	KRISTINESTAD	Needed if there will be a 3- winding transformer in Kristinestad.	21.37629	62.292	84.4881	13.5181
8	5018	1	356	400	KD4	KRISTINESTAD		21.37629	62.292	#N/A	#N/A
9	4163	2	145	400	MP4	TAHKOLUOTO	Added this bus to TAHKOLUOTO station, Erkka	21.40762	61.633	#N/A	#N/A
0	20355	2	145	110		TAHKOLUOTO	Added this bus for Tahkoluoto KT-laitos (Niina Helistö).	21.40762	61.633	151.368	24.2189
1	20278	4	62	110		TORNA	Not connected	21.40798	61.042	15.0296	2.40474
12	20349	2	240	110	OLT1	OLKILUODON KT-LAITOS	Slack bus for COSI purposes?	21.44494	61.24	8.5063	1.36101
3	4160	2	27	400	OL4	OLKILUOTO		21.4712	61.245	#N/A	#N/A
	4168	2	27	400	OL42	OLKILUOTO		21.4712	61.245	#N/A	#N/A

This thesis used a 57 node model for the Nordics http://kth.di

http://kth.diva-portal.org/smash/get/diva2:1369967/FULLTEXT01.pdf

It would be nice to start simple!

But, the generation in the (8-bus) Finnish part of the 57-bus network is perhaps too scenario-specific, but a good first approximation?

TENCINE.

1.1.2017 Pohjakartta © Karttakeskus Oy

Conclusion, for WP2

- Model the 400 kV grid of Finland and any necessary sections of lower voltage transmission
- We have the data for that
- But it will be quite tedious modelling it all in Simulink – but great once we've done it!
- Check modelling with another platform
- Simulations and case studies!

FINGRID

beyond the obvious

Poria Divshali (VTT) Poria.Divshali@vtt.fi John Millar (Aalto) john.millar@aalto.fi