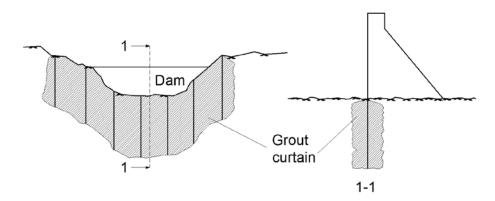


Design of grout curtains

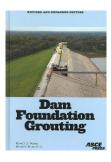
Suihan Zhang, PhD student Fredrik Johansson, main supervisor 2020-11-25



Background

Grout curtains are constructed under dams to:

- ➤ Reduce the hydraulic conductivity of the rock foundation
- ➤ Reduce the water leakage through the rock mass
- > Reduce the uplift pressure

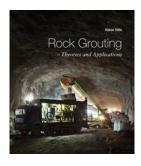


Background

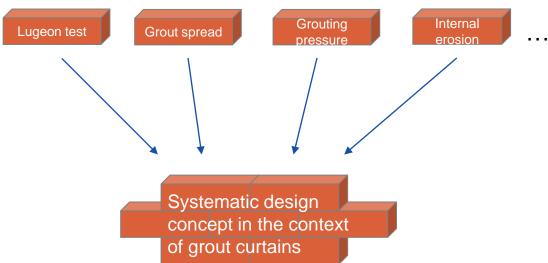
Empirical design

- Grouting has long been an empirical technique
- Design of grout curtains based on "rules of thumb" and experience

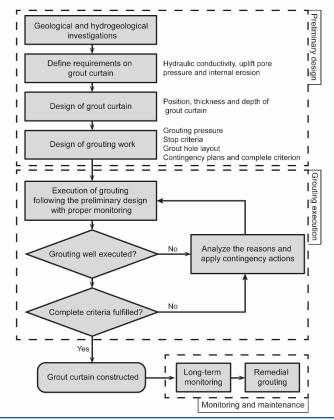
Limitations


- Quality of the grout curtain relies on experience of the designer, lack of experience could lead to inadequate or over-conservative design.
- Internal erosion of the fracture infilling material is not directly taken into consideration.
- "Refusal" as stop criterion can lead to long grouting time.
- Hydraulic jacking can occur if grouting pressure is not properly chosen.

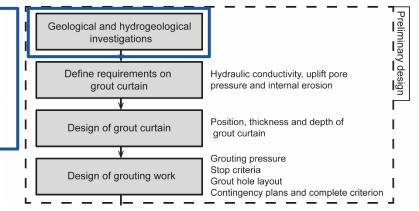
Background

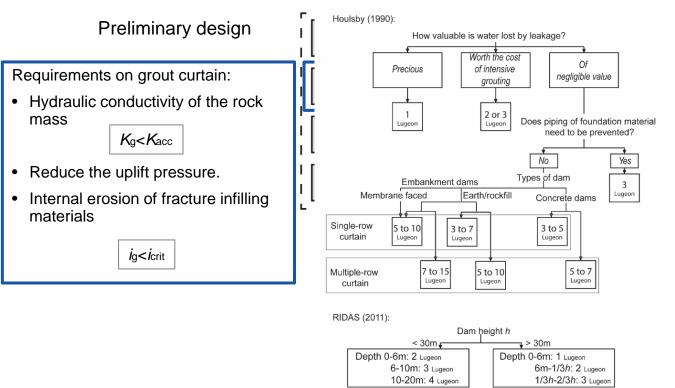

Theory-based design

- Extensive research on grouting has been preformed in recent decades
- More theory-based design method under the framework of observational method will become possible


Grouting theories

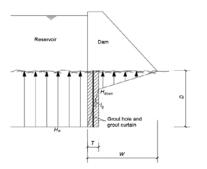
Design flowchart


- Preliminary design
- Grouting execution
- Monitoring and maintenance

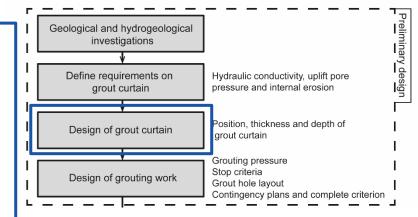


Preliminary design

- Investigate the fracture patterns and rock properties by geological investigations
- Investigate the permeability of the rock mass and fracture aperture by Lugeon tests (water loss measurements)



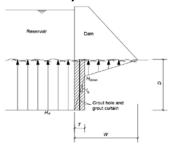
Preliminary design

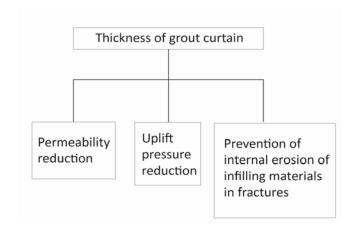

Design of grout curtain:

Position
 Close to the heel of the concrete dam.

