Vorlesungen Mechatronik im Wintersemester

Vibrations in Nuclear Applications 2021

Annual Energiforsk Seminar (10.11.21)

Modelling, Monitoring and Vibration Control of High Performance Turbomachinery

Rainer Nordmann

Technische Universität Darmstadt and Fraunhofer Institute LBF

Modelling, Monitoring and Vibration Control of High Performance Turbomachinery

- Introduction: High Performance Turbomachinery
- Vibration Phenomena in High Performance Turbomachinery
- Modelling of High Performance Turbomachinery Modelling of the Laval Shaft Modelling of High Performance Turbomachinery
- Monitoring of High Performance Turbomachinery Conventional Monitoring Future Model Based Monitoring & Diagnosis
- Vibration Control of High Performance Turbomachinery Passive Vibration Control Active Vibration Control

Introduction: High Performance Turbomachinery Turbogenerator: Steamturbine and Generator

Introduction: High Performance Turbomachinery Model of a Steam Turbine Shaft Train

Power: 1000 MW Shaft Length: 55,8 m Shaft Weight: 426 to Bearing Diameter: 600mm

Modelling, Monitoring and Vibration Control of High Performance Turbomachinery

- Introduction: High Performance Turbomachinery
- Vibration Phenomena in High Performance Turbomachinery
- Modelling of High Performance Turbomachinery Modelling of the Laval Shaft Modelling of High Performance Turbomachinery
- Monitoring of High Performance Turbomachinery Conventional Monitoring Future Model Based Monitoring & Diagnosis
- Vibration Control of High Performance Turbomachinery Passive Vibration Control Active Vibration Control

Vibration Phenomena in High Performance Turbomachinery -Static and Dynamic Forces

Process Forces

Machine Casing

Seal Forces

Oil Film Journal Bearing

Rotating Shaft with Blades

Unbalance Forces

Seals and Balance Pistons Vibration Phenomena in High Performance Turbomachinery Why do we need Rotordynamics?

- How is the influence of time dependent Forces and Moments on the dynamic behavior of a Machine?
- Which Motions of Vibration and which internal Stresses act on the rotating and on the non-rotating Machine Parts?
- Are Critical Conditions (Resonances, Instabilities) possible?
- Can Vibrations destroy Machine Parts? Rubbing, Blade Loss, Shaft Cracks, Bearing Failures, large Deformations,...
- Which Interactions have to be considered? Fluid Structure Interaction, Rotor Structure Interaction, Rotor Blade Interaction,
- Electromechanical Interaction

Vibration Phenomena in High PerformanceTurbomachinery Lateral and Torsional Vibrations of Shaft Trains

Lateral

Coupling of Lateral and Torsional Vibrations usually negligible

Vibration Phenomena in High PerformanceTurbomachinery Lateral and Torsional Vibrations of Shaft Trains

Which Phenomena are of Practical Relevance?

Lateral Vibrations: Lateral Vibrations perpendicular to the Shaft axis with Bending along the Shaft line. Physical Effects: Inertia (masses), Siffness and Damping of System Components (Shaft, Bearings).

> **Dynamic Characteristics:** Natural Frequencies, Critical Speeds, Natural Modes, Stability, Amplitudes and Phase angles of the Vibration Response due Excitations

Excitation: Mechanical and thermal Unbalances, Bow (Unbalance) due to Coupling Errors, **Excitation due to Instabilities in Fluid Bearings and Seals** Vibration Phenomena in High PerformanceTurbomachinery Lateral and Torsional Vibrations of Shaft Trains

Which Phenomena are of Practical Relevance?

Torsional Vibrations: Torsional Vibrations around the Shaft axis with torsional deformations along the Shaft line, Physical Effects: Moments of Inertia, Torsional Stiffness and Damping of the System components

Dynamic Characteristics: Natural Frequencies, Natural Modes, Modal Damping, Amplitudes and Phase angles of the Vibration Response due to Excitations.

Excitation: Air Gap Torques in Electrical Machines due to Electromagnetic Coupling. Higher Harmonics occur.

