

Heavy section austenitic stainless steel for the future header and piping material in high-efficient biomass fired power plants

KME-801

Hugo Wärner, PhD Linköping University



Acknowledgment

2

Project group

Project manager:

Mattias Calmunger (Linköping University)

Members:

- Hugo Wärner (Linköping University, formar PhD student)
- Johan Moverare (Linköping University)
- Guocai Chai (Sandvik Materials Technology/Linköping University)
- Maria Sundqvist (Sandvik Materials Technology)
- Vesna Barišić (Sumitomo SHI FW)
- Kyösti Vänskä (Sumitomo SHI FW)
- Pasi Kortelainen (Sumitomo SHI FW)
- Bertil Wahlund (Energiforsk)

Outline

- Background
 - Project goals
 - Alloys
- Methods and results
 - Thermomechanical fatigue
- Summary and conclusions

KME 801 - Intro OCTOBER 28, 2021 5

Background

- Future power generation needs to be more efficient and flexible.
- Increasing demands on mechanical properties of the materials in critical components.
- Influence of cyclic high temperature deformation, creep and long-term service.

Gärdstadverken Linköping. Photo Åke E. Lindman

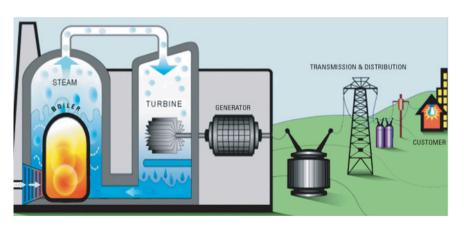


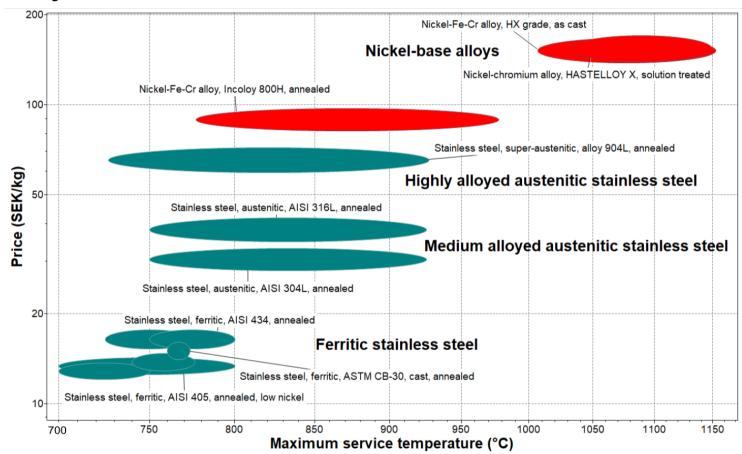
Image from Xcel Energy

KME 801 – Background OCTOBER 28, 2021

6

Project goals

The main purposes of this project are to evaluate the mechanical behaviors for structure safety and integrity analysis, namely:


- 1) To evaluate thermomechanical fatigue properties of new materials of critical components for safety and life evaluation since the biomass-fired power plants can start/shutdown quite often during service for energy saving and flexibility purposes in the future (done).
- 2) To **evaluate the fatigue crack propagation behavior** of new materials used in safety and reliability considerations since the material of critical components can undertake low cycle fatigue during the service (testing started).
- 3) To **evaluate the creep resistance** of new materials used in safety and reliability considerations since the material of critical components can undertake creep during the service (SSRT testing at LiU).
- 4) To evaluate the structure stability and the toughness of welded and aged material after long term service at high temperatures for safety analysis (testing will begin this autumn, welded material not available).
- 5) To evaluate the new candidate material compared to currently used materials using FE-models of the applications (preparing to start with TMF-testing of P91).

KME 801 – Background OCTOBER 28, 2021

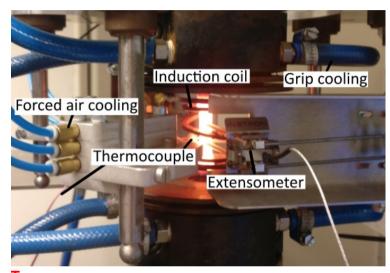
7

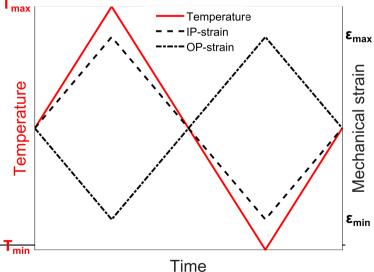
Alloys

Difference in price [SEK/kg] vs. Maximum service temperature [°C] for some power plant materials (From CES EduPack 2020).

