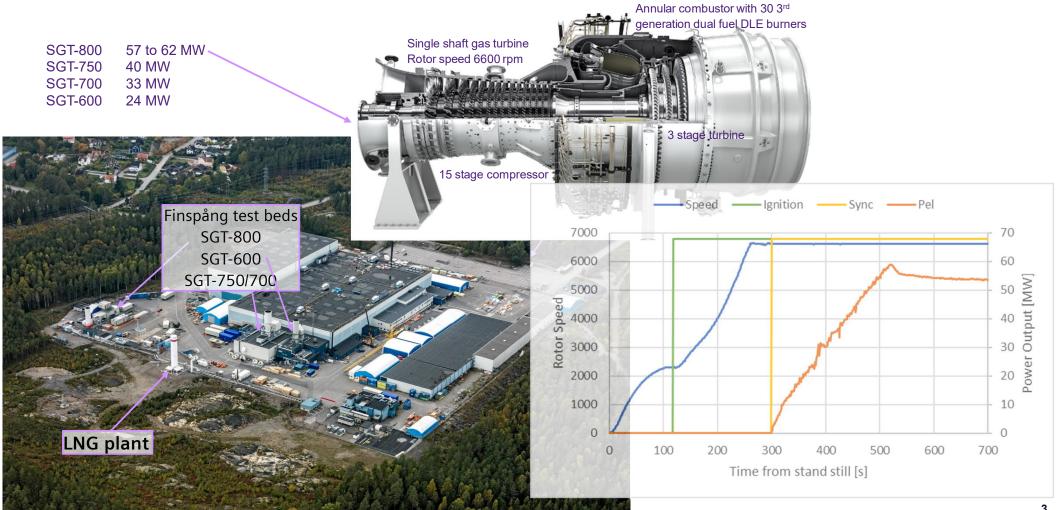

Frukostwebinarium "Vätgasens roll i kraftsektorn"

## Möjligheter med P2G2P

Prof Jenny Larfeldt




# Fuel Shift / Hybridization



### **Siemens Industrial Gas Turbines**





## Industrial gas turbine hydrogen road map R&D speed enabled by additive manufacturing





#### **SGT-800**

Bid ready 50 vol-% H<sub>2</sub> at 25 ppm NO<sub>Y</sub>.

#### **SGT-800**

Sector test in full engine with up to 75 vol-% H<sub>2</sub> and 40 ppm NO<sub>x</sub> achieved. Flashback out system integrated in SGT-800.

### SGT-700

planned

Sector test in full engine targeting 85 vol-% H<sub>2</sub>.

#### **Vision**

Demonstration of 100% H<sub>2</sub> industrial turbine operation at customer site with high combined cycle efficiency and acceptable dry emission levels.

### 2012------2014------2017------2019-2020-2021-2022-2023------2025-------2025-------

Braskem Delivery

ppm NO<sub>X</sub> at full load. 2. Off design

**SGT-600** 

#### **SGT-600**

Braskem commercial operation 60 vol-% H<sub>2</sub>.





https://www.siemens-energy.com/global/en/news/magazine/2019/hydrogen-capable-gas-turbine.html

SGT-6/7/800

collaboration

Operator having

access to carbon

neutral/ free fuels

foreseen

#### **SGT-700**

Single burner feed in full engine test 40 vol-% H<sub>2</sub>.

#### **SGT-700**

Single burner feed in full engine test 60 vol-% H<sub>2</sub>.

#### **SGT-600**

Bid ready 60 vol-% H<sub>2</sub> at 25 ppm NO<sub>x</sub> at full load.

**SGT-800** 

High pressure

50 ppm NO<sub>X</sub>.

Flashback out

safety system

tested.

single burner test

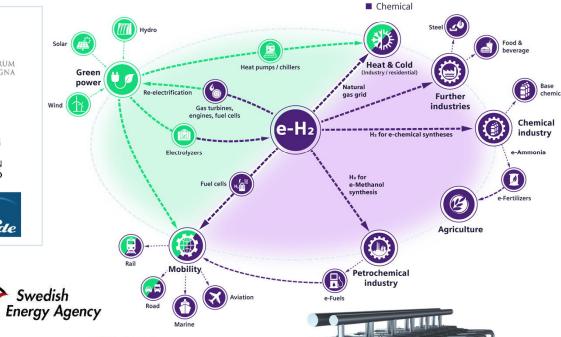
100 vol-% H<sub>2</sub> and



Siemens additive manufactured burner used in SGT-600. SGT-700 as well as in SGT-800. Also available for retrofit in existing units

### **Zero Emission Hydrogen Turbine Center** The future energy system

### **SIEMENS** energy


Develop the gas turbine test facility towards a zero emission demonstrator plant by:

- Utilize power from turbine test runs to produce hydrogen in an electrolyzer
- Installing solar panels for continuously hydrogen production
- Use produced hydrogen as turbine fuel to reduce LNG consumption

### Three year project.

Operation planned to start in 2021











**ERA-Net** 

Funding gratefully acknowledged Swedish Energy Agency and EU **ERA-Net Smart Energy System** 



Electrical

17,5 MW 335 kg H<sub>2</sub>/h

### Tack!





Prof. Jenny Larfeldt

Siemens Energy AB SE G IGT R&D Slottsvaegen 2-6 SE-612 83 Finspang, Sweden

Tel.: +46 122 82789 Fax: +46 122 81349

Mobile: +46 70 1801447

mailto:jenny.larfeldt@siemens-energy.com

siemens-energy.com