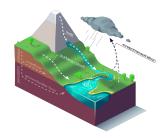
Recent Advances in Deep Learning and its Potential Benefits for Hydrological Forecasting



Frederik Kratzert

ELLIS Unit Linz and LIT AI Lab Institute of Machine Learning Johannes Kepler University, Linz, Austria

E-mail: kratzert@ml.jku.at

Contributors

Johannes Kepler University

Google

Frederik Kratzert **≚**

Günter Klambauer ➤

Daniel Klotz

Grey Nearing **G**

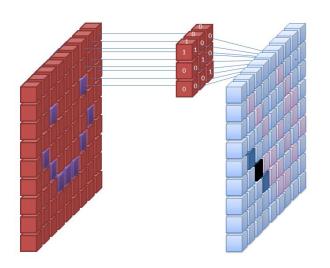
Martin Gauch

Sepp Hochreiter

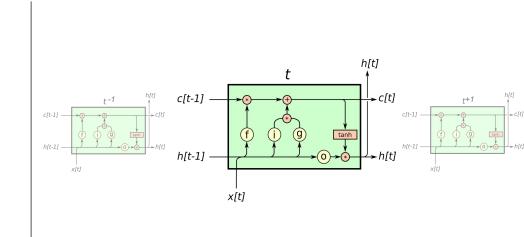
Research blog: neuralhydrology.github.io

Machine Learning Tools for Earth Sciences

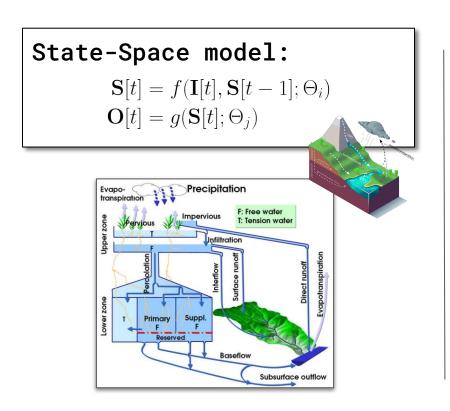
Spatial: Convolutional Networks



Temporal: Recurrent Networks

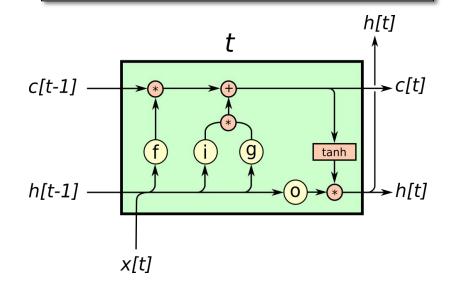


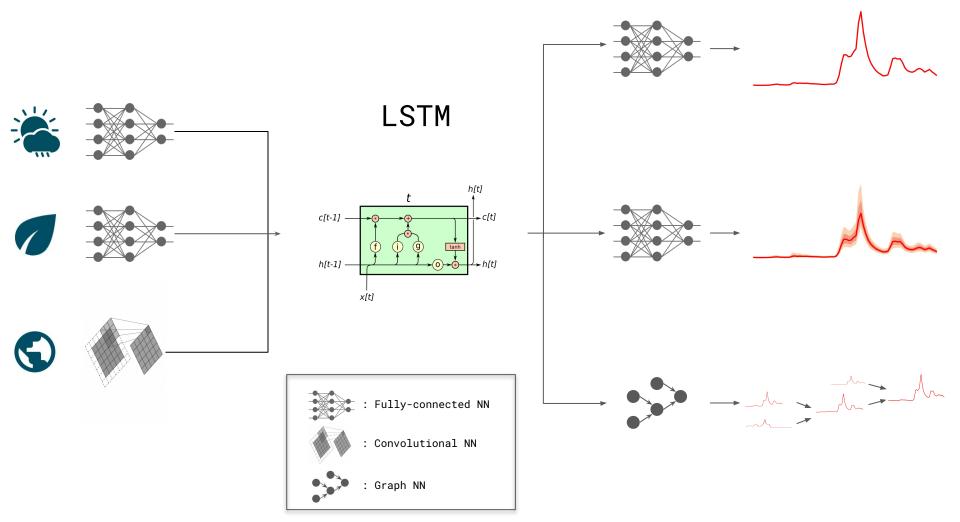
LSTMs are State-Space Models



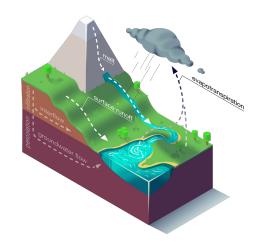
LSTM model:

$$\{\mathbf{c}[t], \mathbf{h}[t]\} = f(\mathbf{x}[t], \mathbf{c}[t-1], \mathbf{h}[t-1]; \theta_i)$$
$$\widehat{y}[t] = g(\mathbf{h}[t]; \theta_j)$$

