Vibration measurements and strategics in analyzing pipe vibration and pipe support damages

A consideration of pipe vibration measurements due to good and bad experiences

Dispsition

- Why pipe vibration measurements?
 - Standards
 - Damages
- What are we facing
- Recommendations

Examples of evaluation criterias

ANSI/ASME OM3-1982, procedure 1

 C1
 Factor for mass distribution

 64:10³
 C2, K2
 Parameter for stress condition

 C3
 Factor for pipe contents and insulation

 C4
 Factor for restraints

 (0.8 S4)
 Factor for restraints

STICTIC

Seligman & Guillou

OK < 12 mm/s RMS @ PWR feedwater lines

Russian PTM 38.001-94

I) No danger,

Danger not probable
 Improvement is req. and damage is possible

ii) improvement is req. and damage is possi

	Frequency Hz									
	2	4	6	8	10	20	30	40	50	60
Area	Vibration Velocity in um									
1	250	230	200	180	165	120	95	85	75	70
"	500	450	400	360	330	230	190	145	135	130
ш	1250	1100	950	800	750	500	420	350	320	300

Gamble & Tagart

OK < 0.5 mm for f < 10 Hz OK < 0.25 mm for f < 10-40 Hz Based on findings for 400 pipe systems

VDI 2063

The requirements below should be fulfilled for 2-300 Hz OK < 68 mm/s peak OK < 1 mm peak OK < 4 g peak + VDI 3842: Vibration in piping systems ?

Lloyds OK < 35 mm/s peak Danger >= 70 mm/s peak

 $\frac{ABB}{OK < 8 \text{ mm/s RMS}}$ Danger >= 20 mm/s RMS

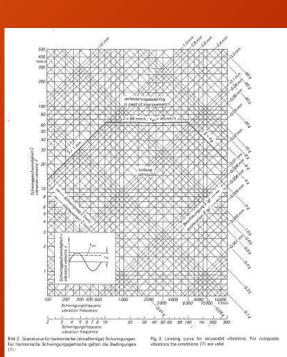
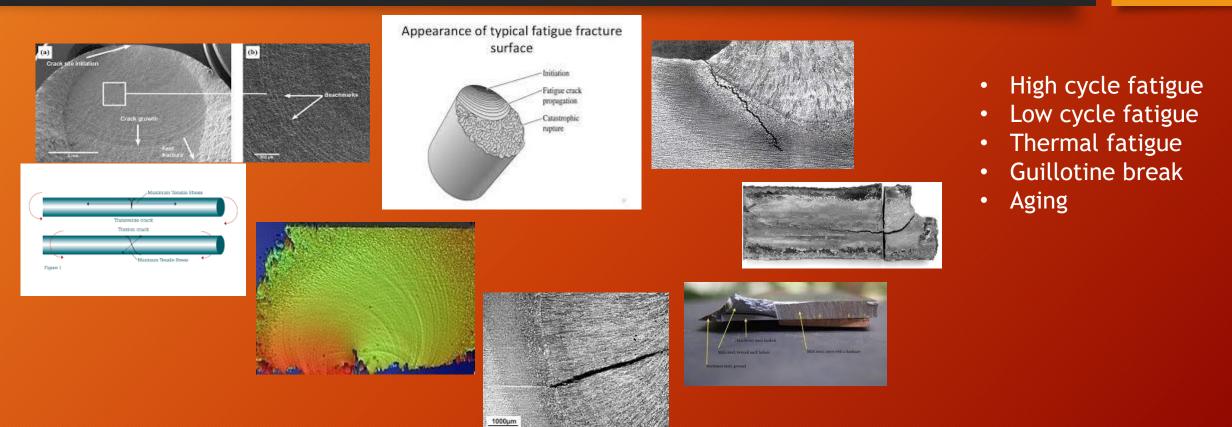



Figure 1. Allowable Fiping Vibration Levels indicated vibration limits are for average piping system constructed in accordance with good engineering practices. Moke additional allowances for critical applica-

<u>Wachel</u>

Uninsulated pipe < 304 mm/s peak Pipe with concentrated mass load < 13 mm/s peak

What type of damage have you seen?

Energiforsk

Be prepared to what issues you are facing

Do not go to a measurement with "fingers in you ears".

