

Status of SMR R&D in China

Mr. Zengguang LEI China National Nuclear Corporation (CNNC) Jan 20, 2021

Contents

Applications of SMR in China

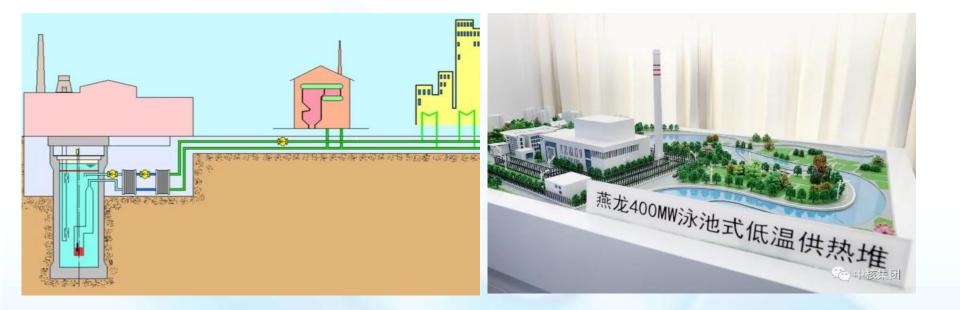
SMR R&D Status in China

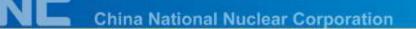
- General status
- ACP100
- DHR
- HTR-PM
- Prospects

Section I

Applications of SMR in China

Replacement for small coal power plants


Provide power for small-sized electricity grids



Regional heat supply

□Floating power plant

Sea water desalination

Section II

SMR R&D Status in China

- □ SMR R&D have been carried out since 1980s in China;
- □ Current status of SMR R&D in China:
 - Most SMRs are of PWR type and integral designed
 - Heavy metal SMRs are still in a very early stage
 - Integral SMR of PWR type is state-of-the-art
 - Multi-functional application
- Among a variety of designs, CNNC focuses on three main models:
 ACP100, DHR and HTR-PM.

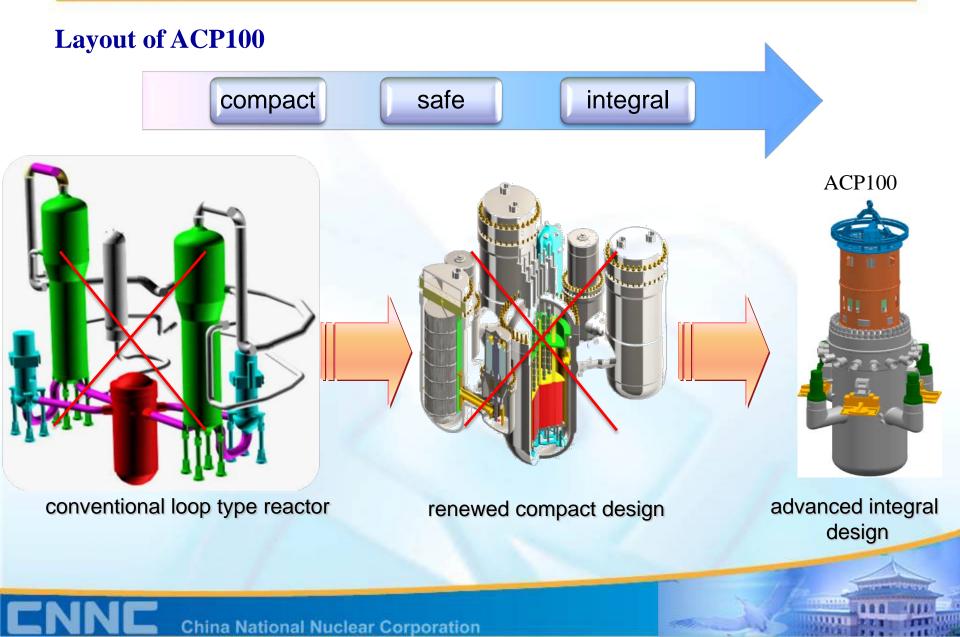
ACP100:

- The ACP100 is based on 50 years' experience on small reactors and 30 years' experience on power reactors.
- The preliminary design was completed in 2015.

A series of experiments were conducted on key components and systems.

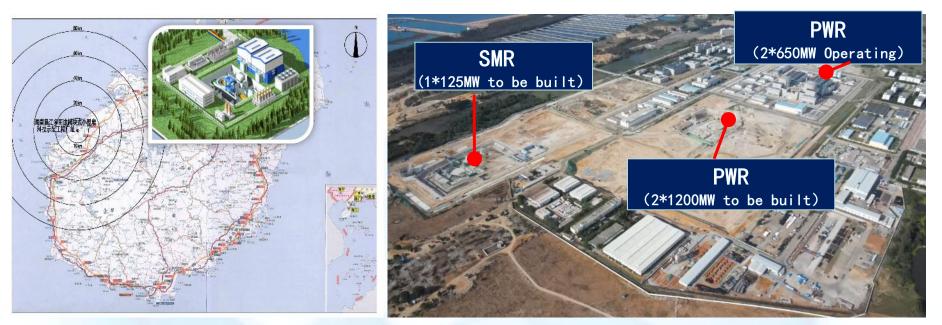
0000000 200

Mock-up of key equipment were tested.



