

Examples of vibration problems and approaches from the oil and gas industry, focusing on vibration damping of vibration frequency range 30-300 Hz (TMD).

Even Lund R&D Manager, Momentum Technologies

<u>www.momentumtechnologies.com</u>

R&D Manager, Momentum Technologies

MSc Mechanical Engineering, NTH/NTNU 2000

«Vibration guy»

- 21 years applied vibration measurement, analysis, mitigation
- Latest 11 years in Oil & Gas

Speech content

- Our experiences of vibration problems within the oil & gas industry.
- Possible parallels to nuclear power industry.
- Case-study, Momentum high frequency Tuned Mass Damper
- Possible discussion points/topics

MOMENTUM TECHNOLOGIES

We are experts within vibration, dynamics and sound. We prevent fatigue.

OUR MISSION

Prevent accidents caused by vibration and sound.

OUR APPROACH

• Measurement services

OUR APPROACH

- Measurement services
- Vibration and noise assessments

OUR APPROACH

- Measurement services
- Vibration and noise assessments
- Vibration damping solutions

LARGE consequences HSE - Loss of income - Bad reputation

Cause of pipework failure

Source: UK-Health & Safety Executive

Oil & Gas vibration handling Full disclosure principle

- All incidents, even unharmful ones, are tracked on the oil rigs.
- Petroleumstilsynet (ptil.no) disclose all information found through inspections and investigations.

Gudrun, 2016

Common vibration challenges in the oil & gas industry – organizational

- High competence within vibration/flow assurance available in the central organizations of the oil companies and contractors
- Limited competence of vibration and dynamic problems/challenges in engineering and operational organization and contractors

How to find root cause of vibration

- 1. Talks with people with knowledge of the system
- 2. Walk-down to localize problem
- 3. Elimination of vibration mechanisms based on fluid phase and energy sources (flow, sound, vibration)
- 4. Further elimination with limited input (P&IDs, ISOs, fluid properties)
- 5. Measurement and analysis
- 6. Simulations
- 7. Experience
- 8. Documented history

How to find root cause of vibration?

- 1. Talks with people with knowledge of the system
- 2. Walk-down to localize problem
- 3. Elimination of vibration mechanisms based on fluid phase and energy sources (flow, sound, vibration)
- 4. Further elimination with limited input (P&IDs, ISOs, fluid properties)
- 5. Measurement and analysis
- 6. Simulations
- 7. Experience
- 8. Documented history

3. Elimination by mechanism Main categories **AVIFF**

«Guidelines for the Avoidance of Vibration Induced Fatigue Failure in Process Pipework», Energy Institute 2008

- High kinetic energy flow
 - FIT, flow induced turbulence (all fluids)
 - FLIP/FIP, flow induced pulsation (gas, side branches)
- Slug flow (multiphase flow)
- HF AIV, Choked flow (gas)
- Machinery (mechanical excitation, pulsation)
- FLIP from flexible pipes (gas)
- Surge/momentum changes (all fluids, Fast acting valves, bends & reducers)
- Cavitation & flashing (liquids/multiphase, restrictions)
- Intrusive elements (liquids & multiphase, thermowells)

5. Measurement and analysis Simplified identification of vibration problems from spectra

5. Measurement and analysis Typical oil and gas pipe vibration criteria

Primary vibration pipe criteria Frequency and stress based

Secondary Time domain vibration criteria

- Allowable: <9 mm/s rms
- Concern: 9-18 mm/s rms
- Problem: >18 mm/s rms

Comparison:

Secondary limits are similar to the established limits for NPPs, ref: "PIPE VIBRATIONS IN NUCLEAR APPLICATIONS, REPORT 2017:451"

Flow induced vibration (FIV)

- (low to medium frequency)
- Turbulent single phase flow (natural gas). Low pressure, high velocity tail production
- Multi phase well stream (oil/water/gas, varying flow types including slug flow)
- Water systems
 - Sea water intake
 - Produced water return
 - Fire water systems (titanium)

Produced water return

Well flow

Sea water intake

Turbulent NG flow

Multiphase research

Letdown valves

Pipe bundle in filter

Anti surge valve

Large side branch

momentum

Acoustic induced vibration (AIV)

(low to high frequency, can excite cross acoustic and mechanical shell modes)

- HF Sound generated at high pressure drops (pressure letdown valves, safety valves, anti surge).
- Sound generated when (dry) gases are transported past dead legs.
- Sound generated when transporting dry gas through corrugated pipes, «singing risen» (vortex shedding+acoustic lock in, mechanic resonance).

