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Background

* Future power generation needs to
be more efficient and flexible.

. . P Py u{
* Increasing demands on mechanical _'3"1 _flﬁ‘ﬁﬁ’.‘.‘h
properties of the materials in critical Girdstadverken Linkping,
com ponents_ Photo Ake E. Lindman

TRANSMISSION & DISTRIBUTION

* Influence of cyclic high temperature
deformation, creep and long-term ‘
service. Y = N
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Project goals

The main purposes of this project are to evaluate the mechanical behaviors for structure safety and
integrity analysis, namely:

1) To evaluate thermomechanical fatigue properties of new materials of critical components for safety
and life evaluation since the biomass-fired power plants can start/shutdown quite often during service
for energy saving and flexibility purposes in the future (done).

2) To evaluate the fatigue crack propagation behavior of new materials used in safety and reliability
considerations since the material of critical components can undertake low cycle fatigue during the

service ( ).

3) To evaluate the creep resistance of new materials used in safety and reliability considerations since
the material of critical components can undertake creep during the service ( ).

4) To evaluate the structure stability and the toughness of welded and aged material after long term
service at high temperatures for safety analysis ( welded material not
available).

5) To evaluate the new candidate material compared to currently used materials using FE-models of
the applications ( ).
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Alloys

Nickel- Fe Cr alloy, HX grade as cast
Nlckel base aIons
3 g Nlckel chromlum alloy, HASTELLOY X, solutlon treated
Nickel-Fe-Cr alloy, Incoloy 800H, annealed { 1 ; ; |
O ’( ——————————————————————— S EEE——
.ﬁ% steel, super -austenitic, alloy 904L, annealed
g’ - Highly alloyed austenltlc stalnless steel
NP DO ———————
% Stainless steel austenitic, AISI 316L, annealed § 3 ‘
Q
2 edlum aIoned austenitic stalnless steel
£ ’ | R
Stainless steel, austenltlc AlSI 304L, annealed
201
Stainless steel, ferritic, AISI 434, annealed
Ferritic stamless steel
Stalnless steel, ferritic, ASTM CB 30, cast, annealed
10- Stainless steel, ferritic, AISI 405, annealed low nickel | |
700 750 800 850 900 950 1000 1050 1100 1150

Maximum service temperature (°C)

Difference in price [SEK/kg] vs. Maximum service temperature [°C] for some power plant materials (From CES
EduPack 2020).
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Approximate concentration of main
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/Is (From CES

e Bl Definition .
alloying elements [wt%]
Nickel-base Hastelloy X Cr=22, Ni=47, Mo=9, Co=1.5, W=0.6, Mn=0.5, C=0.7,
o0l Su pera”oy S|=05, Fe=17.5
Sanicro 31HT Cr=20.5, Ni=30.5, C=0.7, Mn=0.6, Si=0.6, Ti=0.5, Al=0.5
(alloy 800HT) (*) | Nb=0.5, Fe=bal
° Highly alloyed . * Cr=22.5, Ni=25, W=3.6, Cu=3.0, Co=1.5, Mn=0.5,
S sof- o Sanicro 25 (¥) Nb=0.5, N=0.23, Si=0.2, C=0.1, Fe=bal
i austenitic
7} . Cr=20.5, Ni=25.5, Mo=4.5, Cu=1.5, Mn=1, 5i=0.5, C=0.1,
" stainless steels | Alloy 904L N=0.05, Fe=bal
S Cr=25.4, Ni=19.2, Mn=0.84, 5i=0.55, Mo=0.11, Cu=0.08,
AlSI 310M N=0.04, C=0.015, Ti=0.001, Fe=bal
| . « | Cr=15,Ni=9.5, Mn=6.3, Nb=1, Mo=1, 5i=0.5, V=0.3,
20 Medium Esshete 1250 (*) | (07 Fecp
alloyed AlS| 304 Cr=18.3, Ni=10.3, Mn=1.4, 5i=0.3, Cu=0.3, W=0.05,
austenitic N=0.07, C=0.015, Fe=bal
o stainless steels | Aisi316L Cr=17, Ni=12, Mn=1, $i=0.5, C=0.015, Fe=bal
7 Ferritic ASTM CB-30 Cr=19.5, Ni=1, Si=0.75, Mn=0.5, C=0.015, Fe=bal
inl | Cr=12, W=2.0, Cu=1, Mn=0.6, M0=0.4,V=0.2, 5i=0.2,
Difference&Sta ess steels | 1/p122 C=0.11, Nb=0.05, N=0.06, Fe=bal
EduPack 202voy-
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Thermomechanical fatigue testing (TMF)

 Cycle type N
— Phase-shift: In-Phase (IP), Out-of- . g W nduction coill
Phase (OP) Forced air cooling|ERg =
— Heating/Cooling rate: 5°C/s -
— Maximum temperature: 600, 650, -~ v
700, 800 °C ' | |
— Minimum temperature: 100°C
* Instron 8801 servo hydraulic test Trnax Temporature
machine ~oraman S

— Strain controlled

 Ageing for 2000 (IP) and 3000h (OP)
at maximum temperature

Temperature
Mechanical strain

£min

Time
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IP-TMF: Failure mechanisms of Sanicro 25

Micrograph of unaged Sanicro 25 with Ag; o, = 0.8%.  Micrograph of aged Sanicro 25 with Ag,,.0, = 0.6%.
~400 cycles. ~450 cycles.
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IP-TMF: Failure mechanisms of Sanicro 25

Mn Ka1 Mo Ka1 Ni Ka1

EDS analysis of aged Sanicro 25 with Ag, o, = 0.6% ~450 cycles.
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OP-TMF: Sanicro 25
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OP-TMF: Failure mechanisms of Sanicro 25
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OP-TMF: Failure mechanisms of Sanicro 25
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OP-TMF: Failure mechanisms of Esshete 1250
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OP-TMF: Failure mechanisms of Esshete 1250
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Summary and conclusions

* Thermomechanical fatigue:

* Detrimental effects from pre-ageing because of the deterioration of the microstructure,
that enhanced creep, grain boundary embrittling and oxidation assisted cracking.

* Cracking along the grain boundaries leading to fast fracture for the in-phase (IP)
condition and transgranular propagating cracks for the out-of-phase (OP) condition.

e OP-TMF crack propagation was assisted by slip band formation, cracking or decohesion
of brittle precipitates and crack initiations from the oxidised surface, while the IP-TMF
propagation was enhance by the embrittlement of the grain boundaries due to
precipitation and oxidation assisted cracking.

* Future power plant boiler materials should possess high resistance to damage originating
from high temperature plastic straining, creep and oxidation.
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