Vibration Phenomena in High PerformanceTurbomachinery Different Interactions have an Influence on Rotordynamics

Rotor-Structure Interaction: Casing, Foundation Elektromechanical Interaction: Generator, Grid

Modelling, Monitoring and Vibration Control of High Performance Turbomachinery

- Introduction: High Performance Turbomachinery
- Vibration Phenomena in High Performance Turbomachinery
- Modelling of High Performance Turbomachinery Modelling of the Laval Shaft Modelling of High Performance Turbomachinery
- Monitoring of High Performance Turbomachinery Conventional Monitoring Future Model Based Monitoring & Diagnosis
- Vibration Control of High Performance Turbomachinery Passive Vibration Control Active Vibration Control

Modelling of the Laval Shaft - Jeffcott Rotor

Modelling of the Laval Shaft Equations of Motion for Lateral Vibrations

Modelling of the Laval Shaft Forced Unbalance Vibrations

Shaft vibrations with circular orbit,

Amplitude \hat{x} of unbalance vibration

Modelling of the Laval Shaft Natural Frequency of Laval-Shaft (Lateral)

Natural Frequency: Laval Shaft

$$\omega = \sqrt{c/m}$$

Excitation with Frequency $\, \omega \,$

Resonance Case

Modelling of the Laval Shaft Influence of the Fluid Film Bearings

with bending stiffness k

Stiffness Coefficients **Damping** Coefficients

Modelling of the Laval Shaft Fluid Film Bearings (Linear Theory)

Dynamic forces Z_1 , Z_2 :

$$Z_{1} = k_{11}q_{1} + k_{12}q_{2} + d_{11}\dot{q}_{1} + d_{12}\dot{q}_{2}$$
$$Z_{2} = k_{21}q_{1} + k_{22}q_{2} + d_{21}\dot{q}_{1} + d_{22}\dot{q}_{2}$$

k_{ik}: stiffness coefficients d_{ik}: damping coefficients

Modelling of the Laval Shaft Influence of Oil Film Bearings in comparison to Rigid Bearings

Shaft vibration with elliptical orbits

The stiffness and damping coefficients can be determined by numerical calculations (Reynolds-equations, CFD) or by Experiments. For a bearing with a special geometry the coefficients depend on the Sommerfeld number or on the static displacement.

Fluid film bearings have usually anisotropic behavior :

k11 \neq k22 and d11 \neq d22

The coupling coefficients differ from each other

 $k12 \neq k21$ and $d12 \neq d21$

A measure for instability sensitivity is the difference: (k12 - k21). Damping Coefficients d11 and d22 are good for stability. Coefficients can be found in tables or diagrams.

Modelling of the Laval Shaft Test Rig with AMB's to measure Rotordynamic Coefficients

Journal Bearing Test Rig

Force Measurement

Modelling, Monitoring and Vibration Control of High Performance Turbomachinery

- Introduction: High Performance Turbomachinery
- Vibration Phenomena in High Performance Turbomachinery
- Modelling of High Performance Turbomachinery Modelling of the Laval Shaft Modelling of High Performance Turbomachinery

Monitoring of High Performance Turbomachinery Conventional Monitoring Future Model Based Monitoring & Diagnosis

Vibration Control of High Performance Turbomachinery Passive Vibration Control Active Vibration Control

Modelling of High Performance Turbomachinery Different Interactions on Rotordynamics

Rotor-Structure Interaction: Casing, Foundation Elektromechanical Interaction: Generator, Grid

Modelling of High Performance Turbomachinery Lateral Vibrations of Shaft Train

$\mathbf{M} \ddot{\mathbf{x}}(t) + (\mathbf{D}(\Omega) + \mathbf{G}(\Omega)) \dot{\mathbf{x}}(t) + \mathbf{K}(\Omega) \mathbf{x}(t) = \mathbf{F}(t)$

The **Equations of Motion** for **Lateral Vibrations** of the **Turbogenerator** contain the stiffness and damping information of the shaft train, the bearings and the supports

Modelling of High Performance Turbomachinery Oil Film Bearing Types, used in Turbine Trains