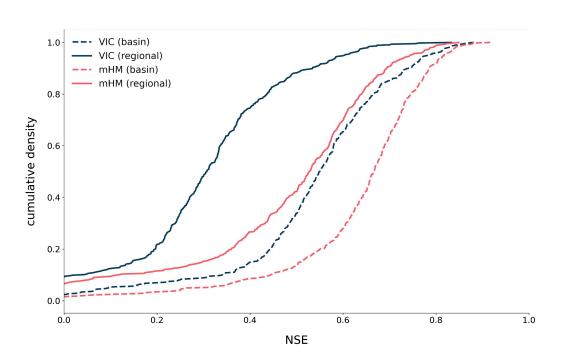




Deep Learning for Rainfall-Runoff Modeling



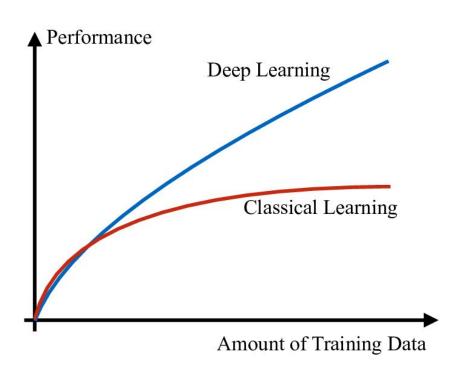
The state of regional modeling



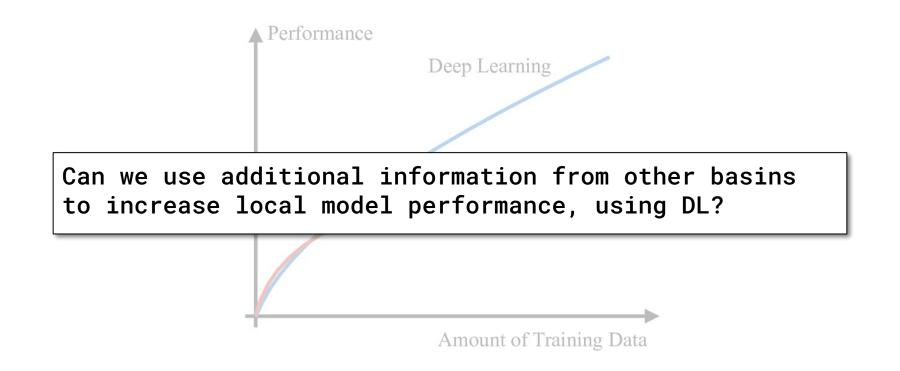
* empirical CDF of model performance over > 400 basins

