

## **Connecting models**

Interactions between climate, hydrological, hydropower, and energy system models – Lessons learned from the KLIVA project

Richard Scharff | Energitekniksystem | Chalmers & Vattenfall R&D Yeshewatesfa Hundecha | SMHI Research

HUVA-dagen 2022 | 2022-11-30



# Models used in KLIVA





# Project group

























## What if **climate change** affects **hydropower**?





### What if **climate change** affects **hydropower**?





## **Questions we want to answer**

Impact of **climate change** on:

- Inflow per reservoir
- Inflow energy per river system
- **Dispatch** per river system (production & flex)
- Dispatch in the electric power system
- Future electric power system

| Hydropower plants   | KLIVA     | Sweden    |
|---------------------|-----------|-----------|
| Number              | ~200      | ~2000     |
| Capacity (end 2020) | 14 805 MW | 16 335 MW |
| Energy (2020)       | 65 TWh    | 71 TWh    |



Map: OpenStreetMap. Statistics: Energiföretagen (https://www.energiforetagen.se/globalass ets/energiforetagen/statistik/energiaret/20 20/energiaret-2020\_tabeller.pdf).



# Modelling "cascade"

Impact of **climate change** on:

- Inflow per reservoir .....
- Inflow **energy** per river system .....
- **Dispatch** per river system (production & flex)...
- **Dispatch** in the electric power system .....
- Future electric power **system** .....

| Climat | Hydrology |            |              |
|--------|-----------|------------|--------------|
| Climat | Hydrology | Hydropower |              |
| Climat | Hydrology | Hydropower |              |
| Climat | Hydrology | Hydropower | Energysystem |
| Climat | Hydrology | Hydropower | Energysystem |

# CHALMERS

# Horizon

Impact of **climate change** on:

- Inflow per reservoir
- Inflow energy per river system
- **Dispatch** per river system (production & flex)
- Dispatch in the electric power system
- Future electric power system





### What about the **results**?



# **Climate change**

S-HYPE











Day-of-year

# **Climate factors**









# CHALMERS

hist = HBV

# Local inflow

Climat

Annual cycle of aggregated local inflow to all reservoirs within each river system (no propagation times)

Hydrology





# **Production & spillage**

Hydropower

### Example: Skellefteälven



# **Production & spillage**

Hydropower

### Example: Skellefteälven

CHALMERS



Kalenderår

### Hydropower

### Example: Skellefteälven



# **Inflow patterns**



# **Measure for flexibility**



### Example: Skellefteälven, 2011







# **Future electricity production 2050**

#### Energysystem

- Fossil free, only
- Northern Europe
- Lifetime limited
- Cost efficient
- Electricity, heat, H<sub>2</sub>, EV
- Electrification (+100 TWh)
- Transmission
- 1991 & 1992, inflow and demand temperature dependent







### Have there been **challenges**?



# Yes, but we got help!

Big thanks to Susanne, Anna, Linnéa and many more!!







# Making data accessible

Accessible for research:

- Shared via Energiföretagen
- Energiföretagen's NDA



| - 📷 | Energisystemanalys | <br>Vattenkraft                               |                     |                        |
|-----|--------------------|-----------------------------------------------|---------------------|------------------------|
|     | Allmänt            |                                               |                     |                        |
|     | Temp 🗇             | 🗋 Namn 🗸                                      | Åndrat $\sim$       | Ändrades av $\backsim$ |
|     | Vattenkraft        | Historisk data                                | den 15 januari 2021 | Johan Bladh            |
|     |                    | 📁 Modelldata                                  | den 5 februari 2021 | Johan Bladh            |
|     |                    | <sup></sup> <sup>⊥</sup> Tillrinningsdata HBV | l går 5:26 PM       | Scharff Richard (YR    |

| Ansvarig handlöggare Användare   Johan Bladh Användare   Energiföretagen Sverige, Energisystem<br>Iohan, Bladh@energiforetagen.se Richard Scharff   076 – 147 88 30 Chalmers |                                                                                                                                   | AVTAL<br><sup>Datum</sup><br>2021-03-18                                   | Avtabaturninee<br>XXX | 1 (2) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------|-------|
| V/2 = 510 13 an                                                                                                                                                              | Ansvarig handläggare<br>Johan Bladh<br>Energiföretagen Sverige, Energisystem<br>Johan Bladh@energiforetagen.se<br>076 – 147 88 30 | Användare<br><b>Richard Scharff</b><br>Chalmers<br>richard .scharff@chalm | 1975 60               |       |





# **Difference S-HYPE versus HBV**

- HBV: daily timeseries of local reservoir inflow closer to the reality
- S-HYPE: technical issue limits estimation of local inflow timeseries
  - > Estimation by deducting outflow from reservoirs located upstream from the total inflow
    - Problem with delay of the outflow from upstream reservoirs

