SVETSBARHET AV FJÄRRVÄRMEAPPLIKATIONER – ETAPP 2

RAPPORT 2021:831

Svetsbarhet av fjärrvärmeapplikationer – Etapp 2

JOEL ANDERSSON PAUL KAH LARS-ERIK STRIDH CHAMARA KUMARA MORGAN NILSON

ISBN 978-91-7673-831-3 | © Energiforsk december 2021 Energiforsk AB | Telefon: 08-677 25 30 | E-post: kontakt@energiforsk.se | www.energiforsk.se

Förord

Flera svenska fjärrvärmebolag har indikerat att de under de senaste åren upplever ett ökat problem att genomföra godkända svetsfogar vid svetsning av fjärrvärmerör. Inom projektet *Svetsbarhet av fjärrvärmeapplikation* utreddes problematiken och dess orsaker. I det här fortsättningsprojekt *Svetsbarhet av fjärrvärmeapplikation – etapp 2* presenteras underlag som föreslås ingå i tekniska bestämmelser för att minska problemen vid svetsning av fjärrvärmerör.

Projektet har letts och genomförts av Joel Andersson tillsammans med kollegorna Paul Kah, Lars-Erik Stridh, Chamara Kumara och Morgan Nilson från Högskolan Väst.

En referensgrupp bestående av Magnus Ohlsson, Öresundskraft (sammanhållande); Martin Lindner, Tekniska Verken i Linköping; Anders Fransson, Göteborg Energi; Harald Svensson, E.ON samt Johan Lundén och Rafael Papee, Kraftringen har följt och kvalitetssäkrat projektet. Projektet ingår i programmet Futureheat vars långsiktiga mål är att bidra till visionen om ett hållbart uppvärmningssystem med framgångsrika företag som utnyttjar nya tekniska möjligheter och där de samhällsinvesteringar som gjorts i fjärrvärme- och fjärrkyla tas till vara på bästa sätt. Detta projekt ingår i programmets andra etapp.

Programmet leds av en styrgrupp bestående av Jonas Cognell, Göteborg Energi (ordförande); Anders Moritz, Tekniska verken i Linköping; Anna Hinderson, Vattenfall AB; Charlotte Tengborg, E.ON Värme Sverige; Fabian Levihn, Stockholm Exergi; Holger Feurstein, Kraftringen; Dan Bruhn, Jönköping Energi; Patrik Grönbeck, Borlänge Energi; Leif Bodinson, Söderenergi; Lena Olsson Ingvarson, Mölndal Energi; Magnus Ohlsson, Öresundskraft; Niklas Lindmark, Gävle Energi; Per Örvind, Eskilstuna Strängnäs Energi & Miljö; Petra Nilsson, Växjö Energi; Staffan Stymne, Norrenergi; Stefan Hjärtstam, Borås Energi och Miljö; Svante Carlsson, Skellefteå Kraft; Ulf Lindquist, Jämtkraft och Julia Kuylenstierna (adjungerande), Energiforsk.

Suppleanter utgörs av Ann Britt Larssson, Tekniska verken i Linköping; och Peter Rosenkvist, Gävle Energi.

Julia Kuylenstierna, programansvarig FutureHeat

Här redovisas resultat och slutsatser från ett projekt inom ett forskningsprogram som drivs av Energiforsk. Det är rapportförfattaren/-författarna som ansvarar för innehållet.

Sammanfattning

Den här rapporten är en fortsättning på fas 1 av projektet "Svetsbarhet av fjärrvärmeapplikationer". I den här fortsättningen ligger fokus på att undersöka ytterligare dimensioner, större denna gång. Resultaten har jämförts med de simuleringsresultat som den utvecklade modellen har gett vid handen. Ett viktigt resultat är att de förslag som ges, ska ingå i "Läggningsanvisningar för fjärrvärme och ledningar för fjärrkyla, Tekniska bestämmelser D:211". Rapporten innehåller även instruktioner över hur restmagnetismen bör mätas och mätningar från fullängdsrör i fältmässiga förhållanden.

De mätningar som utförts på DN 300 och DN 500 rör, som ingick i de praktiska svetsexperimenten på svetslabb, har alla samma resultat som i den första fasen, nämligen att den restmagnetism som mäts upp i de enskilda rören, ökar med en faktor på runt 4 ggr, när rören förs samman för att svetsas samman. Magnetfältet mäts i svetsspalten framför näsan (se fogritning i Figur 2). Före varje test, avmagnetiserades rören med en förprogrammerad avmagnetiseringscykel. Därefter lindades rörändarna med en spole av en strömkabel och en likström kördes därigenom för att fastställa en exakt magnetiseringsnivå i rören, innan sammanförning och svetsning. En professionell rörsvetsare har tillsammans med teamet definierat en betygsskala för att beskriva svårighetsgraden av svetsningen vid olika nivåer av magnetfältet i spalten.

Vid "normal" opåverkad svetsning av rörskarvar, ligger en vanlig defektnivå på 0,5 – 2% (defekter som måste repareras). Vid våra förhållanden med restmagnetism som påverkar svetsningen hamnar defektnivån lätt på 8 – 10%, helt oacceptabelt och kostar dessutom mycket att reparera, i tillägg till att det försenar projekten.

Det finns olika typer av instrument för att mäta restmagnetismen, det som huvudsakligast skiljer är var på mätproben som hallelementet är placerat, det är viktigt att använda instrumentet på rätt sätt. (beskrivs i rapporten).

Höghastighetsfilmningarna av ljusbågen visar hur den fluktuerar i ökande grad med ökande magnetfält. Metoden som använts för att definiera ljusbågens masscentrum är att "räkna" de vita pixlarna i varje bildruta och på så sätt beräkna varje bilds "pixelmasscentrum". (Det resultatet kan ses i Figur 9).

Mätningar i fält på rör i full längd visade att om rören sattes samman med nordpol mot nordpol så skedde ingen ökning, men en liten minskning av magnetfältet i svetsspalten. Om det motsatta gjordes (nord mot syd) ökade magnetfältet i spalten med en faktor 10.

Nyckelord

Svetsbarhet, magnetism, fullängdsrör, ljusbåge, fjärrvärme, fjärrkyleledningar

Summary

This report is a continuation of phase 1 of the project "Weldability: district heating applications". This time the focus is on investigating larger dimensions than phase 1. The practical results have been compared with the simulation results from the model. An important "take away" is the proposals that is given to be included in "Läggningsanvisningar för fjärrvärme och fjärrkyleledningar, Tekniska bestämmelser D:211". The report contains instructions of how the residual magnetism shall be measured and results from field tests of fullscale pipes.

The tests that have been done on DN 300 and DN 500 pipes in the welding laboratory, all show the same results as in phase 1, and that is that the residual field strength of individual pipes is increasing with a factor 4, when the pipes are moved together for welding. The magnetic field is measured just in front of the root face (see figure 2). Before each test, the pipes were demagnetised with a preprogramed demagnetising cycle. After this the pipe ends were wound with a current cable to a spool and a DC current ran through the spool, to exactly establish the magnetisation level, before the welding. A professional pipe welder has together with the team established a grade scale, to describe the difficulty level at different magnetisation levels.

At normal pipe welding it is quite normal with a defect rate of 0.5 - 2% (defects in need of repair). At our situation with magnetic disturbances, the defect rate easily can reach levels of 8 - 10%, totally unacceptable and very costly to repair, it also delays the projects.

There are different types of instruments for measuring the magnetism, main difference is the position of the hall element on the probe. It is important to take this in consideration when measuring. (Described in the report).

The high-speed filming of the arc reveals how it fluctuates more with increasing magnetic field strength. The method to define the arc's mass centre is to "count" the white pixels and thereby calculate each frame "pixel mass centre". (See figure 9).

Measurements made on site, on full length pipes shows that if the pipes were mounted north to north pole, there were no, but a slight decrease of the magnetic field in the weld joint. If the opposite were done (north to south), the field in the weld joint increased with a factor 10.

Summary (extended)

This report is a continuation of phase 1 in the project "weldability district heating applications". The focus was to investigate more dimensions, larger than the first project (phase 1). DN 300 and DN 500 pipes were tested, and, in the trials with full scale pipes, DN 700 pipes were tested. All practical results were compared with the simulated results to validate the numerical model, and, in addition to this, a couple of practical cases are shortly described. Finally, the report proposes additions to "Läggningsanvisningar för fjärrvärme och fjärrkyleledningar, Tekniska bestämmelser D:211"

The length of the Swedish district heating networks in 2020, summed up to an impressive length of 24 900 km. The graph, figure 1, below describes each dimensions part in percentage of the total length.

Figure 1. District heating pipe dimensions in percentage of the total length.

In this study the same equipment as in the first phase, was used to measure the strength of the residual magnetism. It can be noted that the size of the Hall element, placed on the probe is 0.2×0.2 mm and that the accuracy of the results are within +/- 0.5 G. Before each test the pipes were placed on roller beds, and the pipe ends were separated with 200 mm. A high-speed camera was placed in position to register the movements of the arc at the same time as the current, voltage, time and heat input was registered by a weld data logger.

Regarding welding, a professional pipe welder used a Kemppi Master 315 DC/AC power source for Manual Metal Arc (MMA), the consumable used for the DC welding was a 2.5 mm basic electrode (ESAB OK 48.00). The trials to establish if there were any difference between DC and AC used an AC electrode, 2.5 mm basic (ESAB OK 48.15)

The joint preparation used were a standard preparation commonly used for this type of joints and can be seen in figure 2.

Figure 2. Joint preparation of pipe.

Before each test the pipes were de-magnetised, using a preprogramed cycle in an EWM Degauss 600 equipment. After this the current cable was used to wind a spool on each pipe and then was re-magnetised, but this time to the values we decided for the experiments.

This photo, figure 3, illustrates how the spools were fixed at the pipes lying in the roller beds, and with the probe standing above the joint to measure the actual level of magnetism in the root gap.

Figure 3. Experimental set-up.

Today's welding is mostly done with DC current and DC electrodes, main reasons for that are firstly that the penetration into the base material is deep enough and stable, so is the welding arc, by having a stable arc, the welder have good "tools" to control the welding, this results in a minimum of welding defects. In the experiments we wanted to see if welding with AC could improve the situation when exposed to residual magnetism in the weld joint. We compared DN 300 pipes, for both DC and AC welding the pipes were controlled to 50 G. The welder gave the DC welding grade 8 - 10, meaning very difficult to impossible. For AC welding the welder gave the grade 4 - 6, this time manageable but resulted in major welding defects. So, welding reduces the problems but is not a solution of it.

During the documentation of each weld a high-speed camera (PhotonFocus HD1-D1312-80-G2-12) was used. It was placed behind a protective shield with a built-in welding glass, see the following photo, figure 4.

Figure 4. Experimental set-up of a high-speed camera.

In the exposures after each welding bead, the welding arc's position was calculated. It is done by binarisation of each frame, this results in a picture with only black and white pixels, the white pixels represent the arc and the black the background. Next step is to calculate the mass centre of the white pixels, this is done by calculating the average position in each row and column in the frame. Summarised this will represent the centreline of the arc. These calculations are done for each frame and the presented over time, and this will illustrate the sideways fluctuation of the arc. This is illustrated figure 5.

Figure 5. Sideways fluctuation of the arc.

In the simulations, the same dimensions as the pipes in the practical experiments were used as input into the numeric model. The simulation used the same area of the Hall element as the actual probe used for the physical measurements.

The same approach as the real experiments was used, first the pipes were set at a distance and after that they were moved close together until the proper welding gap was reached (2 mm).

The result from the simulation shows exactly the same results as the real experiments, i.e. the magnetic flux density is low when the pipes are apart and increases when put close together (2 mm).

This can be clearly seen in figure 6 below, where the top image shows the intensity with the pipes apart and the image on the bottom shows the intensity with the pipes together.

Figure 6. The top image shows the intensity with the pipes apart and the image on the bottom shows the intensity with the pipes together.

During the field trials on full length pipes some interesting results were registered. One is that the measurements on each pipe end showed a peak in the filed measurements where the longitudinal weld was placed, only with 5 – 8 Gauss but it was very clear.

Next interesting observation was that we tested the values on a pipe first positioned in north-south direction, then it was moved to an east-west direction, this has absolutely no influence on the magnetism in the pipes, clearly illustrated in the figure 7.

Figure 7. Measured Bz-field. At both pipe ends of pipe 2. The red curve represents the north-south direction and the blue east-west direction.

