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Background

• Future power generation needs to 
be more efficient and flexible.

• Increasing demands on mechanical 
properties of the materials in critical 
components.

• Influence of cyclic high temperature 
deformation, creep and long-term 
service.

Gärdstadverken Linköping. 
Photo Åke E. Lindman

Image from Xcel Energy

Fuel
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Project goals
The main purposes of this project are to evaluate the mechanical behaviors for structure safety and 
integrity analysis, namely:

1) To evaluate thermomechanical fatigue properties of new materials of critical components for safety 
and life evaluation since the biomass-fired power plants can start/shutdown quite often during service 
for energy saving and flexibility purposes in the future (done).

2) To evaluate the fatigue crack propagation behavior of new materials used in safety and reliability 
considerations since the material of critical components can undertake low cycle fatigue during the 
service (testing started).

3) To evaluate the creep resistance of new materials used in safety and reliability considerations since 
the material of critical components can undertake creep during the service (SSRT testing at LiU).

4) To evaluate the structure stability and the toughness of welded and aged material after long term 
service at high temperatures for safety analysis (testing will begin this autumn, welded material not 
available).

5) To evaluate the new candidate material compared to currently used materials using FE-models of 
the applications (preparing to start with TMF-testing of P91).
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Difference in price [SEK/kg] vs. Maximum service temperature [°C] for some power plant materials (From CES 
EduPack 2020).

Alloys

KME 801 – Background
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Difference in price [SEK/kg] vs. Maximum service temperature [°C] for some power plant materials (From CES 
EduPack 2020).

Definition Alloy Approximate concentration of main 
alloying elements [wt%]

Nickel-base 
superalloy

Hastelloy X Cr=22, Ni=47, Mo=9, Co=1.5, W=0.6, Mn=0.5, C=0.7, 
Si=0.5, Fe=17.5

Highly alloyed 
austenitic 
stainless steels

Sanicro 31HT 
(alloy 800HT) (*)

Cr=20.5, Ni=30.5, C=0.7, Mn=0.6, Si=0.6, Ti=0.5, Al=0.5 
Nb=0.5, Fe=bal

Sanicro 25 (*) Cr=22.5, Ni=25, W=3.6, Cu=3.0, Co=1.5, Mn=0.5, 
Nb=0.5, N=0.23, Si=0.2, C=0.1, Fe=bal

Alloy 904L Cr=20.5, Ni=25.5, Mo=4.5, Cu=1.5, Mn=1, Si=0.5, C=0.1, 
N=0.05, Fe=bal

AISI 310M Cr=25.4, Ni=19.2, Mn=0.84, Si=0.55, Mo=0.11, Cu=0.08, 
N=0.04,  C=0.015, Ti=0.001, Fe=bal

Medium 
alloyed 
austenitic 
stainless steels

Esshete 1250 (*) Cr=15, Ni=9.5, Mn=6.3, Nb=1, Mo=1, Si=0.5, V=0.3, 
C=0.1, Fe=bal

AISI 304 Cr=18.3, Ni=10.3, Mn=1.4, Si=0.3, Cu=0.3, W=0.05, 
N=0.07, C=0.015, Fe=bal

AISI 316L Cr=17, Ni=12, Mn=1, Si=0.5, C=0.015, Fe=bal

Ferritic 
stainless steels

ASTM CB-30 Cr=19.5, Ni=1, Si=0.75, Mn=0.5, C=0.015, Fe=bal

T/P122 Cr=12, W=2.0, Cu=1, Mn=0.6, Mo=0.4,V=0.2, Si=0.2, 
C=0.11, Nb=0.05, N=0.06, Fe=bal 

KME 801 – Background: Alloys
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Thermomechanical fatigue testing (TMF)
• Cycle type

– Phase-shift: In-Phase (IP), Out-of-
Phase (OP)

– Heating/Cooling rate: 5°C/s
– Maximum temperature: 600, 650, 

700, 800 °C
– Minimum temperature: 100°C

• Instron 8801 servo hydraulic test 
machine
– Strain controlled

• Ageing for 2000 (IP) and 3000h (OP) 
at maximum temperature

KME 801 – Methods and results
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IP-TMF

KME 801 – Methods and results: Thermomechanical fatigue (TMF)
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IP-TMF: Failure mechanisms of Sanicro 25 

Micrograph of aged Sanicro 25 with ∆ε!"#$ = 0.6%.
~450 cycles.

Micrograph of unaged Sanicro 25 with ∆ε!"#$ = 0.8%.
~400 cycles.

KME 801 – Methods and results: Thermomechanical fatigue (TMF)
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IP-TMF: Failure mechanisms of Sanicro 25 

EDS analysis of aged Sanicro 25 with ∆ε!"#$ = 0.6% ~450 cycles.

KME 801 – Methods and results: Thermomechanical fatigue (TMF)
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OP-TMF: Sanicro 25
Unaged Aged 3000 h @ 650 °C

OP-TMF: Esshete 1250

KME 801 – Methods and results: Thermomechanical fatigue (TMF)
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Sanicro 25 unaged

Sanicro 25 Aged 3000 h @ 650 °C

KME 801 – Methods and results: Thermomechanical fatigue (TMF)
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OP-TMF: Failure mechanisms of Sanicro 25

Micrograph of unaged Sanicro 25 with ∆ε!"#$ = 1.2% .
~2180 cycles.

KME 801 – Methods and results: Thermomechanical fatigue (TMF)
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OP-TMF: Failure mechanisms of Sanicro 25

Micrograph of aged Sanicro 25 with ∆ε!"#$ = 1.2% .
~1050 cycles.

KME 801 – Methods and results: Thermomechanical fatigue (TMF)



OCTOBER 28, 2021 18

OP-TMF: Failure mechanisms of Esshete 1250

Micrograph of unaged Esshete1250 with ∆ε!"#$ = 1.2% .
~1800 cycles.

KME 801 – Methods and results: Thermomechanical fatigue (TMF)



OCTOBER 28, 2021 19

OP-TMF: Failure mechanisms of Esshete 1250

Micrograph of aged Esshete1250 with ∆ε!"#$ = 1.2% .
~1600 cycles.

KME 801 – Methods and results: Thermomechanical fatigue (TMF)
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• Thermomechanical fatigue:

• Detrimental effects from pre-ageing because of the deterioration of the microstructure, 
that enhanced creep, grain boundary embrittling and oxidation assisted cracking.

• Cracking along the grain boundaries leading to fast fracture for the in-phase (IP) 
condition and transgranular propagating cracks for the out-of-phase (OP) condition.

• OP-TMF crack propagation was assisted by slip band formation, cracking or decohesion 
of brittle precipitates and crack initiations from the oxidised surface, while the IP-TMF 
propagation was enhance by the embrittlement of the grain boundaries due to 
precipitation and oxidation assisted cracking.

• Future power plant boiler materials should possess high resistance to damage originating 
from high temperature plastic straining, creep and oxidation.

Summary and conclusions



Thank you for your attention!
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