Flow in turbines during new operating procedures

Presenter:

Saeed Salehi

saeed.salehi@chalmers.se

Division of Fluid Dynamics Department of Mechanics and Maritime Sciences Chalmers University of Technology

Vattenkraftens FoU-dagar 6-7 October 2021

Motivation			
•00	0000000000	000000000	000000

Motivation

Motivation		
000		

- Power production from renewable energy resources are in high demand these days.
- Intermittency of renewable energy resources such as solar and wind
- Hydraulic turbines are designed to work in Best Efficiency Point (BEP)
- Nowadays they are being used more often under varying operating conditions to stabilize the electric grid.
- Significant pressure fluctuations and load variations that could reduce turbine lifetime.

Motivation		
000		

Transient operation

- What is happening during transient?
 - ✓ Changes in turbine load
 - ✓ Changes in flowrate
 - ✓ Changes in guide vanes angles
 - ✓ Changes in runner blades angles
 - ✓ Changes in runner rotational speed
- Different types of transient operations
 - ✓ Load acceptance (BEP to HL)
 - ✓ Load rejection (BEP to PL)
 - ✓ Sudden load removal (Spin-no-load)
 - Shutdown
 - 🗸 Startup

Francis turbine	
•0000000000	

Francis turbine

	Francis turbine	
	0000000000	
E : 00		
Eronoic ()()		

Francis-99

- High-head Francis turbine model (1:5.1 scale)
- Fully structured hex mesh with 16 million cells
- Transient operations:
 - Shutdown
 - 🗸 Startup
 - ✓ Load acceptance (BEP to HL)
 - ✓ Load rejection (BEP to PL)

	Francis turbine		
000	0000000000	000000000	000000

Operational condition

- Turbine shutdown, startup and load change procedures
- CFD code: OpenFOAM-v1912
- Dynamic mesh challenges:
 - ✓ Different mesh motion types at the same time
 - \checkmark Severe sensitivity of slipping points on flat surfaces development
 - $\checkmark~$ Remeshing and mapping the solution
- Simultaneous mesh deformation of the guide vane domain and solid body rotation of runner domain
- Laplacian smoothing mesh morphing, $\nabla\cdot(\Gamma\nabla\boldsymbol{\delta}_{\mathrm{cell}})=\mathbf{0}$

Saeed Salehi

Francis turbine	
0000000000	

Mesh motion

Francis turbine	
0000000000	

Vaneless space pressure

Startup, Pressure variation

Startup, Fluctuating pressure

- Very good agreement with experimental data
- Maximum relative error for the VL2 sensor is 4.9%
- Captured pulsations due to the Rotor-Stator Interaction (RSI)
- Low-frequency and high-amplitude oscillations due to Rotating Vortex Rope (RVR)

Saeed Salehi

	Francis turbine		
000	0000000000	000000000	000000

Pressure STFT

- Blade passing frequency $(f_{\rm b} = 30 f_{\rm n})$ is dominant
- $f_{\rm b} = 30 f_{\rm n}$ harmonics (e.g. $60 f_{\rm n}$) are also excited.
- low-frequency pulsation caused by Rotating Vortex Rope (RVR)

Francis turbine	
0000000000	

Shutdown velocity field

- Very good agreement with experiments
- Inception and expansion of a reversed flow region at the center
- Large oscillations due to the RVR between

	Francis turbine		
000	00000000000	000000000	000000

Startup velocity field

- Very good agreement with experiments
- Large oscillations due to the RVR between

000000000000000000000000000000000000000		Francis turbine		
	000	00000000000	000000000	000000

Shutdown: vortical structures at draft tube

	Francis turbine		
000	00000000000	000000000	000000

Startup: vortical structures at draft tube

Francis turbine	
00000000000	

Load change: vortical structures at draft tube

BEP to PL

BEP to HL

Rotating vortex rope

 $\alpha = 5.32^{\circ}, 55.5\%$ load (Part load)

- Shear layer instability (Kelvin-Helmholtz) ٠
- RVR is helically wrapped around the central stagnant region
- Stagnant region inflates and RVR vanishes
- It is possible to reduce or remove the RVR by diminishing the central wake region

	Kaplan turbine	
	•00000000	

Kaplan turbine

		Kaplan turbine	
000	0000000000	00000000	000000
			-

Mesh motion requirement

- Kaplan turbines transients: variation of both guide vane and runner blade angles at the same time as runner rotation
- Mesh motion types:
 - $\checkmark~$ Runner solid body rotation
 - ✓ Runner mesh deformation due to change in runner blades angles
 - $\checkmark~$ Guide vane mesh deformation due to change in guide vanes angles
 - Flow driven rotation of runner (variable rotational speed)
- The methodology is not available in standard OpenFOAM.

Dynamic mesh challenges in Kaplan turbine

- To have a smooth mesh deformation, points should slip on arbitrarily shaped (curved) boundary surfaces (e.g.runner hub and shroud).
- General slip condition is very sensitive (i.e., points do not follow the surface geometry)
- General slip removes the normal component (only tangential components is kept)

 $\boldsymbol{\delta}_{\parallel} = \boldsymbol{\delta} - (\boldsymbol{\delta} \cdot \hat{n}) \cdot \hat{n},$

- Explicit implementation has convergence issues
- Inside point does not *feel* movements on the slip BCs.
- Mesh deformation instability in small clearances (hub and shroud clearances)
- Simultaneous mesh deformation and solid body rotation
- Many developments and bug fixes are required for this complex mesh motion.