The red curve on both ends represents the pipe in the north-south direction and the blue curve represents the east-west direction.

The next interesting was that when the ends with the same polarity (north to north), shows that the magnetic field will drop slightly in the weld joint. But when pipes are mounted with different polarity (north to south) the magnetic field in the weld joint will increase with a factor of 10. This will make welding literary impossible. This indicates that it is possible to use the gauss meter and determine the polarity of each pipe and make sure that only same polarity is mounted to each other.

If welding is heavily disturbed, we recommend that a de-magnetisation equipment is used to lower the magnetisation level in the pipe, and if this does not help it is possible to run the de-magnetisation equipment continuously during welding.

Innehåll

1	Beskrivnin	g	13
2	Experimer	itanalys	15
3	Mätning a	v det verkliga magnetfältet i svetsspalten	17
4	Svetsning	med AC istället för med DC+	19
5	Defekter o	orsakade av blåsverkan i en V-fog	21
6	Instruktio	ner för mätning av magnetfält i fog	22
7	Registrerin	ng av ljusbågsavlänkning med kamera	24
	7.1 Kar	nerans inställning	24
	7.2 Bild	lbehandling	25
8	Resultat a	v bild & strömmätningarna	27
9	Resultat fr	ån modellering	28
10	Magnetfäl	tsmätning i fält på fullskalerör	31
	10.1 Me	tod	31
	10.2 Res	sultaten från mätningar i ändarna och fogen	32
	10.3 Påv	verkan från jordens magnetfält	33
	10.4 Sve	etsfogen	34
11	Praktiska e	erfarenheter från några applikationer	36
	11.1 Ins	vetsning I tjockväggigt rör – kulventil, kraftvärmeverk.	36
	11.2 Pip	eline, reparation av befintlig rörledning.	37
12	Summerin	g	38
13	Instruktio	ner	39
14	Standardis	sering, restmagnetism i rör	40
15	Appendix	1: WPQR	41

1 Beskrivning

Denna slutrapport är en fortsättning på fas 1 av projektet 'Weldability: 'Svetsbarhet: fjärrvärmeapplikationer'. Målet med fas 1 var att undersöka orsakerna till restmagnetism i rör som används för fjärrvärmeapplikationer. Delmålen inkluderade (i) Utvecklandet och designen av en robust metod att mäta magnetfältet i svetsspalten; (ii) Framtagning av en experimentell metod för att fastställa de tröskelvärden då ljusbågsavlänkningen uppträder; och (iii) framtagningen av en numerisk modell för att kunna simulera och studera magnetfälten i och runt stålrör. I denna fortsättning på projektet låg fokus på att undersöka ytterligare dimensioner, DN 300 och DN 500. Väggtjocklekarna i dessa rör är 5,6 mm respektive 6,3 mm, rörlängderna var 1 m. Resultaten från dessa fysiska experiment och resultaten har jämförts med modelleringens resultat. Slutmålet är att: (iv) Föreslå rekommenderade krav till Energiföretagen Sverige att ta med i deras "Läggningsanvisningar för fjärrvärme och fjärrkyleledningar, Tekniska bestämmelser D:211.

Tabell 1 visar ett utdrag ur standarden EN ISO 6708, ett rör som anges som DN 200 har en ytterdiameter av 219,1 mm, inte 200 mm; DN står för Diameter Nominal.

Rördimensioner		
DN	Dy, mm	t, mm
150	168,30	4,00
200	219,10	4,10
250	273,00	5,00
300	323,90	5,60
350	355,60	5,60
400	406,40	6,30
450	457,20	6,30
500	508,00	6,30

Tabell 1. Utdrag ur rörstandard.

Några av de dimensioner som finns i de svenska fjärrvärmenäten. X-axeln anger

Några av de dimensioner som finns i de svenska fjärrvärmenäten. X-axeln ange rördimensionen, och Y-axeln visar procentuell andel av det totala nätets längd (figur 1).

Figur 1. Dimensionsfördelning.

Den totala längden av Sveriges fjärrvärmenät 2020, var 24 900 km.

2 Experimentanalys

De dimensioner vilka användes i experimenten var DN 300 och DN 500. I de förra experimenten användes DN 150-rör och dessa hade en godstjocklek av endast 4,0 mm. De simuleringar som gjorts i vår beräkningsmodell, visar alla att magnetfältets styrka i svetsspalten ökar med ökande godstjocklek. Denna fortsättning av projektet ämnar verifiera detta.

I experimenten har mätningarna av magnetfältets styrka och densitet uppmätts på samma sätt och med samma utrustning som användes i slutrapporten av fas 1. Noteras skall att mätproben har en mätarea av 0,2 x 0,2 mm och att dess centrum placerades någorlunda i centrum av rotöppningen. Mätutrustningens noggrannhet ligger på ± 0,5 G. Innan mätningarna i spalten utfördes, befann sig rörändarna 200 mm (det mått vilket bestämdes av rullbockarnas placering) ifrån varandra. Restmagnetismens nivå i rören kontrollerades och justerades genom att använda magnetiseringsströmkällan, värdena visas i tabell 2. Resultaten från sammanförningen av rören visar entydigt att styrkan ökar i svetsspalten. Denna ökning jämfört med vad respektive rörände uppvisade initialt, är ungefär 4 ggr högre. De praktiska svetsförsöken avslöjar att när magnetfältet överstiger c:a 20 G, börjar det att bli svårt för svetsaren att kompensera ljusbågsavlänkningen..

Experimentet använde en höghastighetskamera för att registrera ljusbågens rörelser och en svetsdatalogger för registrering av svetsparametrarna. Bildfrekvensen synkroniserades inte exakt med strömregistreringen eftersom denna signal inte skulle användas till att styra något. Svetsutrustningen vilken användes var en Kemppi Master 315 DC/AC, strömkälla för MMA, exakt samma utrustning som användes i fas 1. För svetsningen med DC+, användes en 2,5 mm elektrod (ESAB OK 48.00) och för svetsningen med AC, användes tillika en 2,5 mm elektrod (ESAB OK 48.15).

Vid svetsning ute I fält, används ett "varmhållningskoger" för att förvara elektroderna. Detta förhindrar att elektrodens hölje absorberar fukt från atmosfären, fukt kan leda till förhöjda värden av hydrogen (väteförsprödning) i svetsgodset. I vårt experiment användes vaccumförpackade elektroder, vilket garanterar helt "torra" elektroder. Den fogberedning som användes visas i figur 2, det är en standardfogberedning med totalt 60 graders vinkel och en "näsa" på 1 – 1,5 mm. Fogen häftsvetsades med 4 häftor med en rotöppning av 2 mm, avståndsbitar av austenitiskt material användes för att hålla 2mm öppning.

Figur 2. Rörens fogberedning.

Före varje test, avmagnetiserades rören med en förprogrammerad avmagnetiseringscykel i EWM Degauss 600 degaussing utrustning. Därefter lindades rörändarna med en spole av strömkabel och en likström kördes därigenom för att fastställa respektive magnetiseringsnivå ex., 10, 20 G etcetera. Nu utfördes häftsvetsningen, följt av en ny mätning av magnetfältet i spalten. Sedan lades en sträng med en elektrod, varefter röret vreds 180 grader och ytterligare en sträng med en elektrod gjordes. Därefter gjordes ytterligare en mätning av fältet.

Den kamera som användes för att registrera ljusbågens rörelser var en HD1-D1312-80-G2 baserad på en Photon fokus A1312 CMOS bildsensor med LinLog[®] teknologi. Bildahstigheten som användes för DN 300 röret var 50FPS och för DN 500 röret användes 100 FPS. Kameran var ansluten till en PC via Ethernet (GigE) och en mjukvara utvecklad i LabVIEW, som sparade bilderna i jpeg-format. En tidsvektor sparades tillsammans med bilderna.

Ström, spänning, tid och värmetillförsel registrerades med en TVC MX II RS svets data logger. Tabell 2 visar de parametrar som användes under försöken. Svetsförsöken utfördes under maj månad 2021 på Produktionstekniskt center (PTC), Högskolan Väst i Trollhättan. Experimentets uppställning visas i Figur 3.

Figur 3. Experimentets uppställning.

Tabell 2. Experimentdata och resultat.

Test nr	Rör dia <i>,</i> mm	Vägg tjockle k, mm	Rot öppn. mm	Ström- typ	Svetss tröm A	Magnetism i röret, G	Betyg från svetsaren	Magnetism efter 1st sträng, G	Magnetism efter 2:ra sträng, G
1	323,9	5.6	2,0	DC+	77	10	1	7 - 8	4 - 5
2	323,9	5,6	2,0	DC+	77	20	3 - 4	12 - 18	10 - 16
3	323,9	5,6	2,0	DC+	77	30	3 - 5	9–23	8 - 18
4	323,9	5,6	2,0	DC+	77	40	5 - 7	32 - 38	25 - 33
5	323,9	5,6	2,0	DC+	77	50	8 - 10	8 - 25	10 - 25
6	323,9	5,6	2,0	AC	77	50	4 - 6	12 - 23	9 - 16
7	508,0	6,5	2,0	DC+	77	40	5 - 7	32 - 35	28 - 30
8	508,0	6,5	2,0	DC+	77	100	10	N/A	N/A

3 Mätning av det verkliga magnetfältet i svetsspalten

Rören är initialt placerade 200 mm ifrån varandra. Två olika rördimensioner testades, DN 300 med godstjocklek (t) = 5,6 mm och DN 500 med godstjocklek (t) = 6,5 mm. En EWM Degauss 600 avmagnetiserare användes för avmagnetisering och återmagnetisering. Kablarnas längd var 15 m och deras tvärsnittsarea var 35 mm². Restmagnetismen kontrollerades och justerades i varje rör. Med denna utrustning för magnetisering behövdes ett varv i spolen för DN 300 röret och en spole med fem varv för DN 500 röret. Efter detta sammanfördes rören (2 mm) som förberedelse för svetsning. Tabell 3 visar resultaten av magnetfältsmätningarna före och efter de sammanförts till 2 mm öppning (G).

Test No	DN	t (mm)	Rot öppning (mm)	Rörlängd (m)	Kvarvara Magneti flödesde vid näsa rören är separ med 200 (G)	ande sk ensitet n när erade) mm	Magnetisk flödesdensitet i rotöppningen när rören har förts samman, 2mm gap
					Pipe 1	Pipe 2	(G)
1	300	5,6	2,0	0,5	2,5	1,6	9–11
2	300	5,6	2,0	0,5	5	5	20–21
3	300	5,6	2,0	0,5	10	10	43–44
4	500	6,5	2,0	0,5	5	6	23–25
5	500	6,5	2,0	0,5	8	13	49–52

Tabell 3. Experimentresultat.

t – godstjocklek.

Tabell 4 visar de svetsbetyg och de svårigheter som föreligger vid varje sådant betyg (denna skala har sammanställts tillsammans med en professionell rörsvetsare, den är inte helt vetenskaplig men pekar på de praktiska konsekvenserna av restmagnetismen).

Betyg från svetsare	Ljusbågens uppförande	Konsekvenser
1	Ingen svårighet	Kan hanteras av
2	Något ostabil ljusbåge	svetsaren
3	Små sidorörelser och lite svetssprut	
4	Sidorörelser av ljusbågen, något svårt att tända ljusbågen för häftningen, större svetssprut	
5	Svårt att kompensera för sidorörelser, lite svårare att tända ljusbågen, variationer i ljusbågslängd	
6	Svetsbadet börjar nu att vara ostabil på grund av att "ljusbågstrycket" varierar, större sprut	För en mindre
7	Ökade sidorörelser och ljusbågslängdvariationer, svårt att tända ljusbågen, stora sprut	erfaren svetsare är dessa nivåer
8	Stora fluktuationer i smältbadet, bågen slacks intermittent	erfaren svetsare kan hantera upp till betyg
9	Mycket svårt att tända ljusbågen, kortslutningar, stora sprut, elektroden fastnar	5, däröver kommer svetsdefekter att
10	Mycket svårt att tända ljusbågen, går ej att kompensera ljusbågen, "slingrande" sträng, smältdiken	uppsta.

Tabell 4. Svetsbetyg.