Estimate as the average value over a moving window of 10 days

# Annual cycle of inflow to reservoirs within a river



- Total inflow to all reservoirs within a river system
  - Annual cycles well described
  - Inter-annual variability similar
- Local inflow to individual reservoirs
  - 22 out of 254 deviate from observations
  - Small deviations accepted
  - Large deviations but with little influence accepted



# Internal "regulation" in S-HYPE

Example: outlet Vänern (SUBID 4169)

- Simple regulation routine in S-HYPE
- Does not account for actual regulation
- Data on operation rule can improve prediction



Closest to "reality"





# **Align models**





Hydropower

 $\rightarrow$  Guarantee a common description of the hydropower system in both



Example for subcatchment

## Some fun with "details"





Summeringsområde HBV Delavrinningsområde S-HYPE

qcinfl\_totmean (total inflow) qcloc\_locmean (local inflow)



# Legal rules on water regulation

| Туре                       | Luleälven | Skellefteälve | Umeälven | Ångermanäl | Indalsälven | Ljungan | Ljusnan | Dalälven | Göta älv | Lagan | Summa |           |
|----------------------------|-----------|---------------|----------|------------|-------------|---------|---------|----------|----------|-------|-------|-----------|
| WaterLevel                 | 30        | 29            | 30       | 112        | 524         | 32      | 120     | 7        | 106      | 376   | 1366  | $\square$ |
| MinSpill                   | 0         | 27            | 15       | 28         | 48          | 30      | 28      | 13       | 0        | 0     | 189   |           |
| MinFlow                    | 4         | 14            | 5        | 7          | 40          | 2       | 4       | 9        | 0        | 5     | 90    |           |
| MaxChangeWeek              | 2         | 0             | 0        | 16         | 10          | 0       | 0       | 0        | 0        | 0     | 28    |           |
| MaxChangeDay               | 2         | 0             | 0        | 15         | 9           | 0       | 0       | 0        | 0        | 0     | 26    |           |
| LevelAboveRamp             | 0         | 0             | 7        | 0          | 0           | 0       | 0       | 0        | 0        | 0     | 7     |           |
| LevelBelowRamp             | 0         | 0             | 7        | 0          | 0           | 0       | 0       | 0        | 0        | 0     | 7     |           |
| DailyLevelChangeLimit      | 0         | 0             | 0        | 0          | 0           | 5       | 0       | 0        | 0        | 0     | 5     |           |
| SpillChangeTimeInterval    | 0         | 0             | 0        | 0          | 0           | 3       | 0       | 0        | 0        | 0     | 3     |           |
| MinDailyFlow               | 0         | 0             | 0        | 0          | 0           | 1       | 0       | 0        | 1        | 0     | 2     |           |
| WeeklyLevelChangeLimit     | 0         | 0             | 0        | 0          | 0           | 2       | 0       | 0        | 0        | 0     | 2     |           |
| DailyLevelChangeLimitMean  | 0         | 0             | 0        | 0          | 0           | 0       | 0       | 1        | 0        | 0     | 1     |           |
| HQ                         | 0         | 0             | 0        | 0          | 0           | 1       | 0       | 0        | 0        | 0     | 1     |           |
| MaxFlowTwoSegments         | 0         | 0             | 0        | 0          | 0           | 0       | 0       | 1        | 0        | 0     | 1     |           |
| MaxSpill_ResLevel          | 0         | 0             | 0        | 0          | 0           | 1       | 0       | 0        | 0        | 0     | 1     |           |
| MaxSpillChange_Day         | 0         | 1             | 0        | 0          | 0           | 0       | 0       | 0        | 0        | 0     | 1     |           |
| MinWeeklyFlow              | 0         | 0             | 0        | 0          | 0           | 1       | 0       | 0        | 0        | 0     | 1     |           |
| MovingMinWeeklyFlow        | 0         | 0             | 0        | 0          | 0           | 1       | 0       | 0        | 0        | 0     | 1     |           |
| Spill_ResLevel             | 1         | 0             | 0        | 0          | 0           | 0       | 0       | 0        | 0        | 0     | 1     |           |
| WeeklyLevelChangeLimitMean | 0         | 0             | 0        | 0          | 0           | 0       | 0       | 1        | 0        | 0     | 1     |           |







Limited calculation capacity and brainpower ©

Energysystem

Suitable for...

- ... Sweden as a whole?
- ...per bidding area?
- ...for each river system?

Based on...

- ...yearly values?
- ...daily values?
- ...visible patterns?

1991-1992



Map: Svk/OpenStreetMap. 27



### Limited calculation capacity and brainpower ©

Energysystem

Suitable for...

- ... Sweden as a whole?
- ...per bidding area?
- ...for each river system?