Thickness

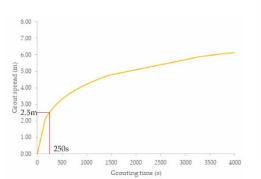
Depth (in relation to the Lugeon test results)

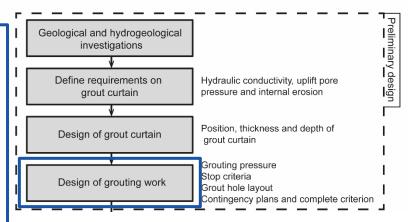

Design the grout curtain as a structural component of the dam foundation, instead of a foundation treatment under the dam.


Preliminary design

Design of grout curtain:

- Position
 - Close to the heel of the concrete dam
- Thickness (a multi-factor determination)

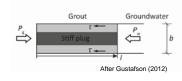

Depth (in relation to the Lugeon test results)


Preliminary design

Grout spread vs Time (stop criteria)

· Additional stop criteria - Volume

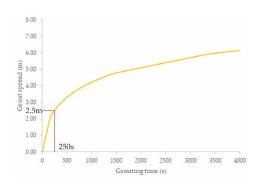
$$V_{tot} = \pi I^2 \cdot b = \pi \left(I_D \cdot I_{\text{max}} \right)^2 \cdot b = \pi I_D^2 \left[\frac{\Delta P_g}{2\tau_0} \right]^2 \cdot b^3$$


Unique expression of 2D radial spread (with relative grout spread I_D and relative grouting time I_D)

$$I_D = \sqrt{\theta^2 + 4\theta} - \theta$$
 $\theta = \frac{t_D}{2(3 + t_D + 0.23 \ln t_D)}$

where

$$I_{D} = \frac{I}{I_{max}} \qquad I_{max} = \left(\frac{\Delta P_{g}}{2\tau_{0}}\right) b$$


$$t_{D} = \frac{t}{t_{0}} \qquad t_{T} = \frac{6\Delta P_{g}\mu_{g}}{2\tau_{0}}$$

Preliminary design

Grout spread vs Time (stop criteria)

Additional stop criteria - Volume

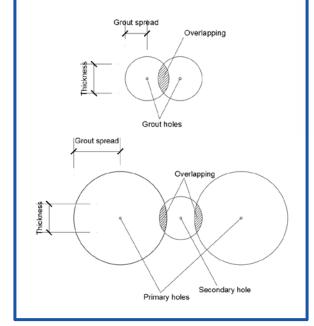
$$V_{tot} = \pi I^2 \cdot b = \pi \left(I_D \cdot I_{\text{max}} \right)^2 \cdot b = \pi I_D^2 \left[\frac{\Delta P_g}{2\tau_0} \right]^2 \cdot b^3$$

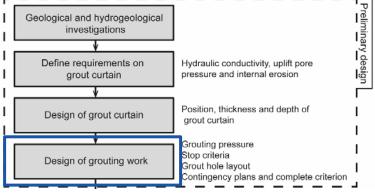
Unique expression of 2D radial spread (with relative grout spread I_D and relative grouting time I_D)

$$I_D = \sqrt{\theta^2 + 4\theta} - \theta$$
 $\theta = \frac{t_D}{2(3 + t_D + 0.23 \ln t_D)}$

where

$$I_D = \frac{I}{I_{max}}$$
 $I_{max} = \left(\frac{\Delta P_g}{2\tau_0}\right)b$ $t_D = \frac{t}{t_0}$ $t_0 = \frac{6\Delta P_g \mu_g}{\tau_0^2}$

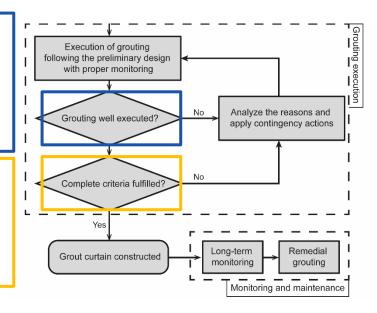

Stop criteria should be designed considering a "boundary fracture aperture", which is defined as the fracture aperture above which a fully sealed fracture can be expected (larger than b_{crit}).