4 Svetsning med AC istället för med DC+

Idag är den helt dominerande strömtypen för MMA (Manual Metal Arc) svetsning DC+, d.v.s. elektroden är ansluten till + polen. Vid svetsning med elektroden på + pol, kommer värmeutvecklingen att vara störst i smältbadet och inträngningen är stabil och djup. Dessa egenskaper är viktiga vid svetsning för att kunna kontrollera och styra kvalitén. Runt alla elektriska ledare bildas ett magnetfält, alla kommer ihåg "tumregeln" strömmen i tummens riktning och magnetfältet i fingrarnas riktning. Som mätningarna i detta experiment visar finns nästan alltid ett restmagnetfält i rören, när dessa sammanförs för svetsning ökas fältets styrka i svetsspalten. Dessa två magnetfält kommer att påverka varandra, resultatet är att ljusbågen kommer att börja avlänkas. En svetsoperatör kommer att till viss del kunna kompensera för detta men enbart till en viss nivå, till att det blir omöjligt att hantera.

Resultaten från de försök vi utfört då vi svetsat med AC istället visar att det blir mindre störningar på ljusbågen. När svetsningen utförs med AC, innebär det att strömmen byter riktning över ljusbågen 50 ggr per sekund, detta innebär att det blir svårare för fältet över svetsspalten att avlänka ljusbågen, det måste vara "starkare" för att avlänka. Däremot blir det lite besvärligare för operatören vid användandet av AC. Anledningen till detta är att det blir lite större droppar som skall transporteras över ljusbågen, mera värme ligger på elektroden än vid DC+. En liten reducering av inträngningen blir också resultatet av AC och detta kan vara negativt. Man kan heller inte använda samma typ av elektrod som vid DC+ svetsning utan en avsedd för AC måste väljas. Konsekvensen av detta blir att en annan strömkälla måste användas och att den WPQR vilken ligger som grund för den WPS som avänds inte längre kan användas. En helt ny WPQR måste utföras och detta är en dyr operation.

Även om användandet av AC reducerar problemen, är det inget som eliminerar problemställningen, resultaten från användandet av AC kan ses i tabell 5.

Test nr.	DN	Väggtjocklek, mm	Rotöppn., mm	Strömtyp	Svetsström, A	Magnetism i rören, G	Betyg från svetsaren	Magnetism efter 1:a sträng, G	Magnetism efter 2:a sträng, G
5	300	5,6	2,0	DC+	77	50	8-10	8 - 25	10 - 25
6	300	5,6	2,0	AC	77	50	4 - 6	12 – 23	9 - 16

Tabell 5. Svetsning med AC reducerar störningarna.

5 Defekter orsakade av blåsverkan i en V-fog

Under normala förhållanden, d.v.s. låga eller inga restmagnetismfält i rören, kan svetsning utföras med en mycket låg defektnivå. Beroende på de yttre förhållandena, ligger reparationsfrekvensen (andelen av utförda svetsskarvar som blir underkända) mellan 0,5 och 2 %. När magnetisk blåsverkan uppstår och beroende på hur stor den är, kommer man lätt upp I en reparationsnivå på 8 – 10%. Detta kommer att innebära mycket stora reparationskostnader och avsevärda förseningar av ett projekt.

Vanliga typer av defekter som uppstår till följd av bågavlänkning är bindfel, slagginneslutningar, porer och smältdiken. Vid oförstörande provning (OFP) I fält används oftast ultraljudprovning i kombination med sprickindikering och visuell kontroll, vid bedömningen av defekter är det svårt att avgöra om det är en slagginneslutning eller ett bindfel, men oavsett detta måste en reparation utföras. Under svetsningen ser operatören smältbadet och den smälta slaggen om delvis täcker smältbadet, hann kan med elektrodvinkel och framföringshastighet kontrollera att slagg inte kommer in under smältbadet och hälla smältan före slaggen. När bågavlänkningen blir besvärlig kan detta förhållande inte kontrolleras av operatören, smälta och slagg börjar att "blandas", det blir turbulent och kontrollen tappas. Ibland kan slagg hamna under smältbadet över fogytan utan att ljusbågen penetreras, resultatet blir då ett bindfel.

Dessa defekter ligger "inuti" svetsen och det är tidsödande att reparera. Först måste ultraljudprovaren hitta och märka ut var felet ligger, därefter skall svetsaren slipa upp, hitta och återsvetsa, använda indikeringsvätska för att kontrollera, och slutligen ytterligare ett ultraljud för att verifiera lagningen.

6 Instruktioner för mätning av magnetfält i fog

Det finns ett flertal instrument på marknaden för att mäta styrkan på magnetfält. Alla instrument har någon typ av mätprob där det sitter ett Hall element. Hallelementet använder "Halleffekten" för att generera en spänning vilken är proportionell till ett pålagt magnetfält vinkelrätt till dess yta. Förhållandet mellan den genererade spänningen och det mot Hallelementet pålagda magnetfältet visar styrkan av magnetfältet över svetsfogen.

Beroende på mätprobens design, skall mätningarna göras på olika sätt, välj också prob efter hur svetsfogen ser ut. Proben i figuren 4 nedan har elementet på änden (röda pilen) och skall därför hållas mot ytan.

Figur 4. Röda pilen indikerar Hallelementet och det hålles mot ytan.

Vid användande av denna probtyp, håll den mot ytan, instrumentets display visar då värdet i Gauss eller microTesla. Andra instrument kan ha andra utseenden och designer av mätproben, och Hallelementet kan vara annorlunda placerat. De flesta mätprober kan vara mer eller mindre svåra att placera på exakt samma ställe för att erhålla reproducerbara mätresultat. Därför rekommenderas att tillverka en robust fixtur för att säkerställa exakt placering av mätproben, det är viktigt att det finns en noggrann justering av proben för att hitta det maximala värdet av fältet. Figur 5 visar uppbyggnaden av den fixtur som konstruerades inom projektet för experimenten. Justerskruven säkerställer en noggrann justering av proben i vertikalled.

Figur 5. Fixtur för mätning med justering i X och Y-led.

7 Registrering av ljusbågsavlänkning med kamera

7.1 KAMERANS INSTÄLLNING

En kamera, PhotonFocus HD1-D1312-80-G2-12, utrustad med f=50mm/F1.4 optik, placerades bakom en skyddande skiva med ett inbyggt svetsglas enligt figur 6. Kamerans riktades mot och fokuserades på svetsfogen c:a kl. 11.30. Skärmen och svetsglaset skyddade kameran för svetssprut och reducerade ljuset. Kamerans parametrar visas i Tabell 6 och Tabell 7.

Tabell 6. Kamerans inställningar vid svetsning av DN 300 röret.

Parameter	Värde
Exponeringstid	2500 μs
Sensorstorlek	512 x 512 pixlar
Bildhastighet	50 FPS

Tabell 7. Kamerans inställningar vid svetsning av DN 500 röret.

Parameter	Värde
Exponeringstid	2500 μs
Sensorstorlek	512 x 512 pixlar
Bildhasighet	100 FPS

Figur 6. Kamerans uppställning.

En typisk bildruta från kameran visas i figur 7. Bilden visar tydligt ljusbågens placering i svetsfogen.

Figur 7. Bild från kameran under svetsning

7.2 BILDBEHANDLING

För att beräkna ljusbågens position i bilden, identifieras först ljusbågen genom binärisering av bilden. Detta resulterar i en bild med bara svarta och vita pixlars, där de vita pixlarna representerar ljusbågen och den svarta bakgrunden. Nästa steg är att beräkna masscentrum av de vita pixlarna, detta görs genom beräkning av genomsnittlig position för varje rad och kolumn i bilden. Dessa värden representerar ljusbågens centrumlinje. I figur 8, representerar den röda linjen ljusbågens position.

Figur 8. Bild från kameran, lilla linjen visar positionen av ljusbågen.

Beräkningen av ljusbågens placering görs för varje bildruta och resultatet visas över tid i Figur 9. Baserat på dessa värden, är det möjligt att få en indikation över nivån av ljusbågsfluktuationerna i sidled från varje experiment.

Figur 9. Ljusbågsposition I varje bildruta.

8 Resultat av bild & strömmätningarna

Följande grafer i figur 10 från ljusbågsposition, ström och spänning, visar sambandet mellan ljusbågspositionen och variationerna i ström och spänning. Det visar hur dessa tre parametrar påverkas av det yttre restmagnetfältet, ju högre styrkan är på detta fält, desto större kommer variationerna i dessa tre grafer att bli. Det är exakt dessa fluktuationer som svetsaren måste "brottas" med och när de blir för stora uppstår svetsdefekter.

Figur 10. Resultat "Arc 1".

9 Resultat från modellering

Samma modell vilken utvecklades I fas 1 av projektet har använts här. För en detaljerad förståelse av den underliggande fysiken, modelldimensioner, gränsegenskaper, och materialegenskaper, anmodas läsaren att studera rapporten från fas 1.

I detta fall användes modellen för att utvärdera magnetfältets densitet i svetsspalten på olika rördimensioner specificerade i Tabell 8. Restmagnetismens densitet efter magnetiseringscykeln i modellen justerades till värdena visade i Tabell 8, kolumn 6. Detta gjordes för att matcha de faktiskt uppmätta värdena visade i Tabell 3, kolumn 6 och 7. I simuleringen, när magnetismens densitet mättes, användes en motsvarande yta som den när värdena togs, vilken motsvarar den verkliga arean som mätproben har.

Test nr.	D (mm)	t (mm)	Rot öppning (mm)	Längd (m)	Kvarvarande magnetisk flödesdensitet när rören är separerade med 200 mm (G)	Magnetisk flödesdensitet i roten när rören förts samman till 2mm avstånd (G)	Förstärkningsfaktor av magnetisk flödesdensitet
1	323,9	5,6	2,0	0,5	2	15	7,5
2	323,9	5,6	2,0	0,5	5	36	7,2
3	323,9	5,6	2,0	0,5	10	71	7,1
4	508,0	6,5	2,0	0,5	5	36	7,2
5	508,0	6,5	2,0	0,5	10	73	7,3

Tabell 8. Simuleringarnas resultat.

D – rörets ytterdiameter

t – rörets godstjocklek

När det simulerade resultat i Tabell 8, jämförs med verkliga värden i Tabell 3, ger modellen ett högre värde än verkligheten i rotöppningen 2 mm.

Denna överprediktering kan hänföras till den förenkling av modellens uppbyggnad och antaganden. I modellen är de externt ansatta magnetiseringsfälten under magnetiserinscykeln enhetliga till sin natur. I de verkliga experimenten däremot, är de genererade magnetiseringsfälten inte enhetliga och kan variera både i radiell och horisontell riktning. Dessa variationer misstänks kunna generera komplexa magnetfältsmönster som modellen inte lyckats att fånga. I tillägg till detta, tar modellen inte hänsyn till lokala materialegenskaper i rören. Dessa förenklingar kan potentiellt förklara de avvikelser modellen och verkligheten uppvisar. Oavsett detta, uppvisar modellen samma tendens som de verkliga experimenten. Därför användes modellen för att evaluera magnetfältets densitet i svetsspalten på 2 mm i de rördimensioner vilka visas i Tabell 8.

I simuleringarna (visade i Tabell 8), sattes det initiala avståndet mellan rören och 2 m, detta för att undvika all påverkan mellan rören i början av simuleringen. I alla

simuleringar, justerades den externa magnetiseringscykeln så att, den uppmätta restmagnetismen efter magnetiseringscykeln (1 mm från rotens rätkant för att efterlikna den verkliga mätningen) är lika med 5 G.

Figur 11 visar den magnetiska flödesdensitetenför test nr. 1 i Tabell 3. Figuren visar den magnetiska flödesdensitetenefter magnetiseringscykeln och efter att ha förts samman till 2 mm rotöppning. Det visar att flödesdensiteten ökar i rotöppningen när gapet är 2 mm. Denna ökning kommer att påverka bågstabiliteten om värdet >20 G.

Figur 11. Resultat från simuleringsfall nr 1 l tabell 3. Till vänster: magnetfödesdensiteten när rören är 2 m isär. Till höger: magnetfödesdensiteten när rören är 2mm isär. Övriga simuleringar uppvisar samma tendenser.

ent (G) Streamline: Magnetic flux density (spatial and material frames) 0.25 150 140 0.249 130 120 110 0.24 100 90 0.24 80 70 0.24 60 50 0.245 40 30 0.244 20 10 0.243 -0.003 -0.002 -0.001 0.004 0.004 0.001 0.002 0.003

Figur 12 visar magnetflödesdensiteten och flödeslinjerna efter att två rör har förts samman till 2 mm avstånd.