Novel mesh morphing approach

- The main idea is to have two different displacement fields (δ_0 and δ)
- Solve the Laplacian equation for each of those fields.

Predictor step:

- ✓ Laplacian solution gives intermediate displacement field (δ_0)
- \checkmark Conventional explicit slip is imposed on the surfaces

Corrector step:

- ✓ Tangential component of δ_0 is set as Dirichlet boundary condition for the main displacement field (δ)
- $\checkmark~$ Laplacian equation is solved for δ
- Now the inside points *feel* the slip boundary surface and move with the same curvature.
- Finally a solid body rotation around turbine axis on the runner morphed mesh

Francis turbine

Flowchart

	Kaplan turbine	
	000000000	

U9 Model

- Kaplan turbine model
- 1:3.875 scale model of a Porjus U9 prototype
- 6 runner blades and 20 guide vanes
- No experimental data during transient operating modes (Setup is under construction)
- 13 million cells in total

Saeed Salehi

Flow in turbines during new operating procedures

	Kaplan turbine	
	000000000	

Mesh motion (full domain)

		Kaplan turbine	
000	0000000000	0000000000	000000

Pressure probes

Static pressure for Probe 2

Pressure fluctuations for Probe 1

Pressure fluctuations for Probe 2

- Constant mean during the stationary BEP* and PL
- Linear change during transient
- Pressure fluctuations at Probe 1 are mostly affected by the Rotor-Stator Interaction (RSI)

	Kaplan turbine	
	000000000	

Pressure STFT

$$f_{\mathsf{b}} = f_0 \cdot Z_{\mathsf{b}}$$
$$f_{\mathsf{gv}} = f_0 \cdot Z_{\mathsf{gv}}$$

- Runner blade frequency and its harmonics are the dominant frequencies for Probe 1
- The guide vane passing frequency is also slightly excited
- Spectrogram of Probe 2 signifies the dominance of low frequencies due to rotating vortex rope and its breakup.

Saeed Salehi

		Kaplan turbine	
000	0000000000	00000000	000000

Vortical structures at draft tube

			Conclusions
000	0000000000	000000000	00000

Conclusions

Concluding remarks

- Francis turbine:
 - \checkmark Simultaneous mesh deformation of the guide vane domain and solid body rotation of runner domain
 - \checkmark Severe sensitivity of points slipping on flat surfaces.
 - $\checkmark\,$ High frequency RSI fluctuations as well as Low-frequency oscillations due to Rotating Vortex Rope (RVR) are well captured.
 - $\checkmark\,$ OpenFOAM provides a trustworthy CFD tool for prediction of transient operation of hydraulic turbines.
- Kaplan turbine:
 - ✓ Kaplan turbine transients involve an elaborate mesh motion, including mesh deformation, solid body rotation and slipping on curved surfaces.
 - ✓ Explicit slip boundary condition is not numerically stable and inside points cannot feel it.
 - $\checkmark\,$ A novel numerical framework in OpenFOAM is introduced to address this complex dynamic mesh phenomenon.
 - ✓ Current framework make inside points aware of slipped surfaces.
 - \checkmark The developed methodology was successfully tested on a Kaplan turbine model (U9).
- All the cases and codes will be available through the TurboWG in near future

		Conclusions
		000000
Publications		

- Saeed Salehi, Håkan Nilsson, Eric Lillberg and Nicolas Edh; "Numerical Simulation of Hydraulic Turbine During Transient Operation Using OpenFOAM", IOP Conf. Ser.: Earth Environ. Sci. 774 012058, 2021
- Saeed Salehi, Håkan Nilsson, Eric Lillberg and Nicolas Edh; "Development of a novel numerical framework in OpenFOAM to simulate Kaplan turbine transients", IOP Conf. Ser.: Earth Environ. Sci. 774 012058, 2021
- Saeed Salehi, Håkan Nilsson, Eric Lillberg and Nicolas Edh; "An in-depth numerical analysis of the transient flow field of a Francis turbine during shutdown", Renewable Energy 179 (2021) 2322–2347.
- Saeed Salehi, Håkan Nilsson; "Effects of uncertainties in positioning of PIV plane on validation of CFD results of a high-head Francis turbine model", Renewable Energy, 2021 (Revision submitted)
- Saeed Salehi, Håkan Nilsson; "OpenFOAM for Francis Turbine transients", OpenFOAM Journal 2021 (Revision submitted).
- Saeed Salehi, Håkan Nilsson; "Startup of a high-head Francis turbine: A detailed numerical study", To be submitted to Renewable Energy.

	Conclusions 000●00

Future works

- Understanding flow structures during off-design and transient operation using machine learning and dimensionality reduction algorithms.
- In-depth analysis of pulsating forces during load variation of Francis turbines
- Detailed analysis flow field inside Kaplan turbine during load change, shutdown, startup, etc.
- Improve the mesh deformation framework
- Add flow driven rotation of runner capability (6DOF solver) to the developed framework
- Validation of numerical results with experimental data (as soon as they are available)

Francis turbine

Kaplan turbine

Conclusions

Acknowledgments

The current research was carried out as a part of the "Swedish Hydropower Centre - $\mathsf{SVC}"$

The computations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC)

