

Developing a co-simulation platform to evaluate impacts of grid faults in NPPs Results from the COSI project Sergio Motta, VTT Technical Research Centre of Finland Ltd.

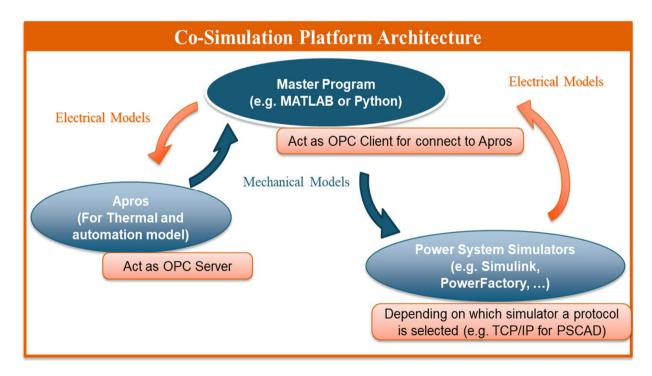
Agenda

- Motivations
- Developing a co-simulation platform
- Models and testing the platform
- Fault-based studies
- Conclusions and future work

Why create a co-simulation platform?

Motivations behind the COSI project

- Nuclear power plants (NPP) are usually treated as black boxes in power system studies
 - Studies performed in electrical simulation software
- Safety assessment and simulations for NPPs typically refrain from the off-site grid
 - Thermomechanical and reactor-physical systems are the focus of these studies


COSI idea overview

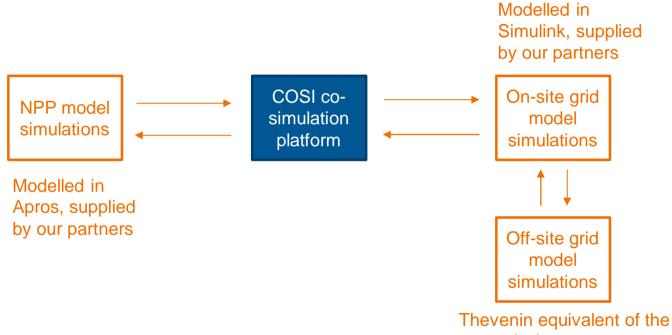
- COSI develops a detailed simulation tool for integrating on-site electric power system, off-site high voltage power system, and thermomechanical, reactor-physical and automation models.
- The simulation tool can be used for evaluating
 - Adequacy of safety requirements of the electrical systems in NPP
 - Impacts of grid disturbances on NPP behaviour
 - Impacts of NPP operating modes on the grid
 - We focus on the power grids that support the NPP (on- and off-site)
- SAFIR2022 project funding and support from Energiforsk, Fingrid and our Steering Group members

Developing the COSI platform

Combining thermomechanical simulation models with electrical simulation models

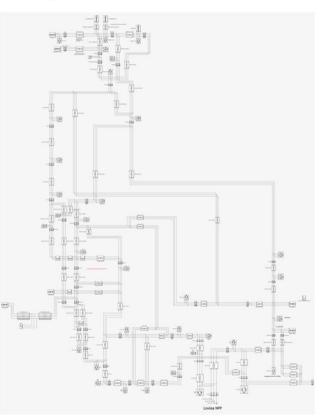
- Establish a communication and data exchange between the simulation of NPP models in Apros and electrical models in Simulink
- Master file developed in MATLAB, future plans to take it to open access (2022?)
- Plans for support different electrical simulation tools (2022?)

VTT


Linking two simulations for a more complete overview of NPP operations and safety assessment

VTT

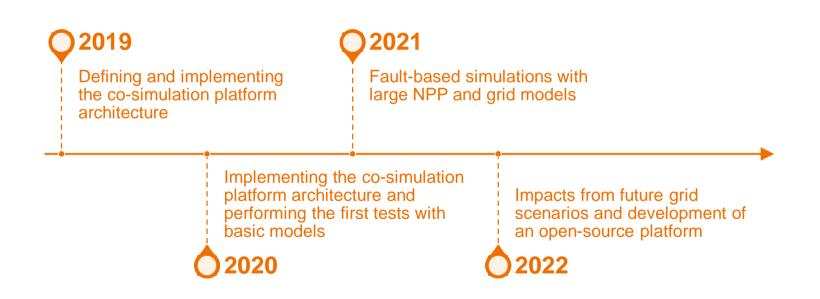
Plugging in the models


Plugging in simulation models

I hevenin equivalent of the transmission system...or we develop a more robust model ourselves!