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089-5110,

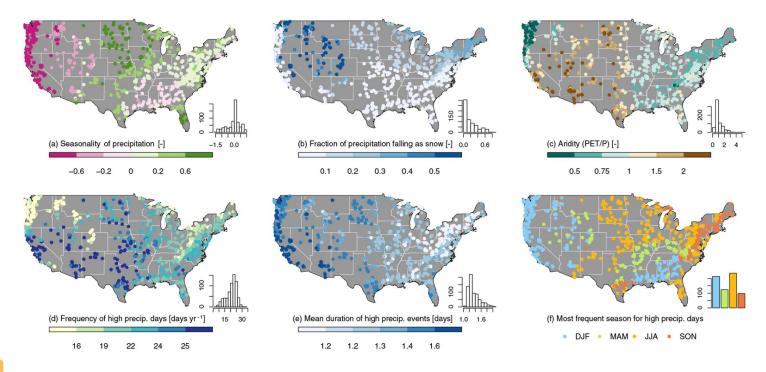
The Unreasonable Effectiveness of Data

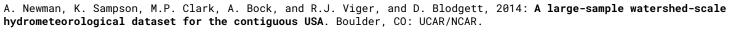


The Unreasonable Effectiveness of Data



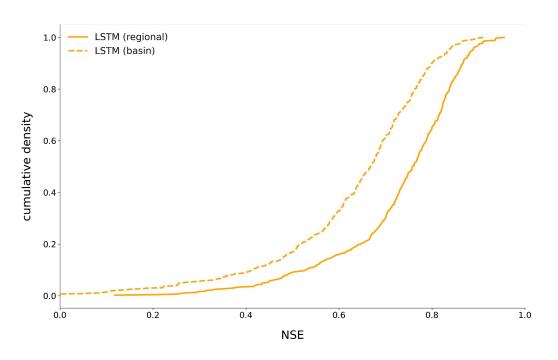
CAMELS Dataset





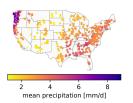
N. Addor, A. Newman, M. Mizukami, and M. P. Clark, 2017. Catchment attributes for large-sample studies. Boulder, CO: UCAR/NCAR.

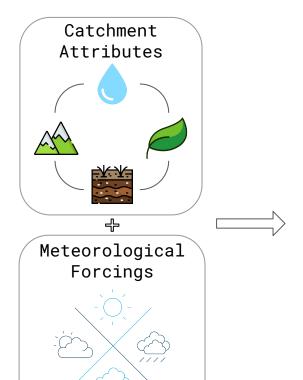
The Unreasonable Effectiveness of Data

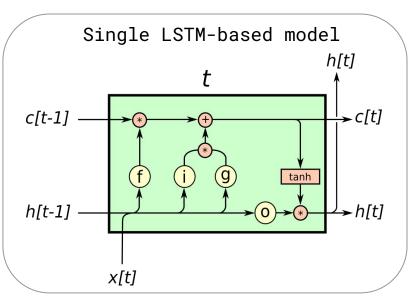


Kratzert, F., Klotz, D., Klambauer, G., Hochreiter, S., and Nearing, G.: The performance of LSTM models from basin to continental scales, EGU General Assembly 2020, Online, 4-8 May 2020, EGU2020-8855, 2020

The experimental setup

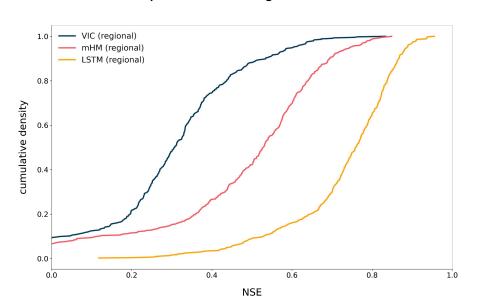




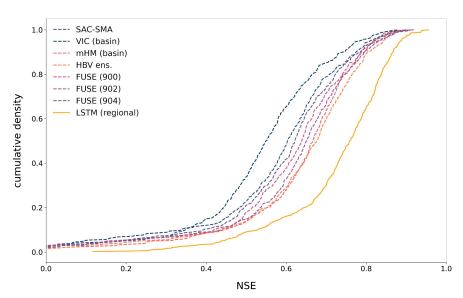


Benchmarking

compared to regional model



compared to basin-specific models

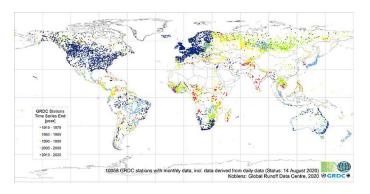


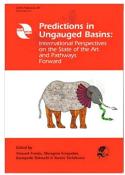
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089-5110,