Half the job is done at the fika table

Energiforsk

There are always an advatage to use multiple transducer types

- Multiple transducers help you see more complex situations.
- If the system has transient behaviour there are a lot of parameters you want to know about it.
 - Try to get as many as possible in the same measuring system.
 - If you just have one type use more than one position.
 - Use known information damage investigation, calculations, experiences, "control room chat"

To many thoghts how to measure

We always do like this!

- One type of transducer for all applications
- Measure continuous during known occasions
- Use periodic monitoring to measure the state of the system.
- This can work if there is a well known phenomena that is continuous

To many thoghts how to measure

We always do like this!

- One type of transducer for all applications
- Measure continuous during known occasions
- Use periodic monitoring to measure the state of the system.
- This can work if there is a well known phenomena that is continuous

We consider to do something else.

- One favorite transducer type but can think of using other types with a little bit of persuasion.
- Measure continuous during known occasions.
- Use periodic monitoring to measure the state of the system.
- The measurement can be improved by adding continuous measurement or other type of transducers to improve understanding

To many thoghts how to measure

We always do like this!

- One type of transducer for all applications
- Measure continuous during known occasions
- Use periodic monitoring to measure the state of the system.
- This can work if there is a well known phenomena that is continuous

We consider to do something else.

- One favorite transducer type but can think of using other types with a little bit of persuasion.
- Measure continuous during known occasions.
- Use periodic monitoring to measure the state of the system.
- The measurement can be improved by adding continuous measurement or other type of transducers to improve understanding

How will we get as much information as possible?

- Using different types of transducers from the beginning
- Searching all types of occasions, all time 24/7.
- It locks a measuring system for a long time
- This is a hard time evaluation but you can find the out of the box occasions

