Discharge Measurement Method

- Hydropower in Sweden stands for about 38% of total electricity generation (source: GlobalData 2018)
- Swedish hydropower plants were mostly built during 1950-70s and are now undergoing major refurbishments
- To calculate efficiency, discharge measurement is a necessary parameter to measure and the most challenging (low head plants head under 50 m)
- The Winter-Kennedy method is widely use in Sweden; a relative method for hydraulic turbines discharge estimation

Method	Туре	Development status for low head	Estimate d cost (MSEK)	Practical Uncertainty at 95% Confidence level
Winter-Kennedy	Relative	low	0.2	<±10% [7] [8] [9]
Pressure-time	Absolute	very low	0.2	$<\pm 1.4\%$ [10]
Transit time	Absolute	average	1	$<\pm 0.1\%$ [11]
Scintillation	Absolute	low	1	<± 0.5% [11]
Current meter	Absolute	Very good	1	$<\pm 1.2\%$ [11]
Dilution	Absolute	Very low	0.2	< ± 3% [12] [13]
Volumetric	Absolute	Very low	0.2	<± 1.2% [4]*
Model testing	Absolute	Very good	5	$<\pm 0.2\%$ [4]
*Uncertainty in an artig	ficial basin acco	rding to IEC41		

The Pressure-time Method (Gibson)

- An absolute method based on the Newton second law; conservation of Momentum. It consists in measuring the differential pressure between 2 cross-sections in a pipe of constant cross-section under a stop (regulated by the closure of the guide vanes)
- Accuracy $\pm (1.5-2.0)\%$
- The method cannot be used for continuous measurements
- It can be used to calibrate an inexpensive relative method such as the Winter-Kennedy method
- An alternative method to determine the efficiency step-up between an old and a new configuration after a refurbishment and complete Winter-Kennedy measurements
- The combination of the pressure-time method and the Winter-Kennedy method is attractive because simple to implement, maintain and economically attractive

The Pressure-time Method

The pressure-time method utilizes the inertia force manifesting in the pressure rise during a deceleration of the liquid mass flowing in a closed conduit (penstock in hydropower plant).

IEC major limitation:

- The measuring length with constant cross section must be greater than 10 m
- The measuring length times the initial velocity must exceed 50 $m^{2}\!/s$

$$Q = \frac{A}{\rho L} \int_0^t (\Delta P + \xi) dt + q$$

Q : the discharge A : the cross-sectional area ρ : is the water density

L : is the distance between the cross sections

 ΔP : the differential pressure ξ : the pressure loss due to friction q : the leakage flow after the closure

Project Objectives and Goals

- Develop the pressure-time method for low head machines independent of the intake geometry by combining experiments and numerical methods
 - Develop methodology to predict the flow rate from CFD and pressure measurements
 - Develop a test rig at LTU to test the new evaluation method
 - Validate the new method with measurements performed at Vattenfall test rig
 - Perform full-scale measurements to validate the new methodology
- Couple the new pressure-time method to the Winter-Kennedy method for continuous measurements

CFD

- NTNU Test Rig
- CFX
- Immersed Solid

Turbulence Modelling

SST K-w

- Freestream sensitivity
- Flow separation from smooth surfaces
- Enhanced wall treatment

Density variation

$$\rho = \frac{\rho_{\text{ref}}}{\left(1 - \frac{p - p_{\text{ref}}}{K}\right)} \quad (\text{kg m}^{-3}) \qquad K_f' = K_f / (1 + K_f D / eE)$$

where E, e, and D are Young's modulus of elasticity, pipe thickness, and pipe diameter, respectively. K_f is the fluid bulk modulus of elasticity

Time Step Sensitivity

Absolute pressure monitoring @ section 12 m upstream of valve

Mesh Independency

Absolute pressure monitoring @ section 12 m upstream of valve

Validation

- The experimental setup consists of other components such as fittings, elbows, and pipes with different areas
- The frequency of oscillation has been affected by total length of piping pulse length of reservoir tank which is unknow
- Immersed Solid can give "leakage" through the immersed solid (less than 1%)

Differential pressure sensor are located 36.67*D* and 50*D* upstream of the valve

Effects of Boundary Condition

Test Rig Design

- Test Flow Rate : 10 l/s
- Max Flow Rate : 15 l/s
- 1.5kW VFD
- AC Servo Motor with Driver for valve closure (0.5 s)

Test Rig

- Main piping : Stainless steel
- Pump and overflow line flexible pipe and plexiglass

Sensors

- Differential Pressure Transducers
 - Range of ±0.5 bar
- Electromagnetic Flow Measurement
- Photomicrosensor (Reflective)
- PIV
- 16-bit DAQ

Pressure-Time Method

$$Q = \frac{A_c}{\rho L} \int_0^{t_f} \left(\Delta p + \Delta p_f\right) dt + q$$

 $P_{loss} = kQ_i^2$

- Near the top of the pressure peaks
- IEC 41
- Adamkowski
- Using randomly distributed end points

End Point

• Uniformly distributed end points

Mean error = 0.22%

PTM end Point Standard IEC -CFD

Time (s)	Error %	
4.84298	0.2616	
4.95498	-0.8972	
5.06698	0.1471	
5.18098	-0.5901	
5.29298	0.0797	
5.40498	-0.4098	
5.51698	0.04519	

PTM end Point Adamkowski -CFD

Next Steps

- Troubleshooting of LTU test rig
- Validate methodology to predict the flow rate from CFD result in deceleration flow for pipe with variable cross section
- Validate the new method with measurements performed at Vattenfall test rig
- Perform full-scale measurements to validate the new methodology
- Couple the new pressure-time method to the Winter-Kennedy method for continuous measurements