Figur 12. Magnetflödesdensiteten och visualisering av flödeslinjerna för fall nr 1 I tabell 3 efter att rören sammanförts till 2 mm rotöppning. Notera att flödeslinjerna bara visas på halva bilden, detta för tydlighetens skull eftersom de är symmetriska.

Test nr.	D, mm	t, mm	Rot- öppn., mm	Längd, m	Kvarvarande magnetisk flödesdensitet när rören är separerade med 200 mm, (G)	Magnetisk flödesdensitet i roten när rören förts samman till 2mm avstånd, (G)	Förstärkning- sfaktor av magnetisk flödesdensitet
1	500,0	6,5	2,0	0,5	5	49	9,8
2	500,0	6,5	2,0	5,0	5	79	15,8
3	500,0	6,5	2,0	12,0	5	81	16,2
4	1016,0	23,4	2,0	0,5	5	49	9,8
5	1016,0	23,4	2,0	5,0	5	109,5	21,9
6	1016,0	23,4	2,0	12,0	5	120	24,0

Tabell 9. Effekten av rörets längd på rotöppningens magnetisering.

Figur 13. Magnetisk flödesdensitet vid 2 mm rotöppning, för fall I tabell 9. (a) test nr 2, (b) test nr 3, (c) test nr 5, (d) test nr6.

Resultaten (se Tabell 9 and Figur 13) visar att magnetflödesdensiteten i roten, ökar med ökande rörlängd. Därför är det viktigt att kontrollera restmagnetismens flödesdensitet när rörlängderna, diametrarna och godstjocklekarna ökar. I verkligheten kan det i besvärliga fall visa sig nödvändigt att köra med en avmagnetiseringsutrustning samtidigt som man svetsar i fogen.

10 Magnetfältsmätning i fält på fullskalerör

Figur 14. Rörens placering vid mätningarna.

Denna del av rapporten redovisar de mätningar av fullskalerör placerade enligt (Figur 14) mellan 2021-10-13 och 2021-10-14. Det primära målet med mätningarna var att under realistiska former mäta förstärkningsfaktorn i svetsspalten på en storlek större rör. Förstärkningsfaktorn vilken uppmättes var så stor som en faktor c:a 10 mellan två rörändar av olika polaritet (nord- och sydpol). Av intresse var även att mäta rörets magnetiseringsnivå beroende på dess riktning I förhållande till jordens magnetfält, först mättes båda ändar med röret I nord-sydlig riktning, därefter med röret I öst-västlig riktning. Vid dessa mätningar kunde ingen påverkan över huvud taget synas.

10.1 METOD

Alla mätningar redovisade för magnetflödesdensitet fält B, är mätta i enheten Gauss (G). Endast den axiella komposanten (rörets längsaxel) av B-fältet mättes, vilket benämns Bz. Bz är positiv i riktningen från ände 1 mot ände 2, se figur 15 nedan. Alla mätningar gjordes på positioner i ett polärt koordinatsystem r θ , fixerat på rörände 1 och orienterat enligt figuren nedan. Totalt utfördes 24 mätningar i varje rörände, 8 punkter per varv åtskilda med 45 grader. Första varvet vid näsan, andra varvet 2 mm ovanför och tredje varvet 4 mm ovanför näsan. Alla mätningar utfördes med MAGMETER MF300H+ som visas i figur 15.

Figur 15. Orientering av Bz och placeringen av det polära kordinatsystemet.

10.2 RESULTATEN FRÅN MÄTNINGAR I ÄNDARNA OCH FOGEN

Restmagnetfältet på två 16 m långa DN600 fjärrvärmerör uppmättes i båda ändar enligt ovan beskriven procedur. Rören var placerade med c:a 2m avstånd från varandra för att undvika påverkan från varandra. Rören var placerade på rullbockar cirka 1 m över marken, se figur 16 nedan.

Figur 16. De två DN600 rörens uppställning.

Det uppmätta Bz fältet vid de två ändarna av rör 1 visas i Figur 17. Det mättes vid vinklarna 0, 45, 90, 135, 180, 225, 270 och 315°. De röda prickarna representerar peakvärdena av Bz i radiell riktning ovan de med vinkel angivna positionerna. Den röda kurvan erhölls med kubisk splineinterpolering. De blå prickarna och kurvan visar Bz värdena men nu 2mm ovanför peakvärdena i radiell riktning. De magentafärgade prickarna och kurvan visa Bz värdena men nu 4 mm ovanför peakvärdena.

Figur 17. Uppmätta Bz fälten I båda rörändar hos rör 1.

Som kan ses av kurvan för fätet, är det lätt assymetriskt i circular riktning. Det högsta värdet sammanfaller med placeringen av den i spiral utförda längssvetsningen. Maximal magnitud hos fältet är nära 40 G. Figur 18. visar samma mätningar för rör 2.

Figur 18. Uppmätt Bz fält vid två rörändar för rör 2.

10.3 PÅVERKAN FRÅN JORDENS MAGNETFÄLT

För att studera jordens magnetfälts eventuella påverkan på rörets magnetisering, mättes rörändarna på rör 2, det som mättes var de maximala värdena vid fogens rätkant (näsan). Först utfördes mätningarna när röret låg i en nord-sydlig riktning, därefter vändes röret till en öst-västlig riktning och mätningarna upprepades på samma sätt. Figur 19 visar resultaten. De röda markeringarna och kurvan representerar resultaten då röret låg i nord-sydlig riktning. De blå markeringarna och kurvan motsvarar resultaten då röret låg i öst-västlig riktning. Det är ingen skillnad beroende på riktningen. De små skillnader som finns ligger helt inom felmarginalen för mätmetoden, vilken rör sig om några enstaka Gauss. Jordens magnetfält anser därmed inte ha någon inverkan på rörets magnetisering.

Figur 19. Uppmätt Bz-fält. Vid båda rörändarna hos rör 2. Röda kurvan representerar nord- sydriktning och den blå öst-västriktning.

10.4 SVETSFOGEN

Magnetfältet i svetsspalten mellan rör 1 och rör 2 uppmättes. Först monterades ände 1 hos rör 1 mot ände 2 hos rör 2, tills en spalt på 2mm erhölls, se Figur 20. I detta fall har ändarna samma polaritet, därför kommer Bz-fältet att upphöra i spalten.

Figur 20. 2mm rotöppning mellan rören.

Figur 21. visar det uppmätta Bz-fältet i spalten mellan ände 1 och 2 hos rören. Ur figuren 21 kan utläsas att, det endast är vid en mätpunkt som peakvärdet vid näsan är något högre (röda kurvan) än det vid mätningen av de fria ändarna (jämför med Figur 17 och Figur 18 ovan). Vid mätpunkterna 135-225° är det nära noll. Detta vinkelintervall hade förmodligen varit större om en noggrannare positionering av rören kunnat göras, det var i princip omöjligt att få till en perfekt

positionering men det är det i verklig rörläggning också. Notera att mätningarn 2 och 4 mm ovanför den röda (vid näsan) kurvan bara var högre i vinkelintervallet 270-360°. I övrigt var de lika eller lägre än de vid de fria ändarna (se Figur 17 och Figur 18 ovan).

Figur 21. Uppmätt Bz-fält I svetsspalten mellan ände 1 och 2 I rör 1 respektive rör 2.

När ände 1 hos rör 1 förs ihop med ände1 hos rör 2, till en spalt av 2 mm i roten, uppstår en mycket kraftig förstärkning av Bz-fältet i svetsfogen, jämfört med föregående fall. Detta beror på att de nu sammanförda ändarna har olika magnetisk polaritet. Figur 22 visar det uppmätta Bz-fältet för denna situation. Jämfört med Figur 21 ovan, kan vi observera en 10-faldig ökning av magnetfältet vid visa positioner. Denna kraftiga förstärkning hade sannolikt medfört att svetsningen inte kunnat utföras utan avmagnetiserande åtgärder.

Figur 22. Uppmätt Bz-fält I svetsspalten mellan rörände 1 och rörände 1 hos rör 1 respektive rör 2.

11 Praktiska erfarenheter från några applikationer

Restmagnetism är ett reellt problem för en del applikationer inom den svetsande industrin. Ett relativt lågt magnetiskt fält är hanterbart, men med ökande styrka hos fältet blir det till slut ett problem att utföra svetsningen med tillfredsställande kvalité hos svetsfogen. Följande figurer illustrerar hur ljusbågen avlänkas vid två svetsmetoder. Figur 23 visar en TIG-ljusbåge och Figur 24 en MMA ljusbåge. Det blir svårt för svetsaren att kontrollera smältbadet när ljusbågen börjar "vandra" från sida till sida i på ett oregelbundet sätt. I svåra fall kan ljusbågen "släckas" kortvarigt.

Figur 23. TIG-båge. Vänster: påverkad av fält. Höger: opåverkad.

Figur 24. MMA-båge. Vänster: påverkad av fält. Höger: opåverkad.

11.1 INSVETSNING I TJOCKVÄGGIGT RÖR – KULVENTIL, KRAFTVÄRMEVERK.

I detta exempel med ett tjockväggit rör (Figur 25) där en kulventil senare skall svetsas in, upptäcktes vid häftsvetsningen att det var omöjligt att utföra häftsvetsningen. Möjligen hade röret från början ett restmagnetfält, men bearbetningen (svarvningen) av svetsfogen har förmodligen också bidragit till att

magnetismen i röret ökats. Roten skall TIG-svetsas, för att möjliggöra detta måste magnetfältet reduceras avsevärt. Figur 25 visar röret och längst till höger på röret kan strömkabeln ses spolad runt röret i 15 varv, på golvet står

avmagnetiseringsutrustningen, I detta fall fick man ner magnetfältet med en faktor 9, vilket möjliggjorde svetsningen.

Figur 25. Visar fogberedningen på rörsidan.

11.2 PIPELINE, REPARATION AV BEFINTLIG RÖRLEDNING.

Efter ett upptäckt läckage i en befintlig pipe-line, konstateardes att en del måste bytas ut. Då den nya delen rör skulle svetsas in upptäcktes den höga magnetismen i rörledningen. I detta fall räckte det inte med att utföra en avmagnetisering av rör ändarna, magnetismen återkom så snart processen avslutats. Det här är ett känt problem i långa rörledningar som blivit magnetiserade, så snart en lokal avmagnetisering gjorts återkommer problemet. Här blev man tvingad att köra en kontinuerlig avmagnetisering under hela svetsningen. Figur 26 visar ytterligare ett problem vid svetsreparation av befintlig nedgrävd rörledning, nämligen åtkomsten.

Figur 26. Reparation av befintlig nedgrävd rörledning med kontinuerlig "degaussing" under svetsningen.

12 Summering

Under det senaste decenniet har svetsare och rörentreprenörer upplevt ett ökande problem med magnetisk blåsverkan vid rörsvetsning. Fas 1 i detta projekt och denna rapport har uteslutit flera faktorer som ansetts kunna bidraga till att rör i allmänhet och fjärrvärmerör i synnerhet blir magnetiserade. En trolig orsak kan vara att rörverken vid kvalitetskontrollen av längsskarvarna i rören, mer och mer använder virvelströmsprovning (eddy current). För att göra denna provning måste rören magnetiseras och om de efter den processen inte avmagnetiseras i tillräckligt hög grad får vi rör med restmagnetism. Nämnas skall att det finns effektiva avmagnetiseringstunnlar att installera i rörverken för att sänka nivåerna efter provningarna.

Våra resultat och tester visar ganska tydligt på att ett maxvärde för att undvika alla problem vid svetsning borde ligga på 5 Gauss.

Det är möjligt att reducera problemen genom att svetsa med växelström men det är lite svårare och man kan inte använda samma WPQR utan måste utföra en ny och det är väldigt dyrt.

Det finns effektiva avmagnetiseringsutrustningar, för användande i fält, som endera kan sänka magnetismen i röränden eller att kontinuerligt köras under svetsningen för att underlätta.