The Specifications of ACP100 Demonstration Project

Parameters	Value	
Thermal power, MWth	385	
Electric power, MWe	126.5	
Reactor life, year	60	
Refueling period, year	2	
Core damage frequency (CDF)	<1E-6/year	
Large release frequency (LRF)	<1E-7/year	
Fuel type	AF3GS	
Number of fuel assemblies	57	
Core height, m	2.15	
Outlet temperature of SG, °C	293.8	
Pressure of SG, Mpa	4.5	
Feedwater flow rate, t/h	596.8	

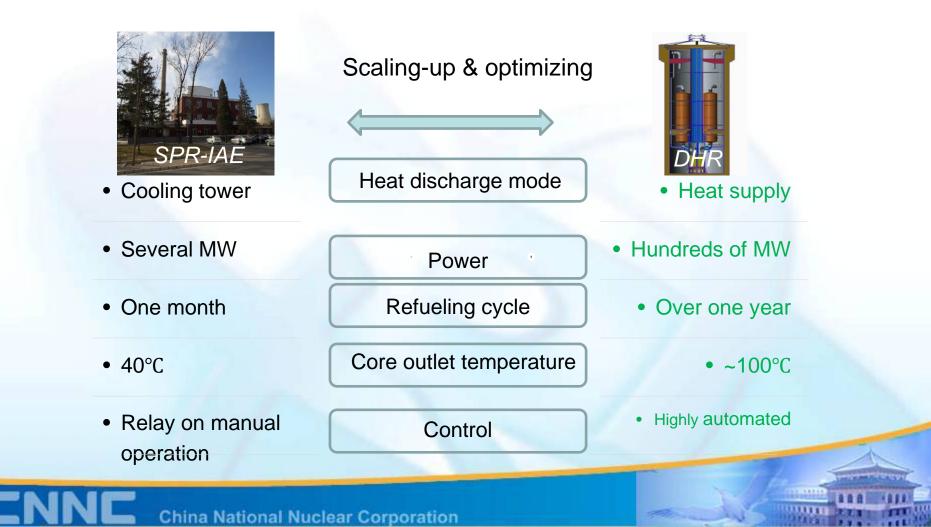

In Apr 22, 2016, ACP100 passed the Generic Reactor Safety Review (GRSR) undertaken by IAEA.

> ACP100 Demonstration Project: Linglong-1 in Changjiang, Hainan.

Development Milestones

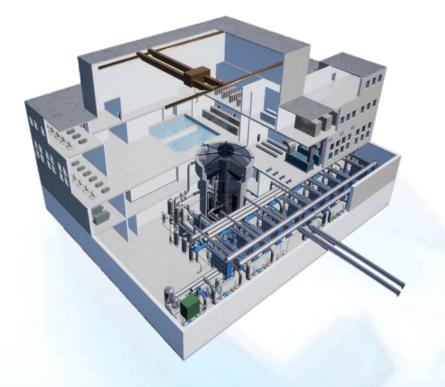
- > 2019.7.18 The start of the Linglong One demonstration project
- > 2020.6.23 NNSA approved the preliminary safety analysis report
- ➢ 2021 FCD

> The SMR site, up to Jun 30, 2020.



DHR:

- The DHR(Deep-pool Low-temperature Heating Reactor) is a pool type District Heating Reactor with a thermal power of 400 MW.
- Formally released in Beijing on November 28, 2017.


The DHR is developed on the basis of the light water swimming pool reactor (SPR-IAE).

	item	parameter	item	parameter
	thermal power /MW	400	enrichment of equilibrium refueling	3.10%
	cooling type	forced	refueling period /EFPD	450
	diameter of pool /m	10.0	average discharge burnup /GWD/tU	~30
	depth of pool /m	26	refueling number per year /assembly	24
	height of active zone /m	2.4	temperature of pool water /°C	68
	equivalent diameter of core /m	2.02	inlet/outlet of core /°C	68/98
	type of assembly	truncated PWR assembly(CF3 -S)	inlet/outlet of secondary circuit /°C	63.5/93.5
	number of assemblies	69	inlet/outlet of heating loop /°C	60/90
	form of assembly	17×17 ₋₂₅	pressure of core /MPa	0.6
	diameter of fuel rod /mm	9.5	pressure of secondary /MPa	1.2
	fuel loading of core /t	23.45	pressure of heating loop /MPa	1.6
	average linear power density /kW/m	8.87 ear Corporation	type of heat exchanger for primary circuit and secondary circuit	plate heat exchanger