Definition	Alloy	Approximate concentration of main alloying elements [wt%]
Nickel-base superalloy	Hastelloy X	Cr=22, Ni=47, Mo=9, Co=1.5, W=0.6, Mn=0.5, C=0.7, Si=0.5, Fe=17.5
Highly alloyed austenitic stainless steels	Sanicro 31HT (alloy 800HT) (*)	Cr=20.5 , Ni=30.5 , C=0.7, Mn=0.6, Si=0.6, Ti=0.5, Al=0 Nb=0.5, Fe=bal
	Sanicro 25 (*)	Cr=22.5 , Ni=25 , W=3.6 , Cu=3.0 , Co=1.5, Mn=0.5, Nb=0.5, N=0.23, Si=0.2, C=0.1, Fe=bal
	Alloy 904L	Cr=20.5, Ni=25.5, Mo=4.5, Cu=1.5, Mn=1, Si=0.5, C=0 N=0.05, Fe=bal
	AISI 310M	Cr=25.4 , Ni=19.2 , Mn=0.84, Si=0.55, Mo=0.11, Cu=0. N=0.04, C=0.015, Ti=0.001, Fe=bal
Medium alloyed austenitic stainless steels	Esshete 1250 (*)	Cr=15, Ni=9.5, Mn=6.3 , Nb=1, Mo=1, Si=0.5, V=0.3, C=0.1, Fe=bal
	AISI 304	Cr=18.3, Ni=10.3, Mn=1.4, Si=0.3, Cu=0.3, W=0.05, N=0.07, C=0.015, Fe=bal
	AISI 316L	Cr=17, Ni=12, Mn=1, Si=0.5, C=0.015, Fe=bal
Ferritic stainless steels	ASTM CB-30	Cr=19.5, Ni=1, Si=0.75, Mn=0.5, C=0.015, Fe=bal
	T/P122	Cr=12, W=2.0, Cu=1, Mn=0.6, Mo=0.4,V=0.2, Si=0.2, C=0.11, Nb=0.05, N=0.06, Fe=bal