13 Instruktioner

Följande punkter föreslås ingå i läggningsinstruktionerna:

- När ett projekt upphandlas bör inköpsspecifikationen för rör innehålla en maximal nivå av restmagnetismen av max 5 Gauss (1 mT).
- En ankomstkontroll av rören till arbetsplatsen införs med mätning av varje rör, mätprocessen skall vara noggrant beskriven och ett kalibrerat instrument bör användas.
- Rör med mindre än 5 Gauss kan direkt gå till svetsning och bör inte medföra några större problem.
- Rör med högre värden än 5 Gauss, avmagnetiseras innan svetsning.
- Efter avmagnetisering görs en kontrollmätning, därefter till svetsning om värdet är under 5 Gauss.
- En utväg om avmagnetiseringen inte får ner värdet, är att avmagnetiseringsutrustningen körs kontinuerligt under svetsningen.
- En möjlig väg är att skaffa en kompletterande WPQR för svetsning med växelström (AC), det kan reducera problemen med "gränsfallsrör". I enlighet med de svetsförsök som utförts kan ljusbågsavlänkningen reduceras till viss del med att svetsa med AC, men det löser inte problemen om restmagnetismen är för hög. Med det förstås att vid en restmagnetism på c:a 35 G så kan svetsning med AC lösa problemen men inte vid högre värden.
- För att bestämma + resp. pol på ett rör skall man kalibrera mätinstrumentet i en bestämd riktning, och alltid återkalibrera i samma riktning. När man sedan mäter på röränden visas ett + eller – tecken framför värdet, ta en krita och markera + eller – på den änden. Detta upprepas på nästa rör o.s.v. Om man nu vänder + mot + eller – mot –, så kommer styrkan på magnetfältet i spalten att vara oförändrad eller minska. Skulle man råka vända + mot -, så kommer magnetfältet att öka avsevärt i styrka.

14 Standardisering, restmagnetism i rör

Det är av stort intresse för hela branschen att det tillkommer standarder för dels rörtillverkning där processen är noggrant beskriven och där testmetoder utvärderas för hur höga nivåer av restmagnetism de lämnar i rören, dels för hur höga nivåerna får vara när ett rör lämnar rörverket och hur det skall avmagnetiseras. Det behöver även tillkomma standard för hur rör avsedda för svetsning får lyftas, bannlys elektromagnetlyftverktyg! I tillägg till ovan nämnda bör en standard för hur magnetismen skall mätas och vilka instrument som rekommenderas.

Hur detta skall realiseras har projektet inte kunnat komma fram till men ett sätt är att med ledning av det som framkommit i fas 1 av projektet och denna del, skriva ett förslag till teknisk specifikation för rörtillverkning vilken kan presenteras för IIW`s kommission XVIII (Quality Management in Welding and Allied Processes). Det är dock något som inte kunnat inrymmas i denna rapport.

15 Appendix 1: WPQR

FORCE
TECHNOLOGY

31.5. 01 2:002

Svetsprocedur - provningsintyg WPQR Welding procedure qualification record WPQR

Tillverkarens WPQR / Manufacturer's WPQR			Uppdr, nr / Comm No.	
Stocknine 111:02			208-20555	
Tillverkarens pWPS nr / Manufacturer's pWPS	S No.		100 10000	
111:02				
Tillverkare / Manufacturer				
Stockpipe AB				
Gösta Ekmans Väg 22 12	29 35 Hägersten			
AFS 1999:4 PED SS- Datum för svetsningen / Date of welding	EN ISO 15614-1			
2008-02-22				
Täckningsområde / Co	over range			
Svetsmetod / Welding process	Manuell / Manual	Delvis mekanise Partly mechanize	rad / Helt mekaniserad ed D Fully mechanized	/ Automatis
Svetstyp / Joint type			Enkel sträng - Flera strängar	/ Single run - Multi run
BW, ss-nb, ss-mb, bs-ng, l	bs-gg and FW		Multi run	
out of a opporting and the or metal tank				
-				
Grundmaterial / Parent material L360NB, see chapter 8.3.1 Tjocklek grundmaterial / Parent material thick	.1 in SS-EN ISO 156	514-1.		
Grundmaterial / Parent material L360NB, see chapter 8.3.1 Tjocklek grundmaterial / Parent material thick BW: 3,0 -16,0 mm. FW: 4, Svetsgodsljocklek / Weld metal thickness	.1 in SS-EN ISO 156 mess ,0-9,6 mm.	514-1.		
Grundmaterial / Parent material L360NB, see chapter 8.3.1 Tjockek grundmaterial / Parent material thick BW: 3,0 -16,0 mm. FW: 4, Switz State / Weld metal thickness - Ytterdiameter rör (mm) / Outside pipe diamet	.1 in SS-EN ISO 156 kness ,0-9,6 mm. ter (mm) Typ ov ström / 1	\$14-1.	ity a mått / Throat thicknees	
Grundmaterial / Parent material L360NB, see chapter 8.3.1 Tjockek grundmaterial / Parent material thick BW: 3,0 -16,0 mm. FW: 4, Switz State of the second second second second - Ytterdiameter rör (mm) / Outside pipe diamet >44,4 mm	.1 in SS-EN ISO 156 kness ,0-9,6 mm. ler (mm) Typ av stróm / 1 DC+	314-1.	ity a måt / Throat thickness All	
Grundmaterial / Parent material L360NB, see chapter 8.3.1 Tjocklek grundmaterial / Parent material thick BW: 3,0 - 16,0 mm. FW: 4, Svetsgodstjocklek / Weld metal thickness - Ytterdiameter rör (mm) / Outside pipe diamet >44,4 mm Beteckning tillsatsmaterial / Filler material de Rot run: AWS A5.1: E7018	.1 in SS-EN ISO 156 kness ,0-9,6 mm. ler (mm) Typ av ström / 1 bC+ signation -H8. Elga P48P.	314-1.	ity a mått / Throat thickness	
Grundmaterial / Parent material L360NB, see chapter 8.3.1 Tjocklek grundmaterial / Parent material thick BW: 3,0 -16,0 mm. FW: 4, Svetsgodstjocklek / Weld metal thickness - Ytterdiameter rör (mm) / Outside pipe diamet >44,4 mm Beteckning tillsatsmaterial / Filler material de Rot run: AWS A5.1: E7018 Filler runs:AWS A5.1: E7018	.1 in SS-EN ISO 156 kness ,0-9,6 mm. ter (mm) Typ av atrim / 1 DC+ signation -H8. Elga P48P. 18. Esab OK 48.05	314-1.	ity a mått / Throat thickness All	
Grundmaterial / Parent material L360NB, see chapter 8.3.1 Tjocklek grundmaterial / Parent material thick BW: 3,0 - 16,0 mm. FW: 4, Svetsgodsljocklek / Weld metal thickness - Ytterdiameter rör (mm) / Outside pipe diamet >44,4 mm Beteckning tillsatsmaterial / Filler material de Rot run: AWS A5.1: E7018 Filler runs:AWS A5.1: E7018	.1 in SS-EN ISO 156 kness .0-9,6 mm. ier (mm) Typ av atrām / 1 DC+ signation -H8. Elga P48P. 18. Esab OK 48.05 of shielding gas - flux	514-1.	ity a mátt / Throat thickness All	
Grundmaterial / Parent material L360NB, see chapter 8.3.1 Tjocklek grundmaterial / Parent material thick BW: 3,0 - 16,0 mm. FW: 4, Svetsgodstjocklek / Weld metal thickness - - Yiterdiameter rör (mm) / Outside pipe diamet >44,4 mm Beteckning tillsatsmaterial / Filler material de Rot run: AWS A5.1: E7018 Filler runs:AWS A5.1: E7018 Beteckning skyddsgas - pulver / Designation - Svetslägen / Welding positions	.1 in SS-EN ISO 156 kness .0-9,6 mm. ter (mm) Typ av atrim / 1 DC+ signation -H8. Elga P48P. 18. Esab OK 48.05 of abileding gas - flux	314-1.	ity a mått / Throat thickness All	
Grundmaterial / Parent material L360NB, see chapter 8.3.1 Tjocklek grundmaterial / Parent material thick BW: 3,0 - 16,0 mm. FW: 4, Svetsgodstjocklek / Weld metal thickness - - Yiterdiameter rör (mm) / Outside pipe diamet >44,4 mm Beteckning tillsatsmaterial / Filler material de Rot run: AWS A5.1: E7018 Filler runs:AWS A5.1: E7018 Beteckning skyddsgas - pulver / Designation - Svetslägen / Welding positions The used welding position a	.1 in SS-EN ISO 156 kness .0-9,6 mm. ter (mm) Typ av atrim / 1 DC+ signation -H8. Elga P48P. 18. Esab OK 48.05 of ableding gas - flux and all suitable positi	514-1.	ity a mátt / Throat thickness All ification range for heat inp	
Grundmaterial / Parent material L360NB, see chapter 8.3.1 Tjocklek grundmaterial / Parent material thick BW: 3,0 - 16,0 mm. FW: 4, Svetsgodstjocklek / Weld metal thickness - - Yiterdiameter rör (mm) / Outside pipe diamet >44,4 mm Beteckning tillsatsmaterial / Filler material de Rot run: AWS A5.1: E7018 Filler runs:AWS A5.1: E7018 Beteckning skyddsgas - pulver / Designation - Svetslägen / Welding positions The used welding position a Väteutdrivning / Post-heating	.1 in SS-EN ISO 156 kness .0-9,6 mm. ter (mm) Typ av atrim / 1 DC+ signation -H8. Elga P48P. 18. Esab OK 48.05 of ableding gas - fux and all suitable posit	514-1.	ity a mått / Throat thicknees All ification range for heat inp	ut.
Grundmaterial / Parent material L360NB, see chapter 8.3.1 Tjocklek grundmaterial / Parent material thick BW: 3,0 - 16,0 mm. FW: 4, Svetsgodsljocklek / Weld metal thickness - - Ytterdiameter rör (mm) / Outside pipe diamet >44,4 mm Beteckning tillsatsmaterial / Filler material de Rot run: AWS A5.1: E7018 Filler runs:AWS A5.1: E7018 Beteckning skyddsgas - pulver / Designation - Svetslägen / Welding positions The used welding position a Väteutdrivning / Post-heating	.1 in SS-EN ISO 156 kness .0-9,6 mm. ter (mm) Typ av atrim / 1 DC+ signation -H8. Elga P48P. 18. Esab OK 48.05 of shielding gas - flux and all suitable posit	314-1.	ity a mått / Throat thickness All ification range for heat inp tiling efter svetsning / Post-weld heat treatin	ut.
Grundmaterial / Parent material L360NB, see chapter 8.3.1 Tjocklek grundmaterial / Parent material thick BW: 3,0 - 16,0 mm. FW: 4, Svetsgodsljocklek / Weld metal thickness - - Ytterdiameter rör (mm) / Outside pipe diamet >44,4 mm Beteckning tillsatsmaterial / Filler material de Rot run: AWS A5.1: E7018 Filler runs:AWS A5.1: E7018 Beteckning skyddsgas - pulver / Designation - Svetslägen / Welding positions The used welding position a Vateutdrivning / Post-heating - Förhöjd arbetstemperatur / Preheat temperat	.1 in SS-EN ISO 156 kness ,0-9,6 mm. ter (mm) Typ av atrim / 1 DC+ signation -H8. Elga P48P. 18. Esab OK 48.05 of shielding gas - fux and all suitable posit ture Mellanstrangs	S14-1. Type of welding current and polar type of welding current and polar type of welding current and polar type of welding current and polar type of welding current and polar type of wel	ity a måt / Throat thickness All ification range for heat inp ting efter svetsning / Post-weld heat treatin ure Varmetiliforsei / Heat Inp	ut.
Grundmaterial / Parent material L360NB, see chapter 8.3.1 Tjocklek grundmaterial / Parent material thick BW: 3,0 - 16,0 mm. FW: 4, Svetsgodstjocklek / Weld metal thickness - - Ytterdiameter rör (mm) / Outside pipe diamet >44,4 mm Beteckning tillsatsmaterial / Filler material de Rot run: AWS A5.1: E7018 Filler runs:AWS A5.1: E7018 Beteckning skyddsgas - pulver / Designation - Svetslägen / Welding positions The used welding position a Vateutdrivning / Post-heating - Förhöjd arbetstemperatur / Preheat temperat RT Annan information / Other information	.1 in SS-EN ISO 156 kness .0-9,6 mm. ter (mm) Typ av atrim / 1 DC+ signation -H8. Elga P48P. 18. Esab OK 48.05 of ahielding gas - flux and all suitable posit ture Melianstrange 250°C	S14-1.	ity a mått / Throat thicknees All ification range for heat inp tiling efter svetsning / Post-weld heat treating ure Varmetiliforsel / Heat Inp See page 2	ut.
Grundmaterial / Parent material L360NB, see chapter 8.3.1 Tjocklek grundmaterial / Parent material thick BW: 3,0 -16,0 mm. FW: 4, Svetsgodsljocklek / Weld metal thickness - - Ytterdiameter rör (mm) / Outside pipe diamet >44,4 mm Beteckning tillsatsmaterial / Filler material de Rot run: AWS A5.1: E7018 Filler runs:AWS A5.1: E7018 Beteckning skyddsgas - pulver / Designation - Svetslägen / Welding positions The used welding position a Vateutdrivning / Post-heating - Förhöjd arbetstemperatur / Preheat temperat RT Annan information / Other information Welding Procedur Qualifica	.1 in SS-EN ISO 156 kness .0-9,6 mm. ter (mm) DC+ signation -H8. Elga P48P. 18. Esab OK 48.05 of shielding gas - flux and all suitable posit ture Mellanstrangs 250°C ation Record has beef	ions within the quali varmebehand	ity a mått / Throat thickness All ification range for heat inp fling efter svetsning / Post-weld heat treat ure Varmetillforsel / Heat inp See page 2 ng to SS-EN ISO 15614-1	ut.
Grundmaterial / Parent material L3GONB, see chapter 8.3.1 Tjocklek grundmaterial / Parent material thick BW: 3,0 - 16,0 mm. FW: 4, Svetsgodstjocklek / Weld metal thickness - - Ytterdiameter rör (mm) / Outside pipe diamet >44,4 mm Beteckning tillsatsmaterial / Filler material de Rot run: AWS A5.1: E7018 Filler runs:AWS A5.1: E7018 Filler runs:AWS A5.1: E7018 Deteckning skyddsgas - pulver / Designation - Svetslägen / Welding positions The used welding position a Vateutdrivning / Post heating - Förhöjd arbetstemperatur / Preheat temperat RT Annan Information / Other information Welding Procedur Qualifica	.1 in SS-EN ISO 156 mess .0-9,6 mm. ter (mm) Typ av sträm / 1 DC+ signation -H8. Elga P48P. 18. Esab OK 48.05 of shielding gas - flux and all suitable posit ture Meilanstrangs 250°C ation Record has bee	S14-1.	ity a mátt / Throat thickness All ification range for heat inp ling ofter svetsning / Post-weld heat treatn ure Varmetillforsel / Heat inp See page 2 ng to SS-EN ISO 15614-1	utut
Grundmaterial / Parent material L360NB, see chapter 8.3.1 Tjocklek grundmaterial / Parent material thick BW: 3,0 - 16,0 mm. FW: 4, Svetsgodsljocklek / Weld metal thickness - - Ytterdiameter rör (mm) / Outside pipe diamet >44,4 mm Beteckning tillsatsmaterial / Filler material de Rot run: AWS A5.1: E7018 Filler runs:AWS A5.1: E7018 Filler	.1 in SS-EN ISO 156 mess .0-9,6 mm. ier (mm) Typ av atrim / 1 DC+ signation -H8. Elga P48P. 18. Esab OK 48.05 of shielding gas - flux and all suitable posit ture Meilanstrangs 250°C ation Record has been sar bereddes, svetsa	S14-1.	ity a mått / Throat thickness All ification range for heat inp iling efter svetsning / Post-weld heat treatn ure Varmetillforsel / Heat inp See page 2 ng to SS-EN ISO 15614-1 med tillfredsstållande resu	ut. ut. ut ut