- ✓ district heating
- ✓ sea water desalination
- ✓ radioisotope production

Features

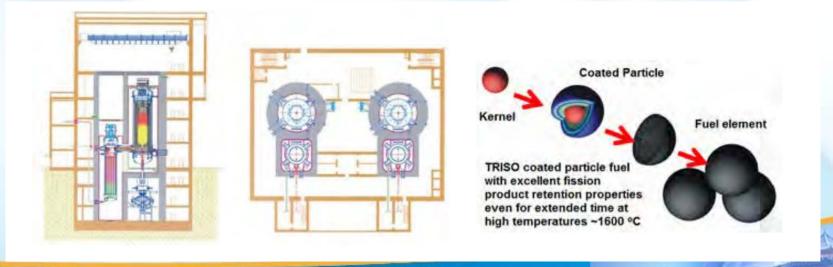
- zero core-melting
- easy decommissioning
- Iow investment requirement

- **Economy Evaluation**
 - Lower Construction cost
 - Cheaper than natural gas

Development Milestones

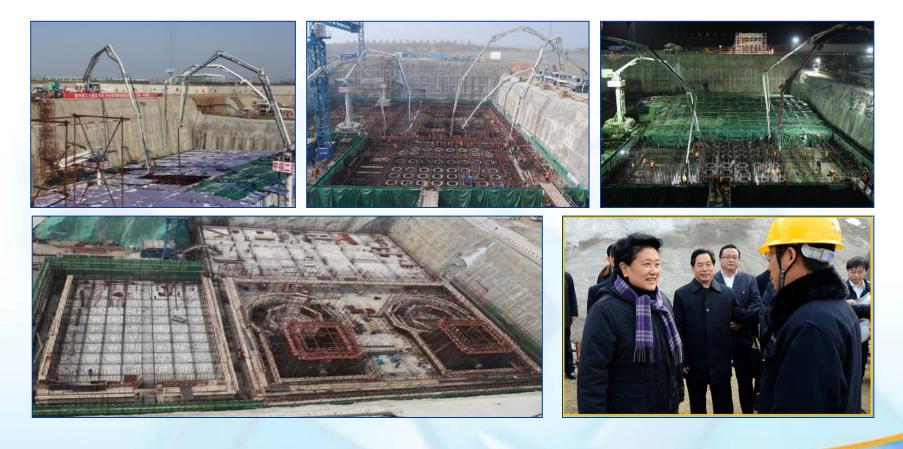
- ➤ 2017.11 The demonstration heating project of 49-2 SPR
- > 2017.11.28 Formally released DHR-400(in Chinese "Yanlong").
- ➤ 2020.7.6 CNNC officially submitted the project proposal to NEA.
- ➢ 2022.6 FCD
- 2024.6 Possess ability of heat supply

HTR-PM:


- Based on the success of HTR-10, HTR-PM inherits the characteristics of inherent safety and modular design.
- HTR-PM is the world's first commercial demonstration of high-temperature gas-cooled reactor which is considered one of the Generation IV reactors, and has two modules with a total capacity of 210 MWe.

CNNC SMR Design #3: HTR-PM

D Main Design Features


- Coolant/moderator : Helium/graphite
- Primary circulation: Forced circulation
- NSSS Operating Pressure(primary/secondary): 7MPa/13.25MPa
- ➢ Inlet/ outlet helium temperatures : 250/750°C
- Fuel type/assembly array: Spherical elements with coated particle fuel
- Refuelling Cycle (months): On-line refuelling

CNNC SMR Design #3: HTR-PM

The first concrete of HTR-PM demonstration power plant was poured on 9 December 2012, in Rongcheng, Shandong Province.

CNNC SMR Design #3: HTR-PM

Development Milestones

- ➢ 2012.12.9 FCD of Nuclear Island
- > 2014.9.7 FCD of Conventional island
- 2020.11.3 Cold Function Test completed
- 2020.12.30 Hot Function Test started
- 2021 Reactor reaches criticality
- ➢ 2022 Commercial operation

Section III Prospects

- Advanced SMR is playing an increasingly important role in the nuclear energy development of China. R&D has been carried out by many universities and research institutions.
 - water cooled SMR
 - high temperature gas cooled SMR
 - molten salt SMR, etc.

The key driving forces of SMR development :

- fulfilling the need for flexible power generation
- replacing ageing fossil-fired units
- enhancing safety performance
- offering better economic affordability.

- □ The deployment of SMR is still facing many challenges, more work should be taken:
 - Establishing regulations, design standards and supervision system for SMR
 - Public acceptance issues
 - Implementation of passive safety
 - Economically competitive

Thank you for your attention!