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Hydropower in Sweden stands for about 38% of total
electricity generation (source: GlobalData 2018)

Nuclear, 20.0

Swedish hydropower plants were mostly built during
1950-70s and are now undergoing major refurbishments
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*Uncertainty in an artificial basin according to IEC41
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The Pressure-time Method (Gibson)

@
» An absolute method based on the Newton second law; conservation of Momentum. It consists in measuring the
differential pressure between 2 cross-sections in a pipe of constant cross-section under a stop (regulated by the
closure of the guide vanes)

» Accuracy +(1.5-2.0)%
» The method cannot be used for continuous measurements
* |t can be used to calibrate an inexpensive relative method such as the Winter-Kennedy method

» An alternative method to determine the efficiency step-up between an old and a new configuration after a
refurbishment and complete Winter-Kennedy measurements

» The combination of the pressure-time method and the Winter-Kennedy method is attractive because simple to
implement, maintain and economically attractive



The Pressure-time Method

The pressure-time method utilizes the inertia force
manifesting in the pressure rise during a deceleration
of the liquid mass flowing in a closed conduit
(penstock in hydropower plant).

IEC major limitation:

* The measuring length with constant cross section
must be greater than 10 m

» The measuring length times the initial velocity must
exceed 50 m?/s

Ap A

Start of flow cut-off
el

ssure difference ti

End of flow cut-off

Ap,

~y

A t
Q:—f (AP + &)dt + g
pL Jo

Q : the discharge

A : the cross-sectional area

p : is the water density

L : is the distance between the
cross sections

AP : the differential pressure

¢ : the pressure loss due to friction
g : the leakage flow after the
closure



Project Objectives and Goals

 Develop the pressure-time method for low head machines independent of the intake
geometry by combining experiments and numerical methods

« Develop methodology to predict the flow rate from CFD and pressure measurements
» Develop atest rig at LTU to test the new evaluation method

« Validate the new method with measurements performed at Vattenfall test rig
 Perform full-scale measurements to validate the new methodology

« Couple the new pressure-time method to the Winter-Kennedy method for continuous
measurements



CFD

D=0.3m and a length L=40m
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Turbulence
Modelling

SST K-m
 Freestream sensitivity

* Flow separation from smooth
surfaces

* Enhanced wall treatment

Density variation

p= ﬂref
| — P — Pref
K

where E, e, and D are Young’s modulus of elasticity, pipe thickness, and pipe
K:is the fluid bulk modulus of elasticity

=3
(kgm™) K, = K;/(1 + K;D/¢E)
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Mesh Independency
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Validation

20000

15000

* The experimental setup consists
of other components such as
fittings, elbows, and pipes with
different areas

10000

Exp

5000
——CFD

» The frequency of oscillation has
been affected by total length of
piping pulse length of reservoir ; - ; 5 A )
tank which is unknow

Diffrential Pressure (Pa)

-5000

« Immersed Solid can give
"leakage" through the immersed
solid (less than 1%) 10000

Time (s)

Differential pressure sensor are located 36.67D and 50D upstream of the valve



Average density (kg/m”3)

Effects of Boundary
Condition
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Test Rig Design

Test Flow Rate : 10 I/s
Max Flow Rate : 15 I/s
1.5kW VFD

AC Servo Motor with Driver for valve
closure (0.5)




« Main piping : Stainless steel

- « Pump and overflow line flexible pipe and
Test ng plexiglass




Sensors

Differential Pressure Transducers
» Range of +0.5 bar

Electromagnetic Flow Measurement
Photomicrosensor (Reflective)

PIV

16-bit DAQ
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250

250

B I




A [T
0=, (o +aop g

Pressure-

HUHH — ka

Time
Method

End point

» Near the top of the pressure peaks

« |[EC41

» AdamkowskKi

» Using randomly distributed end points

Initial flow rate (linear pressure losses
assumed)

v

Reynolds number, friction factor, unsteady
coefficient and roughness

v

Unsteady pressure losses

v

Unsteady Gibson’s flow rate

Convergence
riterion satisfied

Yes

Unsteady Gibson's
flow rate



Diff Press (Pa)

End Point
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« Uniformly distributed end points

Mean error = 0.22%
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PTM end Point Adamkowski -CFD
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Next Steps

 Troubleshooting of LTU test rig

 Validate methodology to predict the flow rate from CFD result in deceleration flow for
pipe with variable cross section

« Validate the new method with measurements performed at Vattenfall test rig
 Perform full-scale measurements to validate the new methodology

 Couple the new pressure-time method to the Winter-Kennedy method for continuous
measurements