Plats / Location	Datum / Date of issue	Erkänt tredjepartsorg	gan / Recognized third party body	
Borlänge	2010-08-31	FORCE Tec	hnology Sweden AB	
Denna rapport gäller endast de provade objekten och får e om inte utfardande laboratorium i förväg skriftligen godkant This sened esku seniise och be tected ebiects and can opki	ndast ålerges i sin helhel, annat. be resourced in ite full	Namn och signatur /	Name and signature	FORCE
unless the issued laboratory in advance approved other in	writing.	Ake Moen	g a Mile	echnology
FORCE Technology Sweden AB, Tunavägen 276, 781 73	Borlänge.			
			2010-03-3	30/Ver.10/St/FTS 168-1 PED

rotokoll	över sve	etsning av pr	ovstycket /	Record	of weld	test		Sid 2	2 (5)
Plats / Location				0ppdr.	.nr / Comm No).			
Tillverkarens pW	PS nr / Manufactu	rer's pWPS No.		Metod	för fogberednir	ng och rengöring	g / Method for prepa	aration and cleaning)
111:02	R No			Mas	skinbeart	petning			
Stockpipe	111:02								
Tillverkare / Mani	ufacturer			Materia	alspec. / Paren	it material spec.			
Stockpipe Svetsarens namr	AB / Welder's name			L30					
Johan Lind	dberg			Materi	altiocklek / Par	ent material thic	knoss (mm)		
111	iding metriod			8	anjockiek / r an		aloss (min)		
Svetstyp / Joint ty	pe			Ytterdi	ameter / Outsid	de pipe diamete	r (mm)		
BW ss nb Sätt för droppöve	rgång / Mode of m	etal transfer		88,9 Svetslå	9 ige / Welding p	position			
-				HLC)45				
ogutform	ning / Joint	t design		Svets	sföljder /	Welding	sequences	6	
Sträng /	Metod /	Tillsatsmate	rial, diameter / material (mm)	Ström / Current (A)	Spänning /	Strömtyp Polaritet /	Trådmatnings- hastighet / Wire feed speed	Framförings- hastighet / Travel speed	Värme- tillförsel / Heat innu
vetsdata / Sträng / Run	Metod / Method	letails Tillsatsmate Size of filler	rial, diameter / material (mm)	Ström / Current (A)	Spänning / Voltage (V)	Strömtyp Polaritet / Type of current Polarity	Trådmatnings- hastighet / Wire feed speed (m/min)	Framförings- hastighet / Travel speed (mm/min)	Värme- tillförsel / Heat inpu (kJ/mm)
vetsdata / ^{Sträng /} Run 1	Welding d Metod / Method	Ietails Tillsatsmate Size of filler Elga P48	rial, diameter / material (mm) P Ø2,5	Ström / Current (A) 65	Spänning / Voltage (V) 22	Strömtyp Polaritet / Type of current Polarity DC+	Trådmatnings- hastighet / Wire feed speed (m/min) -	Framförings- hastighet / Travel speed (mm/min) 60	Värme- tillförsel , Heat inpu (kJ/mm) 1,1
vetsdata / Sträng / Run 1 2	Welding d Metod / Method 111	Ietails Tilisatemate Size of filler Elga P48 Esab OK 48	rial, diameter / material (mm) P Ø2,5 3.05 Ø2,5	Ström / Current (A) 65 100	Spänning / Voltage (V) 22 23,5	Strömtyp Polaritet / Type of current Polarity DC+ DC+	Trådmatnings- hastighet / Wire feed speed (m/min) -	Framförings- hastighet / Travel speed (mm/min) 60 80	Värme- tillförsel Heat inpu (kJ/mm) 1,1
vetsdata / Sträng / Run 1 2 3	Welding d Metod / Method 111 111 111	Ietails Tillsatsmate Size of filler Elga P48 Esab OK 48 Esab OK 48	rial, diameter / material (mm) P Ø2,5 3.05 Ø2,5 3.05 Ø3,2	Ström / Current (A) 65 100 100	Spänning / Voltage (V) 22 23,5 23,5	Strömtyp Polaritet / Type of current Polarity DC+ DC+ DC+	Trådmatnings- hastighet / t Wire feed speed (m/min) - - -	Framförings- hastighet / Travel speed (mm/min) 60 80 120	Värme- tillförsel , Heat inpu (kJ/mm) 1,1 1,4
vetsdata / Sträng / 1 2 3 4	Metod / Metod / Method 111 111 111 111 111 111	Ietails Tillsatsmate Size of filler Elga P48 Esab OK 44 Esab OK 44 Esab OK 44	rial, diameter / material (mm) P Ø2,5 3.05 Ø2,5 3.05 Ø3,2 3.05 Ø3,2	Ström / Current (A) 65 100 100 110	Spänning / Voltage (V) 22 23,5 23,5 23,5 24	Strömtyp Polaritet / Type of current Polarity DC+ DC+ DC+ DC+	Trådmatnings- hastighet / t Wire fead spood (m/min) - - -	Framförings- hastighet / Travel speed (mm/min) 60 80 120 110	Värme- tillförsel , Heat inpu (kJ/mm) 1,1 1,4 0,9 1,1
vetsdata / Sträng / Run 1 2 3 4 Tillsatsmaterial, 1 AWS A5, 1 Sarekid värminin	Welding of Metod / Method 111 111 111 111 111 5eteckning ch fab 5 E7018-H8 9 eller torkning 7 S	Ietails Tillsatsmate Size of filler Elga P48 Esab OK 44 Esab OK 44 Esab OK 44 rikat / Filler material design 3. Elga P48P. / pecial baking or drying	rial, diameter / material (mm) P Ø2,5 3.05 Ø2,5 3.05 Ø3,2 3.05 Ø3,2 alton and make AVVS A5.1: E7 Väteutdrivning / Posi	Ström / Current (A) 65 100 100 110 018 Esab 0	Spänning / Voltage (V) 22 23,5 23,5 24 OK 48.05	Strömtyp Polaritet / Type of current Polarity DC+ DC+ DC+ DC+ DC+	Trådmatnings- nastighet / Were feed speed (m/min) - - - - scillering: Amplitud scillering: Amplitud	Framförings- hastighet / Travel speed (mm/min) 60 80 120 110	Värme- tillförsel / Heat inpu (kJ/mm) 1,1 1,4 0,9 1,1
vetsdata / Sträng / Run 1 2 3 4 Tillsatsmaterial, I AWS A5.1 Särekild värmnin - Skyddsgnasputve	Image: Welding of Metod / Method Metod / Method 111	Ietails Tillsatsmate Size of filler Elga P48 Esab OK 48 Esab	rial, diameter / material (mm) P Ø2,5 3.05 Ø2,5 3.05 Ø3,2 3.05 Ø3,2 alton and make AWS A5.1: E7 Vateutirivning / Post Vateutiring / Post	Ström / Current (A) 65 100 100 110 018 Esab 0 t-heating	Spänning / Voltage (V) 22 23,5 23,5 23,5 24 OK 48.05	Strömtyp Polaritet / Type of current Polarity DC+ DC+ DC+ DC+ 5 5	Trådmatnings- hastighet / twere feed speed (m/min) - - - - - scillering: Amplitude scillation: Amplitude	Framförings- hastighet / Travel speed (mm/min) 60 80 120 110 frekvens, varaktigt , frequency, dwell	Värme- tillförsel / Heat inpu (kJ/mm) 1,1 1,4 0,9 1,1
vetsdata / Sträng / Run 1 2 3 4 Tillastsmaterial, I AWS A5.1 Särekid värmnin 5 Stydsgassputve Gastlock, Tillega flow rafe, Si	Welding of Metod / Method 111 111 111 111 111 111 111 111 111 1	Ietails Tillsatsmate Size of filler Elga P48 Esab OK 48 Esab OK 48 Esab OK 48 Esab OK 48 Resab OK 48	rial, diameter / material (mm) P Ø2,5 3.05 Ø2,5 3.05 Ø3,2 3.05 Ø3,2 altion and make AVWS A5.1: E7 Väteudrivning / Post Väteudrivning / Post - Tid, temperatur / Tim	Ström / Current (A) 65 100 100 110 018 Esab (theating reted ofter svetsnim ment method	Spänning / Voltage (V) 22 23,5 23,5 24 OK 48.05	Strömtyp Polaritet / Type of current Polarity DC+ DC+ DC+ DC+ DC+	Trådmatnings- hastighet / Were feed speed (m/min) - - - - - scillering: Amplitude scillering: Amplitude scillering: Amplitude	Framförings- hastighet / Travel speed (mm/min) 60 80 120 110 frekvens, varaktigt e, frequency, dwelf rr / Pulse welding de	Värme- tillförsel / Heat inpu (kJ/mm) 1,1 1,4 0,9 1,1 iet / ime talls