Cylindrical Bearings Elliptical bearings (Lemon Bore) 3-Wedge Bearings Pocket Bearings with one or two Oil Inlets Tilting Pad Bearings

Modelling of High Performance Turbomachinery Rotor Structure Interaction – Foundation

Foundation couples with the shaft train

Typical for Foundations:

- many modes in speed range
- Significant coupling effects between the Bearings horizontal and vertical

Modelling of High Performance Turbomachinery Rotor – Structure Interaction - Foundation

FE - Method Modal Analysis for the Foundation

Procedure

 Estimation of mode shapes and natural frequencies of the foundation without the rotor (FRF for bearing locations)

Input for Rotordynamics:

- Components of the mode shapes at the bearing locations.
- →Natural Frequencies
- →Modal Damping

Modelling of High Performance Turbomachinery Rotor – Structure Interaction - Foundation

FRFs from

- 3D FEM Calculations (Natural frequencies, Mode shapes)
- or Modal Analysis- Measurements

frequency

Modelling of High Performance Turbomachinery Coupling of FRF's from Foundation with Rotor Train

Modelling of High Performance Turbomachinery Some Eigenvalues of a large Turbogenerator

Eigenvalue Problem for Turbogenerator

 $(\lambda^2 \mathbf{M} + \lambda(\mathbf{D}(\Omega) + \mathbf{G}(\Omega)) + \mathbf{K}(\Omega)) \cdot \mathbf{x} = \mathbf{0}$

Complex Eigenvalues : $\lambda = \mathbf{a} + \mathbf{j} \boldsymbol{\omega}$

Information for damping (stability) and natural frequencies

Modelling of High Performance Turbomachinery Selected Eigenvalues and Mode Shapes

Modelling of High Performance Turbomachinery Unbalance Response of a large Turbogenerator

Complex Equations for Unbalance Response

 $((\mathbf{K}(\Omega) - \Omega^2 \mathbf{M}) + \mathbf{j} \cdot \Omega (\mathbf{D}(\Omega) + \mathbf{G}(\Omega)) \cdot \tilde{\mathbf{x}} = \mathbf{U} \cdot \Omega^2 \cdot \tilde{\mathbf{F}}$

$$\tilde{X}_{i} = \tilde{X}_{i \text{ Re}} + j \cdot \tilde{X}_{i \text{ Im}}$$

Complex System Response contains Amplitude and Phase

Modelling of High Performance Turbomachinery Unbalance Vibration Response of Shaft Train

Modelling, Monitoring and Vibration Control of High Performance Turbomachinery

- Introduction: High Performance Turbomachinery
- Vibration Phenomena in High Performance Turbomachinery
- Modelling of High Performance Turbomachinery Modelling of the Laval Shaft Modelling of Large High Performance Turbomachinery
- Monitoring of High Performance Turbomachinery Conventional Monitoring Future Model Based Monitoring & Diagnosis
- Vibration Control of High Performance Turbomachinery Passive Vibration Control Active Vibration Control

Conventional Monitoring: High Performance Turbomachinery

For Monitoring of High Performance Turomachinery absolute vibration velocities in mm/sec and/or relative shaft vibrations in µm at defined locations (Bearings) are usually measured. Evaluation by ISO Standards

Conventional Monitoring: Relative Vibrations of the Shaft

Example: Relative Vibrations of the Shaft in horizontal and vertical direction. By Superposition of the two signals Orbits can be determined. These are the shaft motions in the measurement plane.

Conventional Monitoring : Amplitudes and Phase versus speed (Run up and down)

Lecture: Interactions in Turbomachinery Rotordynamics - 11/11/2021 - P 39

Conventional Monitoring: Frequency Analysis of forward and backward frequencies.

Frequency Spectra with Forward- and Backward frequencies. Both are very helpful to analyze Vibrations and to diagnose Failures.