Dead leg example

LF sound from cementing pump

LF from compressor

(low to high frequency)

- HF (sound) from turbo machinery (centrifugal compressors, turbines, transmitted through structure, pipes and fluid)
- LF from Pumps

LF sound from pump

HF sound compressor

LF sound compressor

Measurement of thermowell vibration

<u>General</u>

- Thermo wells designed pre 2012 (ASME PTC 19.3 TW) vortex shedding from intrusive elements.
- Unsupported slender pipes (helping systems)
- Large pressure drops -> flashing and cavitation
- Less common? Water hammer and rapid opening/closing of valves.

Thermowell with crack

My first guess: Vibration mechanisms in NPPs?

Appologies for my inexperience...

<u>FIV</u>

- Multi phase steam/water (Condenser)
- Water systems (Condenser, feed water)

<u>AIV</u>

• Sound generated when steam is transported past dead legs (downstream reactor vessel, acoustic resonant lengths are similar in steam and natural gas (about 30% higher)).

Machinery

- HF sound from turbo machinery (turbine, generator)
- Pumps (Feed water)
- Anti surge (Turbine)

<u>General</u>

- Thermo wells designed pre 2012, (Everywhere, ASME PTC 19.3 TW revised due to nuclear accident)
- Unsupported slender pipes
- Large pressure drops -> flashing and cavitation (Letdown valves to turbine?)

https://energyeducation.ca/encyclopedia/Nuclear_power_plant

Monju 1995

Momentum Technologies Common vibration damper pairing for pipes

Frequency

Momentum Technologies Common vibration damper pairing for pipes

Frequency

Momentum TMD Simplified dynamic system overview

Momentum TMD Response with and without damper

Momentum TMD Features

- Medium to high frequency TMD, standard tuning frequency range ≈30-300 Hz
- Clamp-on
- Broadband effect, acting on multiple modes.
- 6 degrees of freedom
- Qualified and used in tough environments (high temperatures and pressures)

Momentum TMD Demonstration of function

World-wide collaboration platform for designing Momentum TMDs

TMD CASE-STUDY: Pressure let-down stations LNG facility, Australia

TMD CASE-STUDY Systematic FRF measurements + Finite element modelling

Example of first mode shapes Not from actual case

TMD CASE-STUDY Calculated response from measurements

CASE-STUDY Installation

CASE-STUDY Evaluation of TMD performance after installation

TMD Tag No.	Site	DN100/50 Bypass Line No./ DN50 PIT Valve No.	Specified Frequency Range	Reduction Required ¹	Reduction Achieved ¹
			100-200	1.53	3.2
			30-70	1.53	8.5
			120-155	1.53	2.5
			30-70	1.53	16.6
			100-200	1.4	4.5
			40-80	1.4	7.7
			100-200	1.4	2.2
			40-80	1.4	10.7
			30-60	1.45	4.3
]			50-80	1.35	13.8
			200-300	1.7	11.7
			200-300	1.7	12.6
			140-200	2.0	2.9

Momentum TMD Example from machinery piping

Momentum TMD Example from subsea piping

Proposed topics of discussion

- What can we learn from comparing oil&gas with nuclear industry?
 <u>Main</u> similarities and differences
 - How is vibration handled within NPPs (design, organizational, operational)?
 - What vibration mechanisms are not relevant in NPPs?
 - What does the statistics say about incidents due to fatigue in NPPs (21% in O&G)?
- Why are TMDs not very common in the nuclear industry?
 - Mainly low frequency problems?
 - Difficult to tune and get working?
 - Is the working frequency range considered too narrow for TMDs?
 - Difficulties of qualification?

SIMPLE SOLUTIONS, COMPLEX PROBLEM