vetsdata / Sträng / Run 1 2 3 4 Tilisatsmaterial, H AWS A5.1 Sarekid värmin - Sarekid värmin Gastrovarte: Sieldid - Gastrovarte: Sieldid - Gastrovarte: Sieldid -	Welding of Metod / Method 111 111 111 111 111 111 111 111 111 1	letails Tillsatemate Size of filer Elga P48 Esab OK 44 Esab OK 44 Esab OK 44 Esab OK 44 rikat / Filer material design 3. Elga P48P. / pecial baking or drying	rial, diameter / material (mm) P Ø2,5 3.05 Ø2,5 3.05 Ø3,2 3.05 Ø3,2 alton and make AVVS A5.1: E7 Väteutdrivning / Post 	Ström / Current (A) 65 100 100 110 018 Esab (theating metod effer svetsnim ment method	Spänning / Voltage (V) 22 23,5 23,5 23,5 24 OK 48.05	Strömtyp Polaritet / Type of current DC+ DC+ DC+ DC+ DC+ S S	Trådmatnings- nastighet / Wire feed speed (m/min) - - - - - - - - - - - - - - - - - - -	Framförings- hastighet / Travel speed (mm/min) 60 80 120 120 110 Trekvens varaktigf e, frequency, dwell r / Pulse welding dd aljer / Plasma weldi	Värme- tilförsel / Heat inpu (k.//mm) 1,1 1,4 0,9 1,1 1,1 1,4 0,9 1,1
vetsclata / Sträng / Run 1 2 3 4 Tillsatsmaterial, It AWS A5.1 Särekid värmin - Skyddigaspiptive Särekid värmin - Skyddigaspiptive Särekid värmin - Skyddigaspiptive Särekid värmin - Förhöjd arbetste	Welding of Metod / Metod / 111 111 111 111 111 111 111 111 111 1	International State of Allocation	rial, diameter / material (mm) P Ø2,5 3.05 Ø2,5 3.05 Ø3,2 3.05 Ø3,2 alion and make AWS A5.1: E7 Valeudrinning / Post - Tid, temperatur / Tirr Uspvärming och auf treat - Tid, temperatur / Tirr - Depvärming och auf treat - - Tid, temperatur / Tirr - Depvärming och auf treat - - Max 3. arcs Hz	Ström / Current (A) 65 100 100 110 018 Esab (t-heating method effer svelsnin method theating revalningshastighe rates	Spänning / Voltage (V) 22 23,5 23,5 23,5 24 OK 48.05	Strömtyp Polaritet / Type of current Polarity DC+ DC+ DC+ DC+ DC+ S S S S S S S S S S S S S S S S S S S	Trådmatnings- nastighet / Were feed speed (m/min) - - - - - - - - - - - - - - - - - - -	Framförings- hastighet / Travel speed (mm/min) 60 80 120 110 110 reports. varaktige s, frequency, dwell rr / Pulse welding de aljer / Plasma weldi Distans contact tube	Värme- tillförsel / Heat inpu (k.J/mm) 1,1 1,4 0,9 1,1 1,1 et / lime etalls
vetsclata / Sträng / Run 1 2 3 4 Tillsatsmaterial, t Sarekid värmnn - Sasefulz Shieldr - Sasefulz Shieldr - Sasefulz Shieldr - Förhöjd arbetste RT Mellanstrångster	Welding of Metod / Metod / 111 111 111 111 111 111 111 111 111 1	International and the second s	rial, diameter / material (mm) P Ø2,5 3.05 Ø2,5 3.05 Ø3,2 3.05 Ø3,2 ation and make AWS A5.1: E7 Vateudrivmig Peat - Tid, temperatur / Tir Heating and cooling - Fendling (maximal s Vesering (maximal s	Ström / Current (A) 65 100 100 110 018 Esab (t-heating teled ofter svetsnin met method ne, temperature revalningshastigher rates	Spänning / Voltage (V) 22 23,5 23,5 23,5 24 OK 48.05	Strömtyp Polaritet / Type of current Polarity DC+ DC+ DC+ DC+ DC+ S S S S S S S S S S S S S S S S S S S	Trådmatnings- nastighet / Were feed speed (m/min) - - - - - - - - - - - - - - - - - - -	Framförings- hastighet / Travel speed (mm/min) 60 80 120 110 110 rr/povens.varakligt , frequency, dwell rr / Pulse welding de aljer / Plasma weldi Distans contact tube	Värme- tillförsel / Heat inpu (k.J/mm) 1,1 1,4 0,9 1,1 1,1 1,4 0,9 1,1
vetsclata / Sträng / Run 1 2 3 4 Tillistematerial, I AWS A5.1 Särskild värmin - Skyddsgasziputve Sarskild värmin - Skyddsgasziputve Skyddsgasziputve - Förhöjd arbetste RT Mellaneträngster 250 Rotmejsling/rotst	Welding of Metod / Method 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 112 113 119 119 119 119 111 1	Ietails Tillsatsmate Size of filler Elga P48 Esab OK 43 Esab OK 43 Esab OK 44 Esab OK 44 Rikat / Filter material design 3. Elga P48P. / peecial baking or drying Ja / Temperature *C s temperature *C gouging/backing, details	rial, diameter / material (mm) P Ø2,5 3.05 Ø2,5 3.05 Ø3,2 3.05 Ø3,2 alton and make AWS A5.1: E7 Varieutir/nving / Post - Varieutir/annig / Post - - - - - - - - - - - - - - - - - - -	Ström / Current (A) 65 100 100 110 018 Esab (theating reted effer svelsnim meth method reted offer svelsnim method theating reted offer svelsnim reted svelsnim	Spänning / Voltage (V) 22 23,5 23,5 24 OK 48.05 9/ 1/ 1/ meter ,8 beräkr	Strömtyp Polaritet / Type of current Polarity DC+ DC+ DC+ DC+ 0 - - - - - - - - - - - - - - - - - -	Trådmatnings- nastighet / Wire feed speed (m/min) - - - - - - - - - - - - - - - - - - -	Framföringe- hastighet / Travel speed (mm/min) 60 80 120 1120 110 frekvens varektigt e, frequency, dwelf aljer / Plasma weldi Distans contact tube	Värme- tilförsel / Heat Inpu (k.J/mm) 1, 1 1, 4 0, 9 1, 1 1, 1 stalls avvorkpieco
vetsclatta / Sträng / Run 1 2 3 4 Tillsatsmaterial, 1 Sarekid värmnin - - - Volframelektred Tingstenelektred Tingstenelektred Tingstenelektred Ritmestenger Rotmejstingstrates - - Tillverkare / Man	Welding of Metod / Metod / Method 111 111 111 111 111 111 111 111 111 1	letails Tillsatsmate Size of filer Elga P48 Esab OK 44 Esab OK 44 Esab OK 44 Charl / Filter material design 3. Elga P48P. / pecial baking or drying Ja / Tamperature *C gouging/backing, details	rial, diameter / material (mm) P Ø2,5 3.05 Ø2,5 3.05 Ø3,2 3.05 Ø3,2 ation and make AWS A5.1: E7 Vateudriving / Post - Tid, temperatur / Tir Uppvärming och av Heating (maximal is Veraning (maximal is))	Ström / Current (A) 65 100 100 110 018 Esab (theating th	Spänning / Voltage (V) 22 23,5 23,5 23,5 24 OK 48.05 9 / (/ meter ,8 beräkr tradjepartsorg	Strömtyp Polaritet / Type of current DC+ DC+ DC+ DC+ DC+ 5 5 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Trådmatnings- nastighet / Were feed speed (m/min) - - - - - - - - - - - - - - - - - - -	Framförings- hastighet / Travel speed (mm/min) 60 80 120 110 110 frekvens, varaktigh , frequency, dwell aljer / Plasma weld aljer / Plasma weld bietans contact tube	Värme- tillförsel / Heat inpu (k.//mm) 1, 1 1, 4 0, 9 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1
vetschata / Sträng / Run 1 2 3 4 Trilisatsmaterial, H Sarekid värmnin - - - - - - - - - - - - -	Welding of Metod / Metod / Method 111 111 111 111 111 111 111 111 111 1	International and the second s	rial, diameter / material (mm) P Ø2,5 3.05 Ø2,5 3.05 Ø3,2 alton and make AWS A5.1: E7 Vateudrivning / Posi -	Ström / Current (A) 65 100 100 110 110 018 Esab 0 theating rotes related offer svetsnin ment method rotes ra	Spänning / Voltage (V) 22 23,5 23,5 23,5 24 OK 48.05 9/ 1/ meter ,8 beräkr tradispartsorg delum stores	Strömtyp Polaritet / Type of current DC+ DC+ DC+ DC+ DC+ 5 5 6 7 7 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Trådmatnings- nastighet / Were feed speed (m/min) - - - - - - - - - - - - - - - - - - -	Framförings- hastighet / Travel speed (mm/min) 60 80 120 120 110 Trekvens, varaktigh r, frequerce, dwell r, frequerce, dwell majer / Plasma weld bietans contact tube	Värme- tillförsel , Heat inpu (k.J/mm) 1, 1 1, 4 0, 9 1, 1 1, 4 0, 9 1, 1