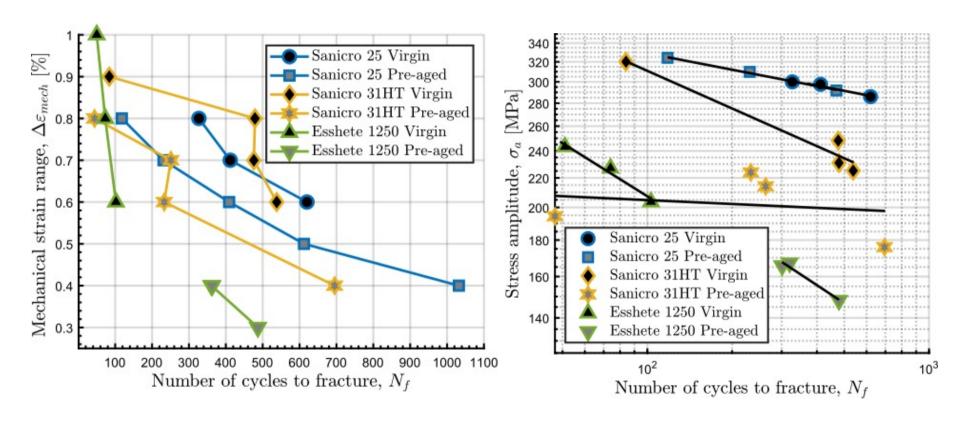
Methods and results

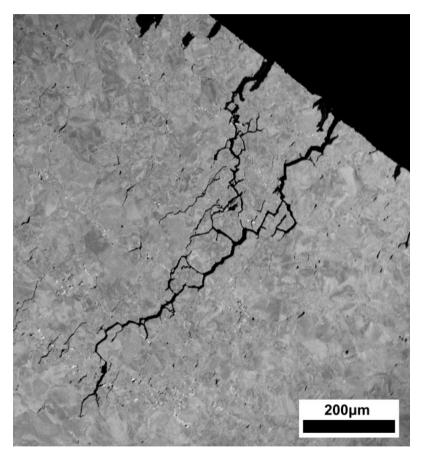

- Thermomechanical fatigue testing
 - Results and analysis



KME 801 – Methods and results OCTOBER 28, 2021 10

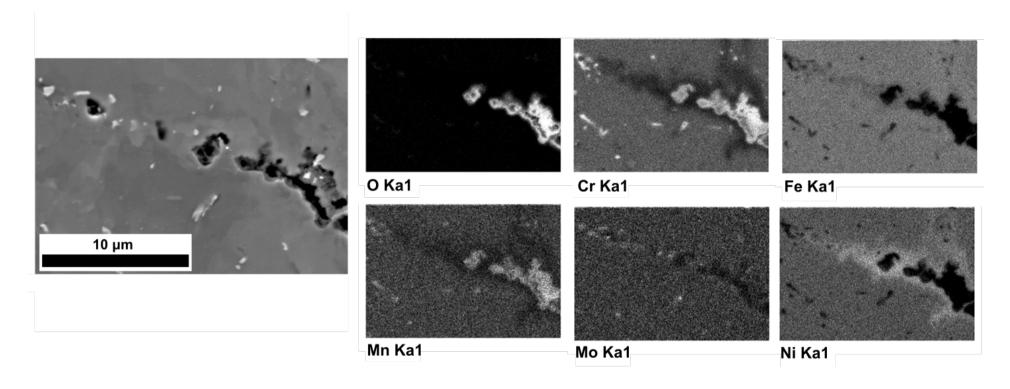
Thermomechanical fatigue testing (TMF)


- Cycle type
 - Phase-shift: In-Phase (IP), Out-of-Phase (OP)
 - Heating/Cooling rate: 5°C/s
 - Maximum temperature: 600, <u>650</u>,
 700, <u>800</u> °C
 - Minimum temperature: 100°C
- Instron 8801 servo hydraulic test machine
 - Strain controlled
- Ageing for 2000 (IP) and 3000h (OP) at maximum temperature



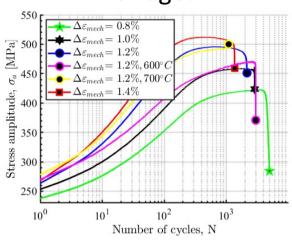
IP-TMF

IP-TMF: Failure mechanisms of Sanicro 25

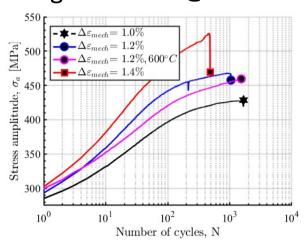

Micrograph of unaged Sanicro 25 with $\Delta\epsilon_{mech}=0.8\%.$ ~400 cycles.

Micrograph of aged Sanicro 25 with $\Delta \epsilon_{mech} = 0.6\%$. ~450 cycles.

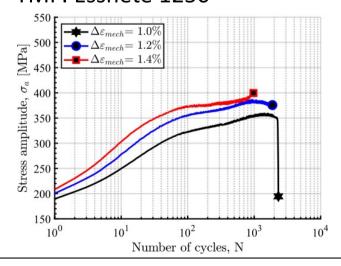
IP-TMF: Failure mechanisms of Sanicro 25

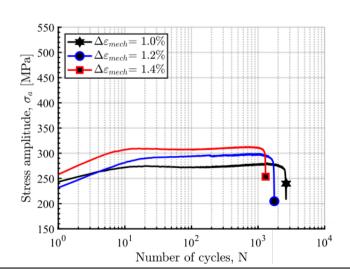


EDS analysis of aged Sanicro 25 with $\Delta \epsilon_{mech} = 0.6\%$ ~450 cycles.

