

DHR, A "CLEAN" DISTRICT HEATING REACTOR

Ke Guotu China Institute of Atomic Energy Jan 2021

.....

Breakdown of fuel use in district heating and cooling systems worldwide, 2014

- > Most district heating and cooling system energy is currently provided by fossil fuels
- > China's reliance on coal makes heat production particularly carbon-intensive, releasing around 400 gCO₂/kWh.

Coal and its products 43.0%

 \succ The carbon intensity is typically 150- $300 \text{ gCO}_2/\text{kWh}$ in Europe for massive use of renewable energy sources

Precipitous decline

Projected Chinese carbon emissions, billion tons

China aims to have CO2 emissions peak before 2030 and achieve carbon neutrality before 2060

 China will scale up its Intended Nationally Determined
Contributions by adopting more vigorous policies and measures

YANLONG (DHR)

<u>Deep-pool Low-temperature Heating Reactor (DHR)</u>

 The reactor core is placed in the bottom of an atmospheric-pressure pool

• A proper core outlet temperature that can meet the requirement of district heating system is achieved by increasing the static pressure of the water layer

Main parameters

......

item	parameter		
thermal power /MW	400		
Life/year	>60		
refueling period /EFPD	450		
inlet/outlet of core /°C	68/98		
O&M staff	35		
Land area/ha	<0.4		
Uses	Multipurpose		

Overall layout of a DHR heating station

Core configuration and fuel

Reactor pool and in pool components

Circuit configuration

- 3 circuits design, 2 stage heat exchange
- Take into attention to pump cavitation
- P_{heating}>P₂>P₁, to ensure radioactivity will not enter heating pipe

Plant-wide integrated DCS

000000

Main Feature for YANLONG

0000

1111

15

"Zero" Meltdown

.....

Automatic shutdown only relying on the negative reactivity feedback, without any intervention.

"Zero" radioactivity release

Multiple ways to reduce radioactive release

- An intermediate isolation circuit whose pressure is higher than that of the primary loop is set up to ensure that the water from the primary loop does not enter the heating loop.
- The reactor is equipped with four barriers, effectively isolating radioactivity
- Equipped with a gaseous and liquid effluence collection and treatment system

1111

"Zero" pollutant release

No carbon emission, no emission of NO_X , SO_2 , dust, ash, etc. DHR400 can reduce the use of about 320,000 tons of coal or 160 million cubic meters of NG per year, equivalent to 1300 hectares afforestation.

Heat source	CO ₂ (tons/y)	SO ₂ (tons/y)	NO _X (tons/y)	Dust(tons/y)	Ash(tons/y)	Radioactivity (mSv/person)	
Coal	520000	6000	2000	3200	100000	0.013	
Gas	260000		1000				
Nuclear	0	0	0	0	0	0.005	

Convenient O&M and Decommissioning

Automatic Operation

One key start-stop Automatic load-tracking

Easy Operation

No soluble boron, Normal pressure Cold start, Up to full power within hrs

Convenient maintenance

Pump and heat exchanger all located outside the pool

Green reuse of site

Smaller source term Decommission immediately

- DHR can access to the existing heat network directly
- Possible to retrofit decommissioned fossil plants

Simple connection

Multi-purpose

Energy application

- District heating supply
- Refrigeration(lithium-bromide absorption-type refrigerating machine)
- Desalination of Sea Water (low temp. multiple effect distillation(MED)
- Supply hot water for green-house, farming, cultivation, etc.

Non-heating season

Multi-purpose

Neutron Application

- Production of radioactive isotopes, ⁹⁹Mo,¹²⁵I,¹³¹I,etc.
- Material transmutation, NTD silicon, gem, topaz, pearl, etc.
- NAA, NRG, Neutron scattering, BNCT, etc.
- Production of nuclear pore membrane

Principle verification

00000

Project progress

Preliminary design is accomplished

Main equipment determined, all developed domestically, now being tested

Equipment	Fuel	Main pump	нх	DCS	In pool structure	Fuel handling	CRDM
Туре	CF3-S	Centrifugal pump or Mixed flow pump	Plate HX	Similar to PWR W		Wire rope	
Status	CHF experiment	Engineering available			Engineering verification test needed		

Exploring the regulations and standards for DHR, have made progress in communicating with Chinese regulatory authorities

Planned demonstration project

International cooperation

Meeting with Fortum Oyj from Finland, discussing nuclear district heating technologies and regulations.

- > DHR report on the IAEA annual meeting in 2018
- DHR report on the International Conference on Climate Change and the Role of Nuclear Power in 2019
 - The Chinese nuclear heating technology provides alternative to combat climate change
 - > The DHR design is widely acclaimed by experts from worldwide

Conclusion

Equipment and technology for DHR is mature and has high level of feasibility in engineering.

DHR is safe , environment-friendly and economically competitive.

DHR is an ideal alternative to coal-fired heating plant and would make an important contribution to worldwide goal on carbon emission reduction and environment protection.

CNNC Nordic R&D Center

CNNC Nordic R&D Center on-site office at Studsvik Technology Park

Establish ceremony of CNNC Nordic R&D Center, Oct. 12th, 2020

- CNNC Nordic R&D Center preparatory work started in 2019.
- Managed by CNNC Technology Quality and Information Department. Operated by CIAE in China and by Studsvik internationally.
- CNNC planned to send staff there but delayed by the raging pandemic situation.

CNNC Nordic R&D Center

Nuclear fuel and material testing

Collaborating with STUDSVIK Mechanical analysis and PCI of fuel cladding after irradiation

Pb-Bi cooled reactor

Collaborating with KTH

System analysis code development for residual heat removal after

accident

Light water reactor severe accident

Collaborating with KTH

Research on molten corewater reaction

Reactor water chemistry

Joining the SMILE project (Structural Margin Improvements in agedembrittled RPV with Load history Effects)

Advanced fuel Development

Collaborating with KTH

Nitride fuel fabrication, irradiation, testing, and fuel analysis model development

CNNC Nordic R&D Center

Nuclear Heating for Future City

Thanks for your attention

的复数形式 化结核 化结核 化合物合成 化合物 医脊髓炎 化化可能分解 化物可能 化化物 化合物合物 化分子分子 化化化物 化化化物 经有利金 化合物合金