Off-site (Transmission system) model

- 8-node and later 50-node model for the Finnish transmission grid developed in Simulink by Aalto University
- Very useful by-product of the COSI project


Testing the platform through Fault-based studies

Plant Power System Off-site Power System Transmission System Switchvard Unit Transformer Standby Auxiliary Transformer Transformers Main Generator Safety Bus Safety Bus Standby AC Standby AC Power Source Power Source Alternate AC Power Source **On-site Power System**

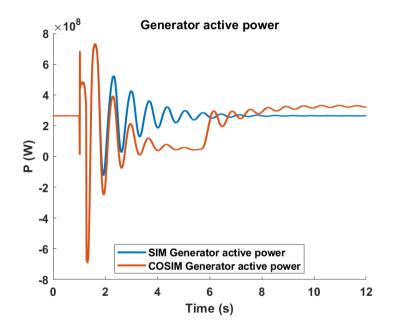
COSI tests and simulations focus on the on-site and off-site electric grids

COSI platform development

Fault-based studies in 2021

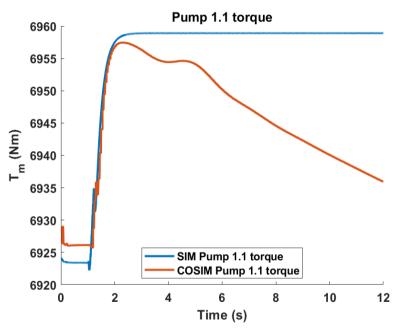
Defined 6 priority locations on the on- and off-site grids

Defined fault types and parameters to evaluate



Selected different scenarios for the comparison between a co-simulation (including thermomechanical models) and a purely electrical simulation

Fault scenario 1


- Evaluating the main generator active power output at the event of a short circuit lasting 250 ms at the low voltage side of the unit transformer (15 kV)
- Electrical simulation shows a much quicker recovery of the generating unit
- Co-simulation considers the instability in the automation control and thermomechanical processes

Benefit from the co-simulation platform: suitability to analyse border cases when the protection does not clear the fault at designated limits

Fault scenario 2

- Behaviour of a pump after a 200 ms open phase condition at the main generator output
- Torque stabilises after fault in the electrical simulation
- Co-simulation shows this torque remains falling way after the fault
- Inclusion of constant updates on mechanical parameters from the Apros model gives a different behaviour

SIM - utilising only static values to model the thermomechanical behaviour COSIM - constant updates in control variables at the NPP based on the automation responses.

Many other possibilities

- The COSI platform was developed so that we can analyse the behaviour of many different entities in the NPP, on-site grid and off-site grid
- Different fault scenarios implemented in the Simulink models produce impacts in the behaviour of Apros components
- In-depth analysis of the NPP behaviour is out of our scope and expertise, but we count with the great feedback of our Steering Group

VTT

Conclusions and next steps

Main takeaways

- The better and more detailed models we have, more trustworthy are the results we obtain from a co-simulation
- Co-simulation platform an interesting resource for designing and modelling protection and back-up systems at the on-site grid
- Fast faults may not be the main use case for the co-simulation platform: interesting to look at slow and systematic changes (e.g. low inertia transmission system)

 proposed continuation in 2022

Main takeaways

- Still a long way from a complete and final tool, but results show promise
- Communication between simulation software working as expected
 - Inputs from the thermomechanical side are considered in the electrical side and vice-versa
- Possibility to add new electrical simulation software and open-source platform to reach more experts

We greatly welcome feedback and interaction with industry experts

beyond the obvious

Sergio Motta Sergio.motta@vtt.fi @VTTFinland

www.vtt.fi