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Low Temperature District Heating

• Enabled by more efficient building design
• Requires lower supply temperatures

• Can return lower temperatures
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• Interaction between customer and 
DHN more sensitive
• Temperature utilisation important 

with lower supply temperatures

• Frequently used with electrical heat pumps
• Shift heating load to electrical network

• Can strain network capacity and increase social costs 
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Objectives

• For a new LTD connected to an extisting DHN evaluate:

• The CO2 emissions (inc. electrical) from heating

• The new electrical energy and power requirements

• The heat utilisation and recovery opportunities

• Impact of substation v. network layout

• Explored through through 5 heat supply scenarios in a 
case study
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Heat and Electricity Emissions

• In decarbonised DHNs the emissions from electricity 
play a larger role – used Tomorrow hourly data 

• Sweden’s DHNs deliver heat with emissions near 
those of renewable electricity – SE below
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Case Study District - Loudden
• 4000 New Apartments in 570,000 m2

• 2 existing commercial buildings

• 1 new sports facility

• 31 new residential buildings, 5 stories, courtyard layout

• Heat and electrity target 50 kWh/m2/yr
• Low Energy Class 30 kWh/m2/yr SH+DHW

• Supplied by a LTN at 65°C year-round
• Tree structure

• Russian 3-stage substations
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Scenario Descriptions

S0a: HT Supply
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S1a: HT Shunt

S2a: Waste 

Heat Shunt

S3a: Using Sea-source HP



Scenario Descriptions

S0a: HT Supply
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S1a: HT Shunt

S2a: Waste 

Heat Shunt

S3a: Using Sea-source HP

S4a: Prosumers to the 
LT Supply

S4b: Prosumers to the 
LT Return



Network Return Temperatures

• HT Supply returned lower 
temperatures than LT Supply
• Less temperature dilution when 

reheating DHW losses

• LTDH required 40-45% more flow 
than conventional 3GDH

• Results in higher impact for the LTD 
return temperatures than HTD

• Will have implications for faults in 
LTDs in future
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Heat Recovery

• Temperature levels are an important 
consideration for heat recovery
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Existing Network



Heat Recovery
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• LTDs create heat recovery oportunities by 
producing low return temperatures

• How much demand can be moved from high 
temperature to low with LTDH?



• LTDs create heat recovery oportunities by 
producing low return temperatures

• How much demand can be moved from high 
temperature to low with LTDH?

Heat Recovery
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Emissions
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Emissions
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• Electricity represents a significant 
fraction of total emissions in electrified 
scenarios – even in Sweden

• Increasing temperature of waste heat 
significantly reduces emissions

• Highest emissions both with and 
without heat recovery is the electric 
sea-source heat pump



Electrical Utilisation

• Non-electrified scenarios deliver much 
more heat per connected electrical 
power (MWhth/kWpeak-e)
• District bounds only, not including 

electrical production in CHPs

• Significant implications for constrained 
electrical grids and the place of DHNs 
in the energy system
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3rd Pipe (FRR)
• With fixed division temperature difficult to 

divide flow well

• 3rd Pipe has low utilisation with wide range 
of flow

• Lowering split temperature to 35°C impoves 
split, but does not recifiy situation
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3-Stage vs. 3rd Pipe

• 3rd Pipe not always feasible or cost 
effective

• When can a more temperature efficient 
substation provide similar benefits to 3rd

pipe?

• When is a 3rd pipe justified to accept i.e. 
circulation flows or low temperature 
waste heat?
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• Potentially more useful to bridge coincidence problems between different 

demands

• Exploring dynamic split temperatures
Assumes more direct communication and control with customer substations
i.e. relative to outdoor temperature, hottest XX kg/s, or depending on downstream needs



Substations in LTDs 

• Comparison of Parallel, 2-stage, and 3-stage in low demand, 
high efficiency buildings

• Higher fraction of DHW and lower SH temperature demand 
has implications for operation and selection

18Simple Parallel 2-Stage Russian 3-Stage



Substations in LTDs 

• For 65°C 1ry, 60/40 2ry

• Significant reduction in TR with multi-stage

• R3 able to utilise DHW re-heating at cost of more complexity

19Simple Parallel 2-Stage Russian 3-Stage

Annual Average
TR = 31.5 °C
ε = 78%
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Return Temperatures in LTDs 

• Significant reduction 

• R3 able to utilise 
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Return Temperatures in LTDs 

• Significant reduction 

• R3 able to utilise 
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Substations in LTDs 

• 1ry/2ry program impact 
temperature efficiency in the 
substation – an important area of 
opportunity
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• Increasing delta between 1ry supply 
and 2ry return can bring performance 
in line with conventional systems

*As Tute rises, both the effective NTU and efficiency increase to ~12 NTU and ~100% at 17°C



Conclusions

• In significantly decarbonised DHN, 
electrification can increase emissions

• Existing DHN deliver more heat per 
connected electrical capacity

• LTDs enable a significant amount of 
additional heat recovery in existing 
DHN, even with conventional HT supply

• Possibilities exist on both network and 
customer side to improve performance 
of LT substations 
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Thank You!



Scenario Heat Production
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Modeling Approach

• Open Source Software

• District demands 
developed in PlanHeat

• Bottom-up quantitative 
approach

26

• Heat flow model of network
• Mass flow, temperatures, and pressures

• Hourly resolution with real 2020 data
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