Hydrogen at scale 26 January 2022

26 January 2022 Poul Georg Moses, Senior R&D Director POGM@topsoe.com

HALDOR TOPSOE

Perfecting chemistry for a better world

Our purpose

Topsoe solutions accelerate the energy transition

Electrolysis efficiency advantages becomes huge at plant level – Illustrated for ammonia production by 25% energy savings per ton ammonia produced

Dynamic ammonia production for fluctuating power supply

Advantages Power-to-ammonia

- Fully flexible operation 10-100% plant load
- No hydrogen storage
- Store energy as ammonia
- Grid balancing

Enabling the transition

We know how to transform renewable electricity

We're among a very small group of companies with deep insight into the production of green hydrogen from renewable electricity – and we possess the knowledge needed to produce green fuels and chemicals from that hydrogen.

Our solutions produce green hydrogen, ammonia, methanol, and other e-fuels. Together, they represent the most promising fuels and chemicals of the future.

Solid Oxide Electrolysis Cell (SOEC) electrolysis

9

Fast kinetics drive SOEC efficiency and slow kinetics necessitates high voltage ranges for low temperature electrolysis

- High Temperature electrolysis offers a superior efficiency than alternatives
- Lower voltage translates into lower OPEX (lower electricity demand per quantity of produced gas)
- Higher current densities are associated with lower CAPEX (fewer electrolyzers needed to achieve the required capacity for gas production)

SOEC Electrolysis is significantly more efficient than low temperature electrolysis

Integration of SOEC with methanation, methanol, FT or ammonia

Carbon monoxide production from Carbon dioxide and renewable power

Demo site at National Lab, Denmark

- 50 kW Biogas upgrade
- 50 kW Ammonia Synthesis

Operating plant at customer site, USA2 x750 kW ultrapure CO production

Industrial SOEC plant

Industrial SOEC plant

High Efficiency comes from Core Electrolysis Operation and High System Efficiency

19 21. April 2021

SOEC Electrolysis offers a wide range of advantages

Lower power consumption

- SOEC has the highest efficiency of all electrolysers
- Without heat integration, SOEC is 20 % more efficient than alkaline and PEM
- With heat integration, SOEC is 30 % more efficient than alkaline and PEM

Non noble materials

- SOEC consists of materials that are abundant in nature and can therefore easily be scaled up without material availability constraints
- The use of non noble materials will benefit cost as the raw materials will not become more expensive due to scarcity

Syngas creation

- In addition to the electrolysis of steam, SOEC can electrolyse CO₂ and thereby generate CO
- CO₂ electrolysis enables carbon capture & utilization from a point source and provides advantages for making eFuels such as eJet, eDiesel and methanol

Hydrogen at scale

26 January 2022 Poul Georg Moses POGM@topsoe.com

HALDOR TOPSOE