Modelling, Monitoring and Vibration Control of High Performance Turbomachinery

- Introduction: High Performance Turbomachinery
- Vibration Phenomena in High Performance Turbomachinery
- Modelling of High Performance Turbomachinery Modelling of the Laval Shaft Modelling of Large High Performance Turbomachinery
- Monitoring of High Performance Turbomachinery

Conventional Monitoring Future Model Based Monitoring & Diagnosis

Vibration Control of High Performance Turbomachinery Passive Vibration Control Active Vibration Control Future Model Based Monitoring & Diagnosis Failure Diagnosis by means of FRF H($j\omega$)

Question:

How strong is the influence of failures on the FRF $H(j\omega)$?

Future Model Based Monitoring & Diagnosis Centrifugal Pump with Active Magnetic Bearings AMB's

Future Model Based Monitoring & Diagnosis Rotating Pump Shaft with Active Magnetic Bearings

Actuator Characteristic

Excitation up to 1 kHz

Measuring of the system behaviour is possible during regular operation (rotation) Frequency response functions $H(j\omega)$

Future Model Based Monitoring & Diagnosis. Centrifugal Pump Shaft with Active Magnetic Bearings

Failure Diagnosis in a Centrifugal Pump with FRF H(jω)

Modelling, Monitoring and Vibration Control

Modelling, Monitoring and Vibration Control of High Performance Turbomachinery

- Introduction: High Performance Turbomachinery
- Vibration Phenomena in High Performance Turbomachinery
- Modelling of High Performance Turbomachinery Modelling of the Laval Shaft Modelling of Large High Performance Turbomachinery
- Monitoring of High Performance Turbomachinery Conventional Monitoring Future Model Based Monitoring
- Vibration Control of High Performance Turbomachinery Passive Vibration Control Active Vibration Control

Vibration Control of High Performance Turbomachinery Passive and Active Vibration Control

Vibration Control Measures	Without Energy Conversion	With Energy Conversion	
	Passive	semi-Active	Active
Reduction of Excitation			¹
System Tuning	nal		lution
Damping	ention	, ed	5 0.
Vibration Absorber	consolut	tenot	
Isolation of disturbance		Et.	
Isolation to protect the receiver			
Increase of: Effectiveness, Complexity,			

more Solution Variants

Vibration Control of High Performance Turbomachinery Passive Vibration Control: Reduction of Excitation

Balancing of LPT - Rotor

Vibration Control of High Performance Machinery Active Vibration Control: Reduction of Excitation

Active Balancing Device

Vibration Control of High Performance Machinery Passive Vibration Control: Tuning and Damping

Shaft Vibrations

 \hat{x}/e $r = \hat{x}$ Increase Stiffness or Ω 4 reduce mass! rr 3 π 2 Increase Damping 1 $\left(\frac{\hat{x}}{e}\right) = \frac{m\Omega^2}{\sqrt{\left(c - m\Omega^2\right)^2 + \left(d\Omega\right)^2}}$ Ω $\Omega = \omega$

Amplitude

Vibration Control of High Performance Machinery Passive Vibration Control: Squeeze Film Damping (SFD)

Sensitivity Run up curves of LP Turbine due to Unbalance

Sensitivity runs with unit unbalance at different shaft locations measured in the middle of the LP-shaft

Vibration Control of High Performance Machinery Passive Vibration Control: Squeeze Film Damping (SFD)

Vibration Control of High Performance Machinery Passive Vibration Control: Squeeze Film Damping (SFD)

Lecture: Interactions in Turbomachinery Rotordynamics - 11/11/2021 - P 55

Active damping

- optimzation of the entire operation range
- diagnosis / failure identification
- no oil supply
- 1. step to More Electric Engine (MEE)

Pros:

- vibration damping in whole speed range
- fault detection

Cons:

- temperature-sensitive
- expenditure

Sensors:

Eddy current Sensors, Rotormitte PD – Controller

Vorlesungen Mechatronik im Wintersemester

Vibrations in Nuclear Applications 2021

Annual Energiforsk Seminar (10.11.21)

Modelling, Monitoring and Vibration Control for High Performance Turbomachinery

Rainer Nordmann

Technische Universität Darmstadt and Fraunhofer Institute LBF