Testing Generalization

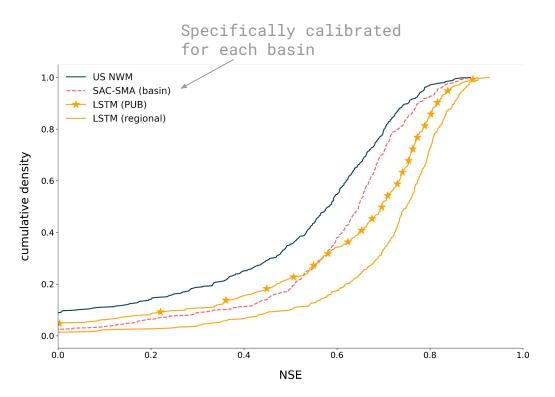


- Streamflow gauge
- ★ Ungauged basin outlet





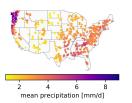
Prediction in Ungauged Basin

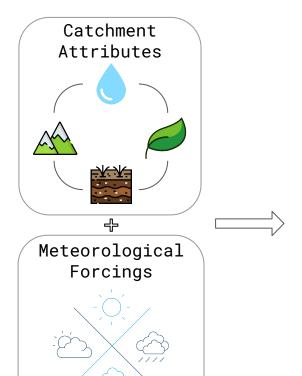


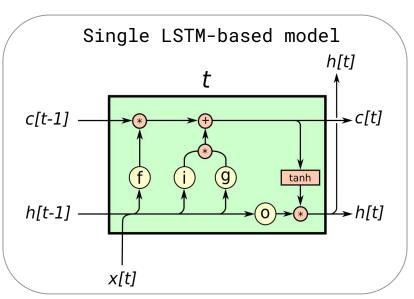
Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A.S., Hochreiter, S., and Nearing, G.: Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning, Water Resources Research, 55, 11344- 11354, 2019

Model (Setup) Extension

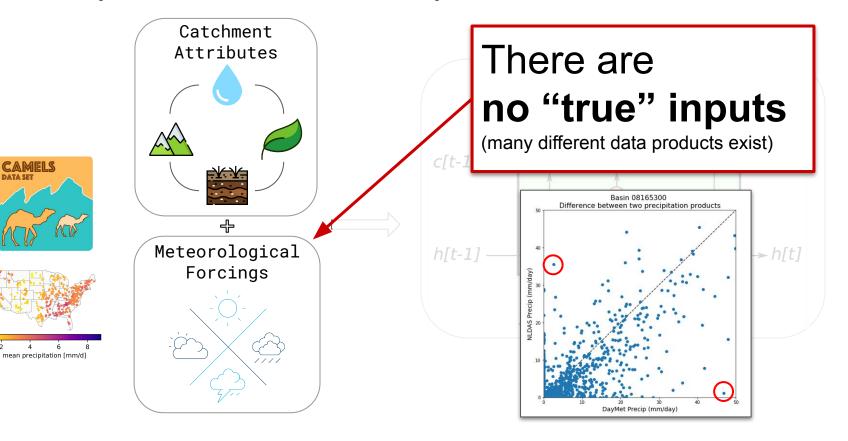
The Experimental Setup



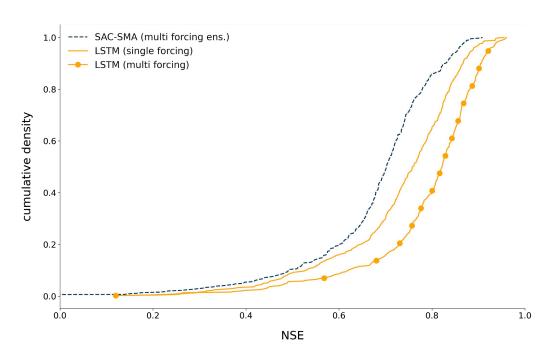




The Experimental Setup

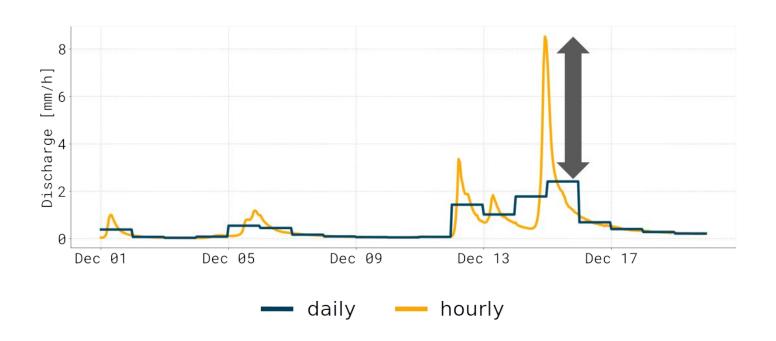


Leveraging Synergy of Multiple Forcings

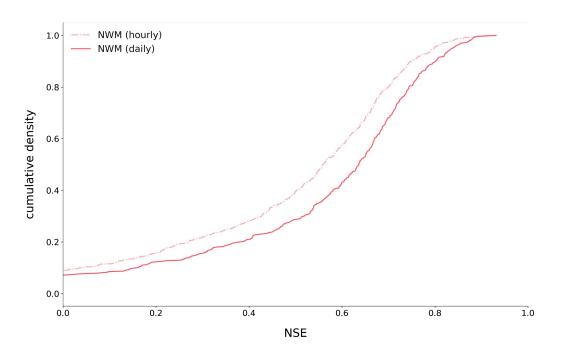


Kratzert, F., Klotz, D., Hochreiter, S., and Nearing, G. S.: A note on leveraging synergy in multiple meteorological datasets with deep learning for rainfall-runoff modeling, Hydrol. Earth Syst. Sci. Discuss., in review, 2020.