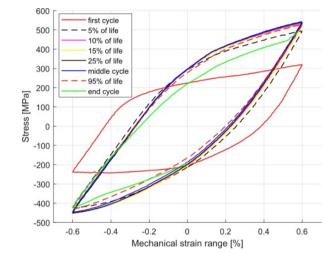


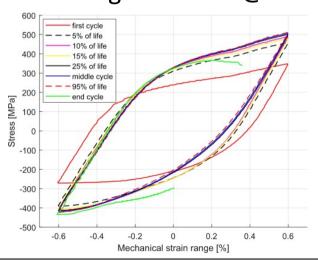
OP-TMF: Sanicro 25

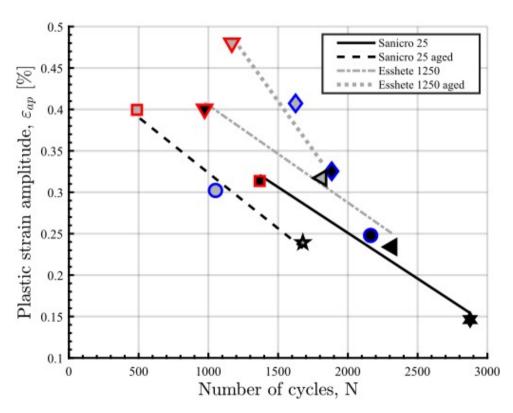

Unaged

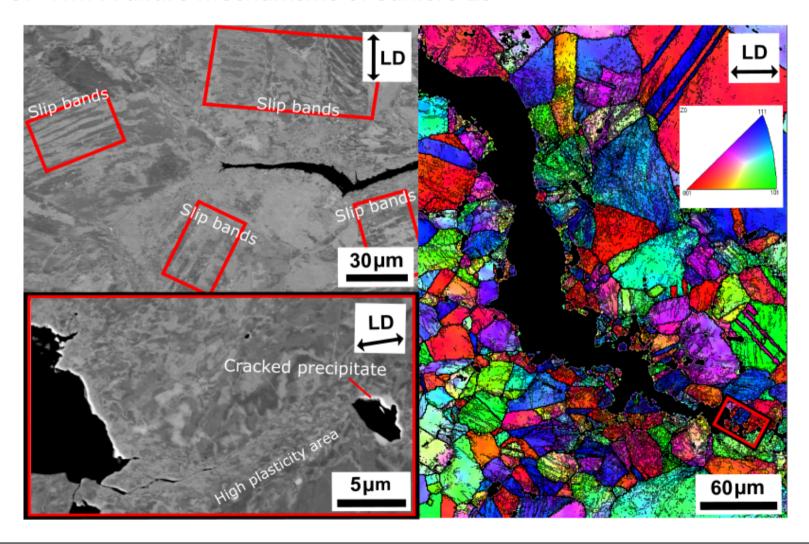


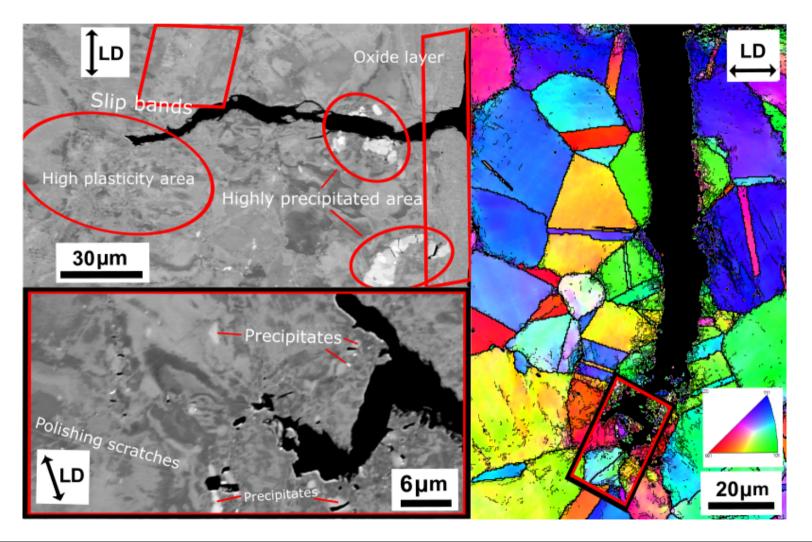
Aged 3000 h @ 650 °C


OP-TMF: Esshete 1250

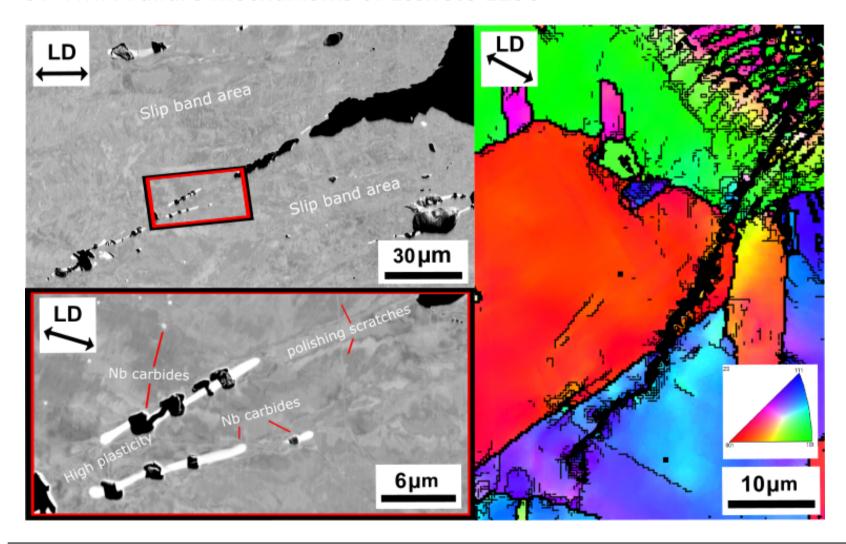




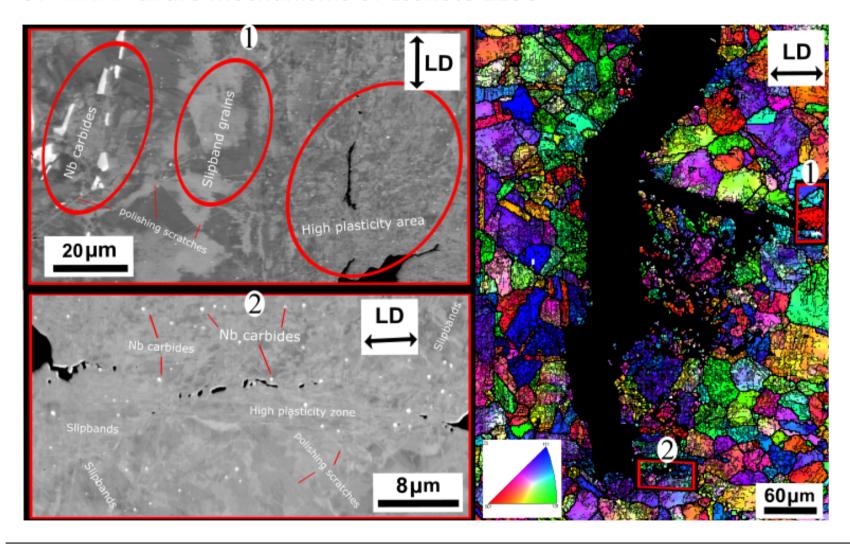

Sanicro 25 Aged 3000 h @ 650 $^{\rm o}$ C



OP-TMF: Failure mechanisms of Sanicro 25



OP-TMF: Failure mechanisms of Sanicro 25



OP-TMF: Failure mechanisms of Esshete 1250

OP-TMF: Failure mechanisms of Esshete 1250

Summary and conclusions

- Thermomechanical fatigue:
 - Detrimental effects from pre-ageing because of the deterioration of the microstructure, that enhanced creep, grain boundary embrittling and oxidation assisted cracking.
 - Cracking along the grain boundaries leading to fast fracture for the in-phase (IP)
 condition and transgranular propagating cracks for the out-of-phase (OP) condition.
 - OP-TMF crack propagation was assisted by slip band formation, cracking or decohesion
 of brittle precipitates and crack initiations from the oxidised surface, while the IP-TMF
 propagation was enhance by the embrittlement of the grain boundaries due to
 precipitation and oxidation assisted cracking.
- Future power plant boiler materials should possess high resistance to damage originating from high temperature plastic straining, creep and oxidation.

Thank you for your attention!

