

INNOVATING NUCLEAR TECHNOLOGY

ANALYSIS AND MEASUREMENT SERVICES CORPORATION

Implementation of IIoT and Wireless Technologies in US NPPs

Presented by: Chad Kiger

EMC Engineering Manager AMS Corporation <u>ckiger@ams-corp.com</u>

November 18, 2021

Presented To Industrial Internet of Things in Nuclear Webinar

- Summary of AMS Activities Associated with Wireless Technology
- Overview of IIoT and Wireless Sensor Selection and Implementation
- Considerations Associated with Wireless Technology
 - Coverage
 - Spectrum Management
- Addressing EMI/RFI Concerns
 - Reducing Exclusion Zones
 - Verifying Equipment Immunity

- Sensor Specification (EPRI ID: 3002011818; Published: 2018)
 - Identified commercially available wireless sensors capable of deployment in a nuclear facility for various condition monitoring applications
 - Developed implementation guideline for implementation of wireless sensors in NPPs
 - Characterized the electromagnetic emissions from several wireless sensors
- Wireless Technology Assessment (EPRI ID: 3002012707; Published: 2018)
 - Characterized the electromagnetic emissions from commonly used mobile wireless devices such as cell phones, tablets, and laptops
 - Developed exclusion zones for various wireless protocols (Wi-Fi, Bluetooth, LTE) including a risk-informed analysis approach
- Spectrum Management (Under Development)
 - Documenting techniques for determining/monitoring the wireless spectrum
 - Developing strategies for wireless coexistence to prevent interference and allow for future expandability

Wireless Monitoring of Arkansas Nuclear One (ANO) Containment Fans

- Background:
 - Four fans to circulate air in containment
 - Failure of a single fan puts plant into 72 hour LCO.
 Repairs typically take 5 days
 - History of a fan failure once every 5 years
- Problem:
 - Fans are not accessible for routine monitoring during plant operation
 - Previous data collection: Once every 18 months
- Solution:
 - Developed a wireless system that will routinely collect vibration data from the four fan motors
 - Wi-Fi network established in containment
 - Copper and fiber optic data communications through containment wall

Protocol

- Pros: Single infrastructure; Established Coexistence
- Cons: Limited Solutions

Sensor

- Pros: Optimal solutions
- Cons: Additional infrastructure

Considerations

- Coverage
- Throughput
- Power Requirements
- Frequency

Condition Monitoring of NPP Equipment using IIOT Technologies

Equipment Being Monitored

- Pumps and Motors
 - Feedwater
 - Heater Drain
 - Condensate
 - Intake, Component, and Turbine Cooling Water
 - Reactor Coolant and Circulating Water
- Valves
 - Main Feedwater Regulating Valves
 - High Pressure Feedwater Heater Level Valves
- Transformers
 - Start-Up Transformers
 - Main Transformers
 - Auxiliary Transformers

IIOT Technologies

- Vibration Sensors
- Wireless Gauge Readers
- Data Mining Algorithms combining New and Existing Sensor Data

Evaluate Plant Environment

- Existing technology and exclusion zones
- Potential monitoring locations
- Coverage mapping
- Identify Possible EMI Issues
 - Possibly susceptible equipment
 - Deficiencies in equipment installation

Example Strategies for Wireless Equipment Condition Monitoring

Requested Parameter	Monitoring Options
Pump Suction & Discharge Pressure	<u>Non-Intrusive:</u> Wireless Gauge Reader or Wireless Camera <u>Intrusive:</u> Analog Gauge Replacement with Wireless Gauge Reader, Secondary Digital Gauge with Wireless Capability, or Digital Gauge Replacement with Wireless Capability
Pump Vibration	<u>Non-Intrusive</u> : Stand-Alone Wireless Vibration Transmitter or Wireless Transmitter Connected to Multiple New Accelerometers
Motor Bearing Temp	<u>Non-Intrusive:</u> Wireless Gauge Reader or Wireless Camera Intrusive: Gauge Replacement with Wireless Capability
Motor Vibration	<u>Non-Intrusive:</u> Stand-Alone Wireless Vibration Transmitter or Wireless Transmitter Connected to Multiple Accelerometers/Proximity Probes
Motor Current	Semi-Intrusive: Current Transducer Connected to Wireless or Wired Transmitter (Line Powered)

Exclusion Zone Calculations

$$d = \frac{\sqrt{30P_t G_t}}{E} (meters)$$

Where: d = *exclusion zone distance* (*in meters*)

- P_t = the effective radiated power of the EMI/RFI emitter (in Watts)
- $G_t = the gain of the EMI/RFI emitter (dimensionless)$
- *E* = the allowable radiated electric field strength of the EMI/RFI emitter (in Volts/meter).

Wireless Device	Exclusion Zone Distance (feet)
Wireless Dosimetry	1
Laptop Computer	3
iPad 4	8
Walkie Talkie	13

In-situ Immunity Testing and Emissions Mapping

- Immunity Testing
 - Based on MIL-STD 461 High Frequency Radiated Susceptibility, Electric Field (RS103)
 - Performed In-situ or in an EMC Laboratory

Emissions Mapping

- Based on MIL-STD 461 High Frequency Radiated Emissions, Electric Field (RE102)
- Passive measurements to characterize plant environment
- Performed In-situ or in an EMC Laboratory

- Wireless Sensor Selection and Implementation
- Considerations Associated with Wireless Technology
 - Coverage
 - Spectrum Management
- Addressing EMI/RFI Concerns
 - Reducing Exclusion Zones
 - Verifying Equipment Immunity

INNOVATING NUCLEAR TECHNOLOGY

Thank You!

Questions?