Labyrinth & piano key (PK) weirs for effective discharge

ames Yang

Vattenfall R&D, Hydraulic Laboratory

Motivation:

A dam should safely bypass the design flood (conditions)

in this project: To enhance spillway discharge capacity (not touching on energy dissipation)

Why labyrinth and PK weirs?

Depending water head, 2–5 times the capacity of a conventional linear weir, leading to a much lower reservoir water level. No gate required.

Purposes

- Literature review to map state-of-the-art within research/design of labyrinth & PK weirs;
- To disseminate the knowledge;
- To propose improvements for more laboratory model tests

Contents

Introduction
Labyrinth weir
Piano key (PK) weir
other aspects
Conclusions

Spillway discharge with free surface

$Q = CBH^{1.5}$

C = discharge coefficient H = water head B = overflow width

Ajaure From bottom outlet to overflow type, $H^{0.5} \rightarrow H^{1.5}$

455 → Före ombyggnad, två bottenutskov 450 --Efter ombyggnad av vänster utskov till ytutskov Vattenstånd (möh) 445 440 435 700 900 1100 Vattenföring (m3/s) 1300 1500

The reduction by 3.7 m at the design flood 1340 m3/s Gate 5 m wide by ~18 m high

Stenkullafors

Threshold lowering by 4.3 m

1. Introduction

Skallböle

Sill in opening 2 lowered by 5.5 meter

Vid nivå DG +50,44Före ombyggnad940 m³/sEfter ombyggnad1575 m³/s

Valldalen, Norway

Kárahnjúkar, Iceland

120 m long crest

Duckbill

Daisy flower

Garden Route dam, SA

1. Introduction

Different layouts

Labyrinth spillway

Standley Lake facility, Westminister, Colorado

Parameters

 $Q = f(H_T, H_d, L, \alpha, l, w, P, B, t, g, v, inströmning, krönform, ytråhet m.m.)$

Layout

Apex forms

Falvey's bok 2003

PK Weir

Existing PK weirs

First concept proposed **2003** by Lempérière och Ouamane; First prototype **2006** by EDF (Goulours dam). EDF has built 10+ such weirs.

Four basic types

Weir cycle

Weir parameters

Wall crest shapes

Nose form

Apex form

Labyrinth weir model with rounded front wall.

Model labyrinth weir with flat front wall. Trapezoid

Parapet wall

Geometrical relations

L/W

Wi/Wo

3. PK weir

P/Wu

Ts

Ref

Ref: 3 conf

Air entrainment & areation

4. Other aspects

4. Other aspects

Floating debris

Ice formation

4. Other aspects

4. Other aspects

Sediment

Conclusions

- To streamline the crest in plan & augment crest length
 To modify inlet and outlet keys to increase flow passage
- 3. parapet wall

3D printed models

Each model of 3 units, 114 cm wide

Physical models

Why not CFD?

Large grid density Result:

Dependence on turbulence mode + choice of two-phase model

Yang et al. (2022). Flood discharge of piano key weir, air-water flow features. 27th ICOLD Congress, May/June 2022, Marseille, France.

Is it the right name in Swedish?

Labyrinth weir (spillway) Labyrintöverfall (Labyrintutskov)

Piano key weir (spillway) Pianotangentöverfall (pianotangentutskov) Pianoutskov?

Thanks also to Carolina for providing the opportunity & coordinating the project.

Thanks for your attention!

Any questions?

