Sub-synchronous oscillations between FPC wind farms, VSC-HVDC links and nuclear power plants Webinar: GINO Project Findings

(P) Protrol

Lena Max, Andreas Petersson and Pehr Hjalmarsson 2020-10-13

Definition of sub-synchronous oscillations, SSO

"Electro-mechanical interactions, either between a turbinegenerator and passive system elements such as series capacitors, or between a turbine generator and active system elements at frequencies below the nominal frequency of the system (i.e. < 50 Hz)"

- First known occurrence in the Mohave project 1970 and 1971, including a plant and series compensated lines.
- Another incident in the Zorillo Gulf wind farm 2009, including a DFIG-based wind farm and a series compensated line.
- An increasing amount of large grid connected voltage source converters, VSC, increase the risk of experiencing SSO including these converters.

Different types of SSO

- Sub-synchronous resonance (SSR) Generator – Series compensation
- Sub-synchronous torsional interaction (SSTI) Generator – Power electronic device
- Sub-synchronous control instability (SSCI) Power electronic device – Other object

14 October 2020

The aim of the project is to gain a good general understanding of how VSC-HVDC links and FPC wind farms affect the existence of problematic sub-synchronous oscillation modes.

Content of the project:

- Identify and describe the different methods used for evaluating sub-synchronous oscillations.
- Evaluate the suitability of the different methods for investigating SSO between large synchronous generators and voltage source converters.
- Describe the physical construction and control for the grid connected voltage source converters.
- Implement the evaluation methods on a generic test system, focusing on oscillations between a large synchronous generator and a voltage source converter.

- Analytical calculations
 - Time domain analysis (eigenvalues)
 - Frequency domain analysis (transfer functions)

Requires equations for the system, gives exact answers. Can't be used for black-box models.

- Frequency scanning
 - Complex torque method (electrical damping seen from a SG)
 - Impedance frequency scan (includes circuit parameters)
 - Impedance scanning by dynamic simulations (includes controls and black-box models)

Larger systems can be used since these methods are based on simulation models. Using controls and black-box models requires a scanning using dynamic simulations.

Time domain simulations (includes non-linearities)

Used to verify the results obtained from the other study methods.

Evaluation of study methods

Limitations of the study methods – which methods are suitable for SG – VSC?

	Non- linear	Black- box	Includes controls	nv. Subsyst.	Time efficient
Analytical – time domain			X		
Analytical – frequency domain			Х	Х	
Complex torque method		Х	Х		
Impedance frequency scan					Х
Impedance/admittance scan by dynamic simulations		Х	Х	Х	
Time domain simulations	Х	Х	Х		
Protrol © 14 October 2020					(') /

Voltage source converters, VSC

• Similar concept for VSC converters independent on the power level.

 A voltage source converter consists of force commutated valves and can operate independently of the AC grid.

Voltage source converters, VSC

 Many possible topologies, two examples are the two-level converter and the modular multilevel converter.

AC

Two-level converter

Modular multi-level converter

Wind park layout

• For a wind park there is one VSC in each converter

- The control of the park is made in the park controller.
- The park can be modelled as a large aggregated converter model.

Converter dynamic operation

Protrol

14 October 2020

Evaluation of SSO using a generic test system

- Simple generic test system
 G
- A large generator connected to an equivalent grid and the VSC is connected to the generator bus via an impedance.

VSC

 \approx

- One transformer between the VSC and the transmission system, such as for HVDC.
- Known torsional modes for the generator at 16 Hz and 28 Hz.
- The purpose is to evaluate the test methods and illustrate possible results.

Evaluation using complex torque method

- Complex torque gives the electrical damping D_{e} seen from the generator.
- Shows the impact of the VSC on the electrical damping.
- With the VSC connected there is a negative electrical damping at the torsional modes
 16 Hz and 28 Hz.

Evaluation using impedance scanning

- The impedance scanning is made from the generator bus towards the VSC.
- Small positive resistance at subsynchronous frequencies.
- The sub-synchronous resistance for the generator is not included.

Evaluation using time domain simulations

- A short high-impedance fault is made to trigger the oscillations.
- Amplified oscillations occur at about 28 Hz, which is one of the torsional frequencies of the generator.
- For the VSC, there are oscillations in the reactive power but not in the active power.
- This indicates that the AC voltage controller can be a reason for the oscillations.

Control parameter variations

- To study the impact of the controller, two modifications are made:
 - Mod 1: Decrease the AC voltage gain to 20% of the original value.
 - Mod 2: Change to reactive power controller.

14 October 2020

 Changing the control parameters has a large impact on the electrical damping.

Control parameter variations

 Changing the control parameters has a large impact on the sub-synchronous impedance of the VSC.

Control parameter variations

Impact of the grid strength

- To study the impact of the grid strength, one modification is made:
 - Mod 10: Increase the short circuit power for the grid to 10 times the original value.

 In case of a strong grid connection, the VSC has a very small impact on the electrical damping seen from the generator.

14 October 2020

Impact of the grid strength

 Time domain simulations verify that there will not be any amplified sub-synchronous oscillations in case of a strong grid connection.

Impact of an additional transformer

- An additional transformer is added study the impact of wind turbine converters that are located at a lower voltage level:
 - Mod 20: Add one additional transformer with ratio 1:1 between the VSC transformer and the VSC bus.
- An additional transformer increases the electrical damping.

Impact of an additional transformer

- Impact of an additional transformer.
 - The fast AC voltage controller has an unacceptable performance in case of a weaker grid.
 - There are no amplified oscillations including the torsional modes in the generator.

- A strong grid connection will reduce the risk of SSO.
- A larger impedance between the generator and the VSC will reduce the risk of SSO.
- The controller of the VSC has a very large impact of SSO.

NOTE: The results shown here are for this specific illustration. The converter characteristics can vary significantly between different converters and therefore each converter must be studied individually.

- Complex torque method:
 - Gives the electrical damping seen from the generator.
 - Can show the impact of a VSC but not the characteristics of the VSC itself.
 - Suitable method for oscillations including a synchronous generator.
- Impedance scanning by dynamic simulations:
 - Gives the sub-synchronous impedance of an object.
 - Can give the characteristics of any chosen system, such as the VSC itself.
 - Suitable method if no synchronous generator is included
- Time domain simulations:
 - Used to verify the results.
 - Include non-linear characteristics.

Thank you

Lena Max

Im@protrol.se +46 705 658455

www.protrol.se

24 Protrol © 14 October 2020