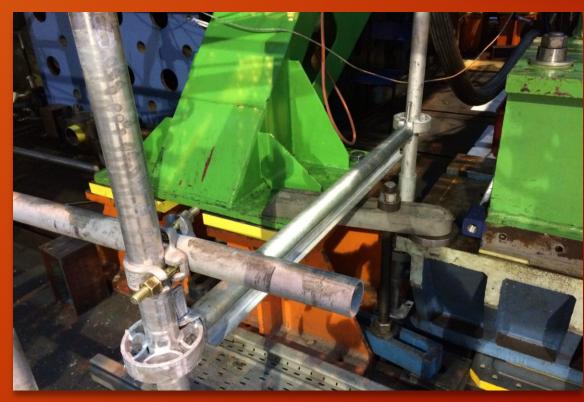
Energiforsk

There are a lot of transducer types

Energiforsk

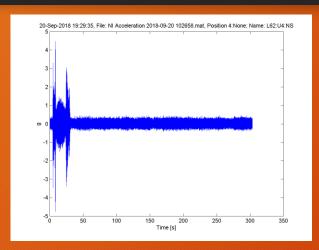
There are a lot of transducer types

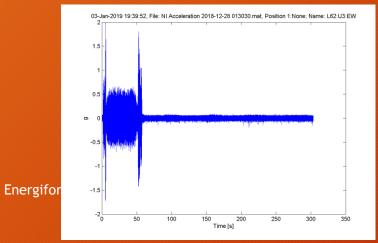
Energiforsk

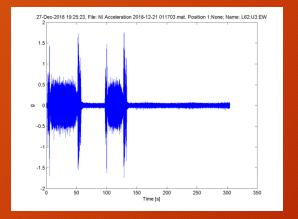


There are a lot of transducer types

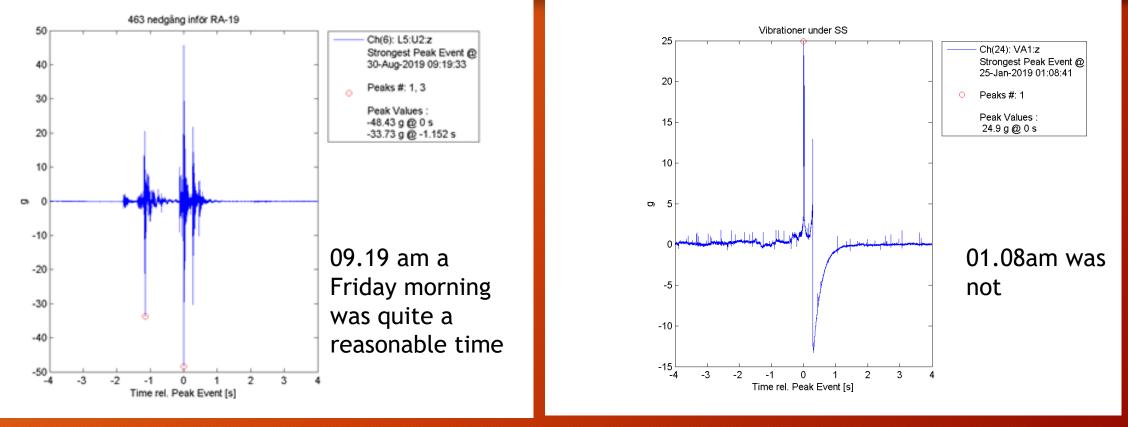
Energiforsk

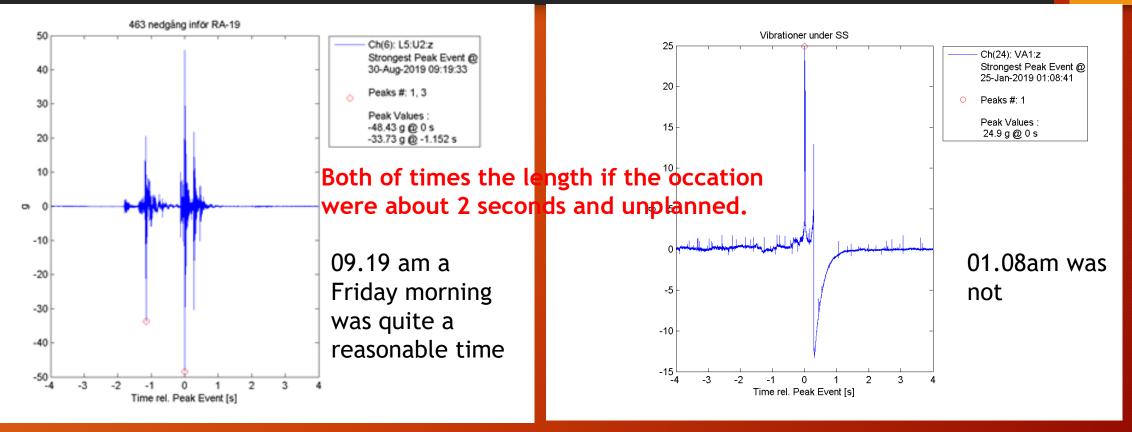

How to choose?


- What are expected?
 - Results
 - From the "custumer"
- What purpouse are there?
 - Damages
 - High vibration
 - Monitoring requirements
- If possible choose more than one type
 - Combinations can give another answer
 - Limitations


2021-11-04

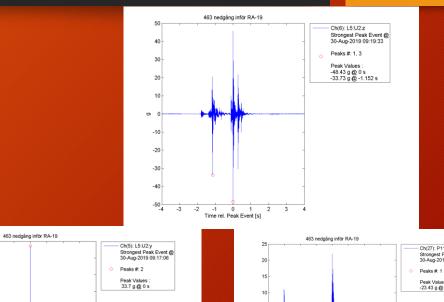
What's this?


There were short ones

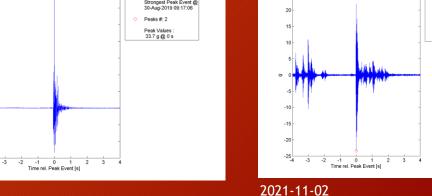

There were long ones even up to several minutes Double ones

This happened about1am every Saturday morning

Short compromising occations



Short compromising occations


Turbine stop

- Turbine stop from feed water pumps
 - In this case it was low load and only one of three feed water pump was in operation
 - There were three separate occations that trigged high transients in the duration of eight minutes
 - 9.17 TS
 - 9.19
 - 9.25
 - The highest transient amplitudes are measured close to the pumps standing still.

Cb(27): P111U1z Strongest Peak Event @ 30-Aug-2019 09:25:04

Peak Values -23.43 g @ 0 s

Recommendation

- Measure continuous if possible
 - Shorter period, approximately a week, better than nothing
 - During a known test. Start the measuring well before test start
- Choose equipment and technics before you arrive BUT
 - Have a plan B
 - Take a little extra with you
- Beware of safety restrictions
 - This can affect yor plan

elisabet@tremula.se

Energiforsk