Based on...

- ...yearly values?
- ...daily values?
- ...visible patterns?

991-1992

Sverige 70 (4ML i) buiuuiilits 30 SE3 SE2 SET Arst 20 10 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 Kalenderår



100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 1974 1975 SE2 100.% 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 \* 1984 100 % 100.% 100 % 100 % 100 % 100 % 100 % 1994 2001 2002 100 % 100 % 100 % 100 % 100 % 100.% 100 % 100 % 100.% 100 % 2011 2006 2010 2012 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100.9 100 9 2014 2016 2017 Irinning relativt till elområdets medelvärde illrinning relativt till Svergies medelvärde Prickade linjerna visar 75 % respektive 125 % 100 %

Årstillrinning geografisk fördelning

#### Figure shows local inflows per bidding area. The average yearly inflow (dashed line) is calculated for 1963-2018. 75 % and 125 % percentiles (dotted lines). File: Årstillrinning geografisk fördelning.png. 29

Limited calculation capacity and brainpower ©

Energysystem

Suitable for...

- ... Sweden as a whole?
- ...per bidding area?
- ...for each river system?

Based on...

- ...yearly values?
- ...daily values?
- ...visible patterns?

4 1991-1992



Limited calculation capacity and brainpower ©

Energysystem

Suitable for...

- ... Sweden as a whole?
- ...per bidding area?
- ...for each river system?

Based on...

- ...yearly values?
- ...daily values?
- ...visible patterns?

1991-1992



Figure shows local inflows per river system. The average yearly inflows (dashed line) are calculated for 1963-2018. File: Årstillrinningar per älv.png.





Figure shows the daily sum of all local inflows for the ten river systems we worked with in KLIVA. Propagation times assumed to be zero. 31 File: Dygnstillrinningar dyngsvärden Sweden.png.



# What about suggestions for improvement?



# Vattenwebb I

On http://vattenwebb.smhi.se/modelarea/:

• Improve backgound map, e.g. with OpenStreetMap



# Vattenwebb II

On http://vattenwebb.smhi.se/modelarea/:

• Allow parameters in URL to show subcatchment, e.g. as in "Hydrologiskt nuläge"

Vatten

myndigheten



https://vattenwebb.smhi.se/hydronu/#%7B %22version%22:2,%22poi%22:64518,%22 map%22:%7B%22center%22:%5B56.9245 508,13.9988953%5D,%22zoom%22:6%7D, %22chartSubid%22:64518,%22showYear% 22:false%7D

Modelldata per område

Sök: 64518 64518 645180-124173

645183-155023 645187-156928

| 1  | Reservoir name Energiföretagen | AROID         | SUBID | KLIVA | Climate fa | Map catch    |
|----|--------------------------------|---------------|-------|-------|------------|--------------|
| lõ | Vidöstern                      | 631123-436360 | 64500 | Yes   | -          | <u>64500</u> |
|    | R_Bro                          | 631021-438711 | 64518 | Yes   | -          | <u>64518</u> |
|    | R_Långö                        | 635126-141576 | 2059  | Yes   | - 🗡        | <u>2059</u>  |
|    |                                |               |       |       |            |              |

=HYPERLÄNK(SAMMANFOGA(...))

CHALMERS



## Just dreaming...

| Reservoir name Energiföretagen | AROID         | SUBID | KLIVA | Climate fa | Map catch    |
|--------------------------------|---------------|-------|-------|------------|--------------|
| Vidöstern                      | 631123-436360 | 64500 | Yes   | -          | <u>64500</u> |
| R_Bro                          | 631021-438711 | 64518 | Yes   | -          | <u>64518</u> |
| R_Långö                        | 635126-141576 | 2059  | Yes   | -          | <u>2059</u>  |









## Keep data accessible





### "Extreme" weather events

"Extreme" weather events are *not* captured by our method!





Spahotell översvämmat – gästerna åker kanot till frukosten 1:26 min · 2022-08-23

#### eurelectric



7 Dec, 15-16:30 Online

Prictures: https://sverigesradio.se/artikel/hockeyprofilen-emma-i-gavle-ishallen-ar-mer-som-ett-badhus, https://sverigesradio.se/artikel/spahotell-oversvammat-gasterna-aker-kanot-tillfrukosten and https://www.eurelectric.org/events/the-coming-storm-building-electricity-resilience-to-extreme-weather/



### Thanks!



#### Want to discuss more? → Dissimination webinar 8 February, 8-12, in Swedish Coming soon https://energiforsk.se/konferenser/kommande/

KLIVA home page: <u>https://energiforsk.se/program/klimatforandringarnas-inverkan-pa-</u> vattenkraften/

→ richard.scharff@vattenfall.com yeshewatesfa.hundecha@smhi.se