Publication list KME 501, 701, 801

- 1. <u>Deformation behaviour in advanced heat resistant materials during slow strain rate testing at elevated temperature</u> Theoretical and Applied Mechanics Letters, 2014, 4(041004), .
- 2. <u>Mechanical Behaviours of Alloy 617 with Varied Strain Rate at High Temperatures</u> Materials Science Forum, 2014, 783-786, 1182-1187.
- 3. <u>Influence of deformation rate on mechanical response of an AISI 316L austenitic stainless steel</u> Advanced Materials Research, 2014, 922, 49-54.
- 4. <u>Long Term High-Temperature Environmental Effect on Impact Toughness in Austenitic Alloys</u> Key Engineering Materials, 2015, 627, 205-208.
- 5. <u>Damage and Fracture Behaviours in Aged Austentic Materials During High-Temperature Slow Strain Rate Testing</u> Key Engineering Materials, 2014, 592-593, 590-593.
- 6. <u>Advanced Microstructure Studies of an Austenitic Material Using EBSD in Elevated Temperature In-Situ Tensile Testing in SEM</u> Key Engineering Materials, 2014, 592-593, 497-500.
- 7. <u>Influence of High Temperature Ageing on the Toughness of Advanced Heat Resistant Materials</u> 13th International Conference on Fracture (ICF13), June 16-21, Beijing, China, 2013.
- 8. <u>Damage and Fracture Behaviours in Advanced Heat Resistant Materials During Slow Strain Rate Test at High Temperature</u> 13th International Conference on Fracture (ICF13), June 16-21, Beijing, China, 2013.
- 9. <u>Influence of Dynamic Strain Ageing on Damage in Austenitic Stainless Steels</u> 19th European Conference on Fracture (ECF19), August 26-31 2012, Kazan, Russia, 2012.

Cont. Publication list

- 10. <u>Surface Phase Transformation in Austenitic Stainless Steel Induced by Cyclic Oxidation in Humidified Air</u> Corrosion Science, 2015, 100, 524-534.
- 11. <u>Creep and Fatigue Interaction Behavior in Sanicro 25 Heat Resistant Austenitic Stainless Steel</u> Transactions of the Indian Institute of Metals, 2016, 69, 337-342.
- 12. <u>Local surface phase stability during cyclic oxidation process</u> Materials Science Forum, 2017, 879, 855-860
- 13. <u>Influence of dynamic strain ageing and long term ageing on deformation and fracture behaviors of Alloy 617</u> Materials Science Forum, 2017, 879, 306-311
- 14. <u>Toughening Behavior in Alloy 617 with Long Term Ageing</u> Solid State Phenomena, 2017, 258, 302-305
- 15. <u>Creep-fatigue interaction in heat resistant austenitic alloys</u> MATEC Web of Conferences 2018, 165, 05001
- 16. <u>Fracture and Damage Behavior in an Advanced Heat Resistant Austenitic Stainless Steel During LCF, TMF and CF</u> Procedia Structural Integrity, Volume 13, 2018, Pages 843-848
- 17. <u>Thermomechanical Fatigue Behaviour of Aged Heat Resistant Austenitic Alloys</u> International Journal of Fatigue, nr 127, 2019, s. 509-521
- 18. <u>Structural Integrity and Impact Toughness of Austenitic Stainless Steels</u>
 Proceedings of the 13th International Conference on the Mechanical Behaviour of Materials 2019, s. 270-275

Cont. Publication list

19. <u>Influence of Ageing on Thermomechanical Fatigue of Austenitic Stainless Steels</u> Procedia Structural Integrity, Elsevier, 2019, Vol. 23, s. 354-359

20. <u>Microstructural Evolution During High Temperature Dwell-fatigue of Austenitic Stainless Steels</u> International Journal of Fatigue Vol. 143, 2021 artikel-id 105990

In addition, two Master thesis *Thermal mechanical fatigue behaviour of aged heat resistant austenitic alloys* (Wärner, 2016) and *The Influence of Dynamic Strain Aging on Austenitic Stainless Steels* (Calmunger, 2011), two Licentiate thesis *High-Temperature Behaviour of Austenitic Alloys* (Calmunger, 2013) and *High-Temperature Fatigue Behaviour of Austenitic Stainless Steel: Influence of Ageing on Thermomechanical Fatigue and Creep-Fatigue Interaction* (Wärner 2018) and two PhD theses *On High-Temperature Behaviours of Heat Resistant Austenitic Alloys* (Calmunger, 2015) and *High Temperature Fatigue Behaviour of Austenitic Stainless Steel: Microstructural Evolution during Dwell-Fatigue and Thermomechanical Fatigue* (Wärner, 2021) have been produced within KME 501, 701 and 801.