C

C

31.5. 01.2002

SWEDAC CALL PLITE 1183 ISO/IEC 17025

|--|

Tillverkarens pWPS nr / Manufacturer's pWPS No. Visuell kontroll / Visual examination

Penetrantprovning / Penetrant testing

PROVNINGSRAPPORT

utfärdad av ackrediterat provningslaboratorium TEST REPORT issued by an Accredited Testing Laboratory Test data report SS-EN 10 002-1, SS-EN 10 045-1

		Sid 3 (5)
111:02	Uppdr nr / Comm No.	208-20555
Uppfyller Krav	Produktspec / Object	Rör Ø 88,9x8 mm
Uppfyller Krav	Materialsort /	
Uppfyller Krav	Material grade	L360NB

Magnetpulverprovn./ Magnetic part exam. Radiografisk provn./ Radiographic exam. Ultraljudprovn. / Ultrasonic exam.

									2000		
agprov	/ning / Tensil	e test ss-EN 10 00	2-1 Slag	provning /	Impact test	SS-EN 10 04	5-1 Hård	ihetsprov	/ning / Ha	ardness te	D Nr: 5951
Dragorova	u u	+20 °C Slagsenhetsprov vid ±0)&C 👘	C Hårdhetprovning					
rensile tes	st by		+20 0	Potent	iell initialenergi al energy	294	J		Hardness te	st	
Prov nr Test No	Charge	Diam el bredd Diam, or	Tjocklek Thickn	Area Area	Sträckgräns Yield strength	Brottgräns Tensile strength	Förlängning Elongation	Kontraktion Contraction	Slagseghet Impact energy	Medelvärde Average	Brottställe Anmärkninga Fracture Remarks Location
1001110.		width	mm	mm ²	N/mm ²	N/mm ²	%	%	J	J	
Fordringar/ Requirements 3		360-510 N/m	nm²		-				14	-	
1	230295	12.0	8	96		480					Grundmat
2	230235	12,0	8	96		485					Grundmat
<u> </u>	200200	12,0				100					orananaa
				Area							
				vid	Notch						
				notch	radie						
Δ1		5	10	40.08	0.25				77		
A2		5	10	40.18	0.25				77		
Δ3		5	10	39.95	0.25				81	78	
C1		5	10	39,93	0.25				90	10	
C2		5	10	39.59	0.25				93		
C3		5	10	39.7	0,25				90	91	
Bo	ockprov end test	Dorndiameter Formel Diam.	Bocknir Bend	Bockningsvinkel Bend Angel Elongation		Resultat Mai Results Mai		Make Mace	Makroundersökning Macro examination		
Toppd	Iragen	32	180			Uppfylle	Uppfyller Kray				
Toppd	dragen	32	180			Uppfylle	er Krav	Up	pfyller k	Krav	
Rotdra	agen	32	180			Uppfylle	er Krav				
Rotdragen			180			Uppfyller Krav					
Rotdra	agen ngar / Remarks	32	100			oppiyit					
Rotdra Anmärknir A1, A2	agen ngar / Remarks 2, A3 = VW	<u>32</u> /Т. С1, С2, (C3 = VH1	Γ				itpunkterr	nas läge (i	skiss)	
Rotdra Anmärknir A1, A2 Mikroun Micro test	agen _{ngar / Remarks} 2, A3 = VW ndersökning	<u>32</u> /T. C1, C2, (C3 = VHT	Laboratorio	erapport		Må	itpunkterr ation of mea	nas läge (: surements (:	skiss) sketch)	
Rotdra Anmärknir A1, A2 Mikroun Micro test Hårdhe	agen ngar / Remarks 2, A3 = VW ndersökning etsprovning/r	32 /T. C1, C2, (C3 = VHT	Laboratorio	erapport			itpunkterr ation of mea	as läge (; surements (; 4-6	sketch))-12 <u>13-15</u>
Rotdra Anmärknir A1, A2 Mikrouu Micro test Hårdhe Typ/Bel	agen ngar / Remarks 2, A3 = VW ndersökning etsprovning/H	32 /T. C1, C2, (C3 = VH1	Laboratorie	erapport			itpunkterr ation of mea	as läge (; surements (; 4-6	skiss) sketch)	<u>112 13-15</u>
Rotdra Anmärknir A1, A2 Mikroun Micro test Hårdhe Typ/Bel Type/Loar Grundm	agen ngar / Remarks 2, A3 = VW ndersökning etsprovning/H lastning: rd naterial:	32 /T. C1, C2, (C3 = VH7	Laboratorie	erapport			itpunkterr ation of mea 	125 läge (; surements (; 4-6 4-6	skiss) 7-9 10 7:9 10	<u>12 13-15</u> 12 13-15
Rotdra Anmärknir A1, A2 Mikroun Micro test Hårdhe Typ/Bel Type /Loar Grundm Parent me Värmep	agen ngar / Remarks 2, A3 = VW undersökning tsprovning/r tsprovning/r naterial: tal ball	32 	C3 = VH7	Laboratorio Laboratory ro	erapport			itpunkterr alion of mea 1-3 1-3	1 as läge (surements (7-9 10 	<u>12 13-15</u> 12 13-15
Rotdra Anmärknir A1, A2 Mikrouu Micro test Hårdhe Typ/Bel Typ/Bel Typ/Bel Grundm Parent me HA.Z Svetsgc Weld Mete	agen ngar / Remarks 2, A3 = VW ndersökning stsprovning/H lastning: naterial: stal val val val val val val val v	32 /T. C1, C2, C tardness test HV10 Se sida 4 Se sida 4 Se sida 4	C3 = VH7	Laboratori Laboratory ro	erapport			itpunkterr ation of mea	1 as läge (; surements (; <u>4-6</u> 4-6	5kiss) 7-9 10 	12 13-15 · ··· · ··· 12 13-15
Rotdra Anmärknir A1, A2 Mikroun Micro test Hårdhe Typ/Bel Type /Load Grundm Parent me Värmep H.A.Z Svetsgo Weld Mete Anmärk Remark	agen ngar / Remarks 2, A3 = VW Indersökning atsprovning/H talastning: naterial: stal val val val stal stal consist atsprovning/H talastning: tala	32 /T. C1, C2, C lardness test HV10 Se sida 4 Se sida 4 Se sida 4 Se sida 4	C3 = VH1	Laboratorii Laboratory ro	Prapport			itpunkterr ation of mea	1 as läge () surements (s 	Skies) 7-9 10 7:0 10-	13-15 12 13-15
Rotdra Anmärknir A1, A2 Mikroun Micro test Hårdhe Typ/Bel Typ/Bel Typ/Bel Typ/Bel Typ/Bel Svetsgo Svetsgo Veid Mete Anmärk Remark	agen ngar / Remarks 2, A3 = VW ndersökning tsprovning/ tastning: daterial: dateri	32 /T. C1, C2, C tardness test HV10 Se sida 4 Se sida 4 Se sida 4 Se sida 4 UPPFYLLER FULFIL THE REC	C3 = VHT	Laboratori Laboratory ro X / UPPF / FULFIL	Prapport Pront	(RAV IREMENT		itpunkterr ision of mea i-3 	1 135 äge (; surements (;) 4 <u>-6</u>) 4-6	skiss) sketch) 7-9 10 7-9 10 	<u>▶12 13-15</u> • • • • • • • • 12 13-15
Rotdra Anmärknir A1, A2 Mikroun Micro test Hårdhe Typ/Bel Typ/Bel Typ/Ag Grundm Parent me Värmep H.AZ Svetsgo Velsd Mete Anmärk Reemark Provnin Test resull Prov utford	agen nger / Remarks 2, A3 = VVV etsprovning/+ astring: dat ning: dat ning: dat naterial: stat astring: dat naterial: dat nateriali	32 T. C1, C2, C Iardness test HV10 Se sida 4 Se sida 4 Se sida 4 - UPPFYLLER Fourpl. THE REC Fest performed in the p	C3 = VH C3 = VH KRAV UUREMENT XESENCE OF	Laboratoric Laboratory ro X / UPPF / FULFIL	Prapport Proof	RAV		1-3	nas läge (; surements (; <u>4-6</u> 4-6	skiss) 7-9 10 7-9 10 10-	12 13-15 12 13-15
Rotdra Anmärknir A1, A2 Mikroun Micro test Hårdhe Typ/Bel Type/Loa Grundm Parent me Värmep HA2 Svetsgo Weld Metra Anmärk Remark Provnin Test resull Prov utfore Granskare	agen nger / Remarks 2, A3 = VVV endersökning atsprovning/r atsprovning/r atsrial: atsrial	32 T. C1, C2, C 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	C3 = VH C3 = VH KRAV WIREMENT versence of st body	Caboratoriu Laboratory ro X / UPPF / FULFIL Ort / Place	Prapport Provide the second se	(RAV IREMENT		itpunkterr ation of mea 1.3 1-3	Las läge (surements (s 	skiss) 7.9 10 7.9 10 7.9 10	12 13-15 12 13-15

31.5.01.2002

()

FORCE	
TECHNOLOGY	

PROVNINGSRAPPORT

utfärdad av ackrediterat provningslaboratorium TEST REPORT issued by an Accredited Testing Laboratory Test data report SS-EN 10 002-1, SS-EN 10 045-1

Uppdragsgivare / Client			Uppdr nr / Comm No.
Stockpipe AB			208-20555 Order nr / Order No.
Gösta Ekmans Väg 22	129 35 Hägersten		-
Beställare / Purchaser			Provningen utförd i / Insp in
Tillverkare / Manufacturer			Datum / Date
Restämmelser / Technical rules	Tilly, pWPS nr / Manut	f. pWPS No.	2008-05-12 Utrustning nr / Equipment No.
EN 1043-1	111:02		5951
Produktspecifikation / Object			Materialsort / Material grade
KOF Ø 00,9X0 MM			
Mätning Measurement	Mätningens läge Position of measurement	Enskilda värden Individual value HV ⁷	2 L360NB Enskilda värden I0 Individual value HV10
		Τορρ	Fot
1	Grundmaterial	170	165
2	Grundmaterial	170	165
3	Grundmaterial	165	180
4	HAZ	193	237
5	HAZ	206	213
6	HAZ	213	206
7	Svetsgods	237	237
8	Svetsgods	237	228
9	Svetsgods	237	237
10	HAZ	228	237
11	HAZ	228	213
12	HAZ	221	193
13	Grundmaterial	165	180
14	Grundmaterial	170	165
15	Grundmaterial	165	165
Anmärkningar / Notes			
Ort och datum / Place and date Borlänge 2010-08-31		Kontrollant/Surveyor	FORCE 12 Charlen Lava

31.5. 01.2002

Mätosäkerhet vid mekanisk provning av metalliska material Uncertainty of measurement in mechanical testing of metallic material

Sid 5 (5)

Uppdragsgivare / Client	Uppdr. nr / Comm No.
Stockpipe AB	208-20555
Gösta Ekmans Väg 22 129 35 Hägersten	Order nr / Order No.

En detaljerad beräkning av mätosäkerheten kan lämnas efter begäran. A detailed estimate of uncertainties can be supplied at customer requests.

Mätosäkerhet för följande provningsmetoder: Uncertainty of measurement for the following test methods:

- Dragprovning: Max ±1,5% - Tensile test:
- Slagprovning: Max ±1,0% - Impact test:
- Hårdhetsmätning: Max ±2,5 HV - Hardness test:

Bockprovning: Synliga avvikelser vid 5-10 ggr förstoring <0,5%. I övrigt ≤3,5% med hänsyn taget till skjutmåttets osäkerhet i förhållande till 3 mm avvikelselängd.
 Bend test: Visible defects magnified 5-10 times <0,5%. Other ≤3,5% in regards to uncertainty in measurement with vernier calliper in proportion to 3 mm length of defect.

Uppgiven mätosäkerhet är utan hänsyn till osäkerheten vid bearbetningen av enskilda provstavar. Den osäkerheten kan anses utgöra den huvudsakliga delen. Given uncertainty of measurement is disregarding uncertainty in machining individual specimen. That uncertainty is considered to may be the main part.

-				
Ort, datum / Place, date		Kontrollant / Surveyo	NT	FORC
Borlänge 2010-08-31		Au	27 Ju	Belli
enna rapport näller endast de provade objekten och får en	idast återoes i sin helhet, om inte utfärdan	de laboratorium i förväg skriftligen godkänt anna	1	00.0004

Macro examination – EN 1321

File No.:208-20555Manufacturer:Stockpipe ABpWPS:111:02Parent metal:L360NB

Sample identification:	766	
Macrographic etchant:	Nital	
Examined with magnification:	x4	
Acceptance standard:	EN 25817 level B	
Result:	Acceptable	
Description of defect:	No visible defects	

Force Technology Sweden AB

Servir r Bertil Lavas

STUCK & DIDF	WPS-SVETSDA	TABLAD	WPS nr: 111-02			
	Utgiven av Petri Ui	tto	Datum:	2010-08-31		
Kund:		Procedur Kvalificera	d enl. SS-EN	NISO 15614-1		
Grundmaterial: A:W01 ReH<360 MPa B:W01 ReH<360 MPa	Tjocklek (mr 3,0 Till 16,0 3,0 Till 16,0	n) Jmm Jmm	Rördiame Ø >44,4 Ø >44,4			
Mallanairängatamparatur w	°C	Svetsklass:B	Ref:WPC	QR Stockpip	e 111-0	2
Hantering av tillsatsmateria	I enl tillverkarens	FOGBEREDNING: N	l Maskinell be	arbetning		
60 Grader → 2 Sträng Svets- metod 1111 3-N 1111 3-N 1111	Tillsatsmaterial Dim. mm Elga P48P Ø2,5 OK 48.05 Ø3,20 OK 48.05 Ø3,20	Rotstöd: Fixtur: Häftning:4st Som rotsträng: Min. temp.:+20°C Häftlängd:10mm Antal strängar:1 Antal per meter:9 Svetsläge:Alla utom Mejsling: Amnärkningar: Hantering av tillsatsmater Max pendling 3 x elektroo Beteckning EN 499 E 46 2 B 12 EN 499 E 42 4 B 42 EN 499 E 42 4 B 42	PG rial enligt tillverf idiametern (me 2 H5 2 H5 2 H5 2 H5	kares anvisning tod 111) Gas / Pulver Gasflöde: Skyddsgas Rotgas	I/min.	
Sträng Ström Pol Ampere 1 DC+ 65-80 2 DC+ 100-120 3-N DC+ 90-110	Trådmatning m/min - -	Kontakt avstånd	Spänning Volt 21,0-23,0 21,5-23,5 21,0-23,0	Hast. mm/min str.Länd mm 50-70 70-90 100-120	Energi KJ/mm 1,2-1,3 1,1-1,4 0,8-1,0	Puls Anm
Vi intygar att detta svetsbla är lämplig för våran tillvekni Datum: 2010-08-31	d ing.	Vi intygar/certifieral är verifierat enl ova	r att detta sv n	etdatablad	1	

 \bigcirc

SVETSBARHET AV FJÄRRVÄRME-APPLIKATIONER – ETAPP 2

Under de senaste åren har flera energibolag upplevt problem med restmagnetism vid svetsning av fjärrvärmeapplikationer. I projektet Svetsbarhet av fjärrvärmeapplikationer har forskarna funnit starka indikationer på att det beror på otillräcklig avmagnetisering av stålrören efter tillverkning.

Den här rapporten är en fortsättning på Svetsbarhet av fjärrvärmeapplikationer. Under den här etappen har större dimensioner på fjärrvärmerör undersökts. Rapporten innehåller även instruktioner för hur restmagnetismen bör mätas och hur mätningar från fullängdsrör i fältmässiga förhållanden kan göras.

Resultaten ska ligga till grund för nivån som stålrörstillverkarna måste avmagnetisera rören till. Förhoppningen är att de här riktlinjerna kommer att eliminera problemet med restmagnetism vid svetsning av fjärrvärmerör.

Ett nytt steg i energiforskningen

Energiforsk är en forsknings- och kunskapsorganisation som samlar stora delar av svensk forskning och utveckling om energi. Målet är att öka effektivitet och nyttiggörande av resultat inför framtida utmaningar inom energiområdet. Vi verkar inom ett antal forskningsområden, och tar fram kunskap om resurseffektiv energi i ett helhetsperspektiv – från källan, via omvandling och överföring till användning av energin.