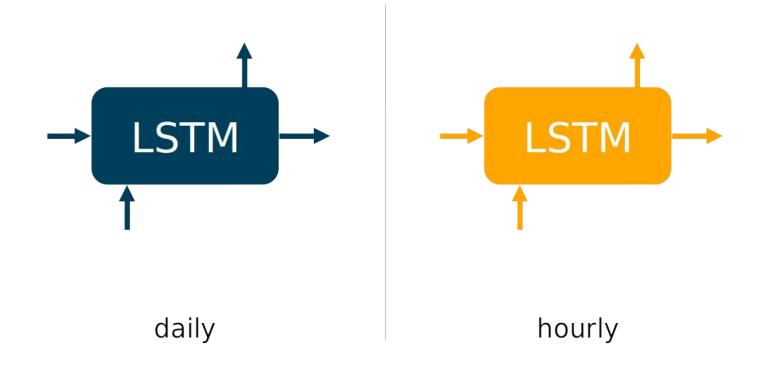
Higher Temporal Resolutions



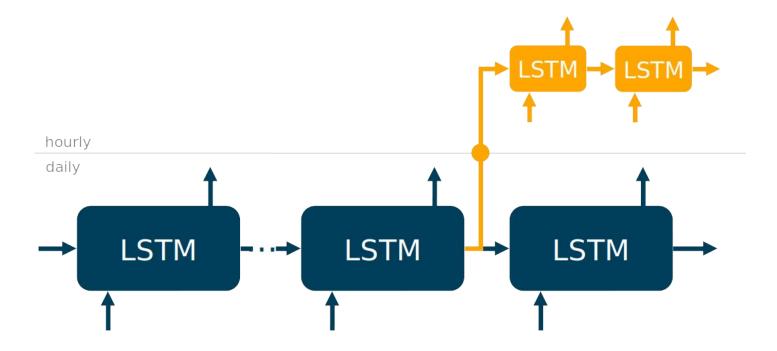
Temporal Frequencies



Naïve Solution

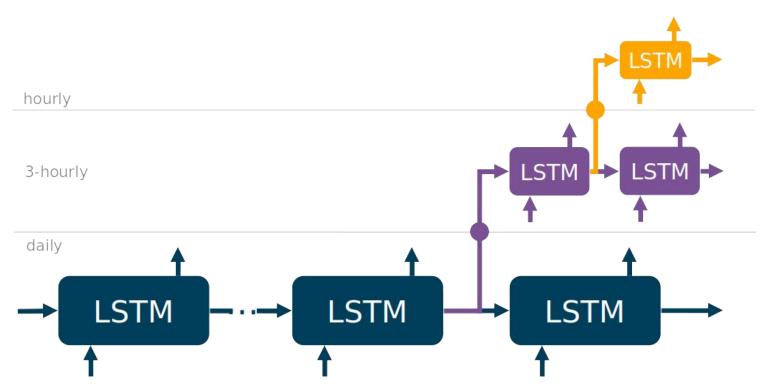


Multi-Timescale LSTM



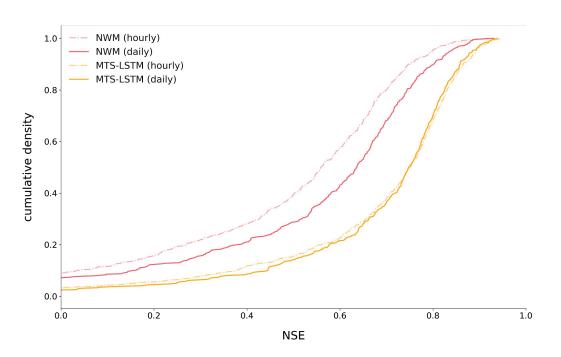
Gauch, M., Kratzert, F., Klotz, D., Nearing, G., Lin, J., and Hochreiter, S.: Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network, Hydrol. Earth Syst. Sci. Discuss., in review, 2020.