It is not necessary to seal very small fractures. The grouting time will become much longer to obtain the same grout spread, which is not efficient.

Preliminary design

Relate the thickness of grout curtain to the grout spread and hole spacing:

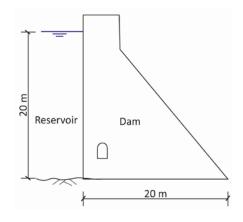
Grouting execution


Following the observational method

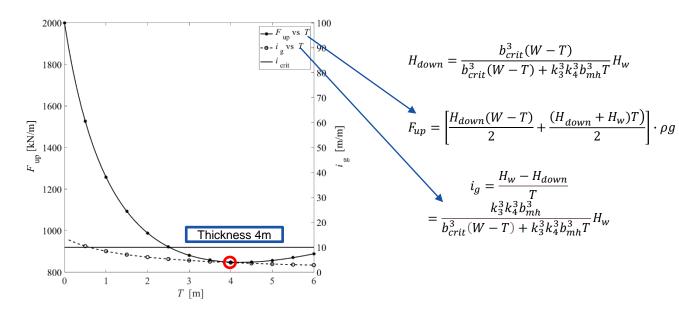
- The data on grout volume (or flow)
 vs time should be collected and
 analyzed during grouting.
- Hydraulic jacking should be monitored with extensometers at surface or by analyzing the grout volume (or flow) data.

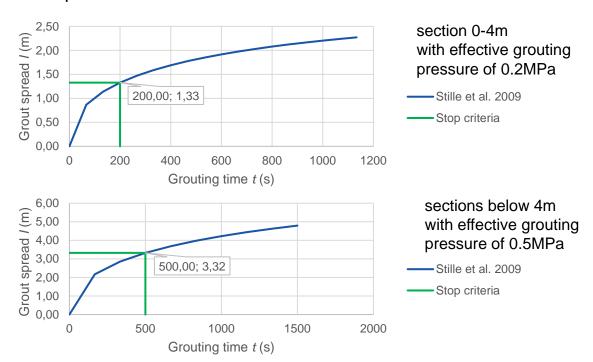
Residual hydraulic conductivity

 should be checked in control holes by Lugeon tests:

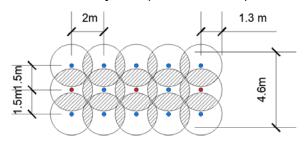

Kg<Kacc

Fictitious concrete dam

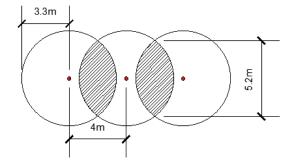

- Concrete gravity dam. Dam height (H) is 20m and width (W) is 20m.
- The water head (H_w) is assumed to be 20 m above the ground when the reservoir is filled.
- The exploratory holes and the grout holes are vertical and the sections for water testing and grouting are assumed to be 4 m in length. Sections are distributed as follows: 0-4m, 4-8m, 8-12m, 12-16m, 16-20m, 20-24m and 24-28m.
- Grout material INJ30.
- Expected residual conductivity: <1 Lugeon


Thickness of grout curtain

b ^{crit}	k 1	k 2	k 3	k4	K g	Lu	Result	$k = \frac{k_1 k_2}{2} \frac{1}{2} \frac{\rho g}{h^3}$
90µm	0.47	1.25	2	0.45	9.37E-08 m/s	0.6	OK!	$k_3^g = k_3^3 k_4^3 L 12 \mu^{D_{crit}}$



Stop criteria



Grout hole layout (from above)

section 0-4m

sections below 4m

Primary holes: • Secondary holes: •

Overlapping:

Grouting plan

Grout mix	Grouting section (upwards grouting)	Grouting pressure (MPa)	Grouting time (s)	Injected volume per hole per section (liter)
	16-20 m	0.7	500	24
	12-16 m	0.6	500	45
INJ30 w:c=0.8	8-12 m	0.6	500	105
	4-8 m	0.6	500	92
	0-4 m	0.2	200	19

SVC report- Design of grout curtains

- In-detail description and discussion on the new design concept
- In the process of being published on the Energiforsk website

DESIGN OF GROUT CURTAINS

REPORT [Click and type]

2020-11-26 20

Future work

- · Remedial grouting design
- Grout erosion during remedial grouting (laboratory study)
- Case study on grouting project:
 - To investigate the grout spread vs time in natural rock mass;
 - > To investigate the grouting's effect on the uplift pore pressure and hydraulic gradient;

> To evaluate the applicability of the design concept.

2020-11-26 21

Thank you!