Multi-Timescale LSTM



Gauch, M., Kratzert, F., Klotz, D., Nearing, G., Lin, J., and Hochreiter, S.: Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network, Hydrol. Earth Syst. Sci. Discuss., in review, 2020.

Multi-Timescale LSTM



Gauch, M., Kratzert, F., Klotz, D., Nearing, G., Lin, J., and Hochreiter, S.: Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network, Hydrol. Earth Syst. Sci. Discuss., in review, 2020.

To Recap

- LSTM-based models are currently the <u>best hydrology models</u>
- Multi-basin training is the way to go
- Generalize to unseen regions and are better than locally calibrated hydrology models
- Leverage synergies from multiple forcing products to increase model performance
- Can provide predictions at multiple time-scales without loss in performance

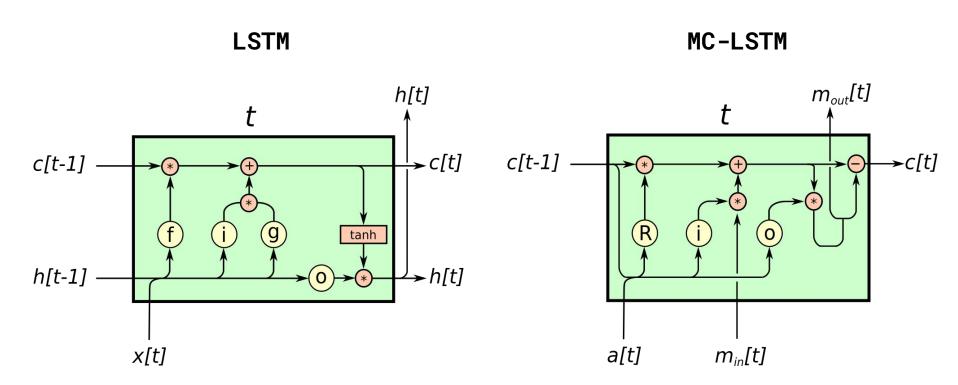
Physics Integration

Post-Processing



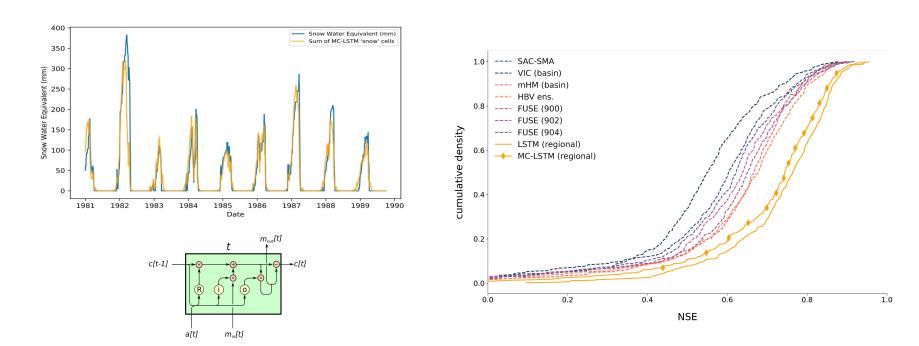
Frame, J., Nearing, G., Kratzert, F., Austin, R., Mashrekur, R.: Post-processing the U.S. National Water Model with a Long Short-Term Memory Network. Water Resources Research, in review, 2020. Pre-print: https://eartharxiv.org/repository/view/124/

Mass-Conserving LSTM



Hoedt, P.-J., Kratzert, F., Klotz, D., Halmich, C., Holzleitner, M., Nearing, G., Hochreiter, S., Klambauer, G.: MC-LSTM: Mass-Conserving LSTM, Submitted to International Conference on Learning Representations, 2021, in review, https://openreview.net/forum?id=Rld-90xQ6HU

Physics into Deep Learning Models



Hoedt, P.-J., Kratzert, F., Klotz, D., Halmich, C., Holzleitner, M., Nearing, G., Hochreiter, S., Klambauer, G.: MC-LSTM: Mass-Conserving LSTM, Submitted to International Conference on Learning Representations, 2021, in review, https://openreview.net/forum?id=Rld-90xQ6HU

The end

00:00 06 August 2002

