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some examples of research done at KTH
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Short Presentation

01/13/2023 2

 My day jobs
 Professor at the division of Process Technology, KTH Chemical Engineering
 Visiting Prof. at the Division of Building Technologies and Design, KTH ABE
 Vice-Director of the KTH Energy Platform … mostly covering at ”heat”
 Lead faculty at the KTH Climate Action Centre, topics of Energy & Negative Emissions

 Research
 High-fidelity simulations of turbulent heat-transfer, phase-change & chemical reactions
 Data analysis using unsupervised learning alg. (t-sne, UMAP, KMEAN, …)
 Heat-Harvesting /Heat-Exchanger technology (additive manufacturing)

 Negative Emissions, BeCCS, CO
2
 Capture

 Cooling of electric/ electronic systems/ Decarbonization
 Collaborations: Hitachi Energy, ABB, Stockholm Exergy, TetraPak, AMEXCI, 3Nine, 

Paebbl, ...
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Kaya Identity
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 Introduced by the Japanese energy economist Yoichi Kaya in 1997 
to understand the factors controlling CO

2
 emissions

 E is energy used, GDP is a measure of income, P is the population

 Note that 

CO2=
CO2

E
×

E
GDP

×
GDP

P
× P

Kaya, Yoichi; Yokoburi, Keiichi (1997). Environment, energy, and economy : strategies for 
sustainability. 
United Nations Univ. Press. ISBN 9280809113
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Sweden
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? Service or not?

 In 2012, the world used 474 PJ

 ~70% did not offer any service

 Be careful that it is NOT Exergy

 Of course, we need to 
understand the second 
principle of thermodynamics

C. Forman et al. / Renewable and Sustainable 
Energy Reviews 57 (2016) 1568–1579

E
GDP



Energy is not the same than Exergy

 Effluents’ temp. matters

 Transportation has the 
highest potential, 
industry also!!

 Electrification will help 
but is not enough

 C. Forman et al. / Renewable 
and Sustainable Energy 
Reviews 57 (2016) 1568–1579



What about electrification?
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 Electrified processes or vehicles have lower losses

 Sweden uses about 135 TWh of electricity today 

 Electrification will require more electricity, about 200 TWh in 2045

 Complete decarbonization of the mining sector might increase 
the demand to 240-250 TWh in 2045

 What about  residual heat?

 40 TWh of electric power to produce H2 by electrolysis 
gives about   16 TWh of unused heat < 100°C

 2%-6% transmission losses gives 5-15 TWh of cooling/ 
losses < 100°C

 Still there but at lower temperatures

https://www.svensktnaringsliv.se/english/future-
electricity-supply-in-sweden_1171800.html

Transformers at substation near 
Denver International Airport, 
Colorado – Wikimedia commons



Learning from Kaya Identity
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Decarbonation
Electrification
Hydrogen
Biofuels
Nuclear
Renewables

Efficiency, Use Heat-
Pumps, Stop waste, 
Smart Systems, 
Energy Storage, 
Integration,... 

Policies, habits, 
values and 
democratic decisions

Over-consumption
Sufficiency



Carnot’s take on efficiency
 Given a hot source at TH and a cold source at TC

 In general high efficiency is expected for high 
temperature source, e.g. combustion

 In a perfect world, the maximum efficiency is

η = 1 – TC/TH
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In a real(er) world

 ΔT is a temperature difference across the Heat-Exchanger

 It gives: η = 1 – (TC+ΔT)/(TH-ΔT)



Heat-Transfer intensification
 Q = A · h · ΔT 
 with h = f(Re, Pr, ...)
 Increasing heat-transfer can be done by

 Increasing A (but not making the device too big)

 Increasing h (but there a limits in Re)

 Same Q with lower ΔT → increase A and/or h 



• Additive manufacturing opens new avenues for designing energy and material efficient heat-
exchangers

• Triple Periodic Minimum Surfaces are one strong candidate family

• The optimal heat transfer performance of the heat exchanger may vary depending on, 

1. TPMS cell architecture, Periodic length, 

2. Wall thickness, Orientation angle, 

3. Offset parameter, Set-up configuration,

4. Fabrication limitations, Selection of the best TPMS material and thermal properties,

5. Selection of the best working fluid, hazardness and thermal properties.

Increasing A in a compact manner



Case Study #1 (Effect of TPMS wall thickness)



• Low reverse flow regions
• High heat-transfer rate even at low Re
• Many interesting observations
• Quantification of these behaviors





DOE & Optimization

• U_in
• T_in
• P_in
• Density
• Viscosity
• TPMS thickness*
• TPMS length*

• T_source

• U_out
• T_out
• P_out

Calculated;
• Reynolds
• Heat Trans Coeff (hc)
• Nussult (Nu)
• ΔT = T_source-T_out
• ΔP = P_out – P_in* Excluded



Summary of OP design

Optimization Study

Maximize Goal is to Maximize Temperature difference

Minimize Goal is to Minimize Pressure difference

 <= 150 Strict Constraint, Reynolds less than or 
equals to 150

Optimization Method

MOGA Multi-Objective Genetic Algorithm

Configuration Generate 7000 samples initially, 1400 
samples per iteration 

Status Converged after 28797 evaluations.
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Output Parameters

Heat transfer Coefficient (hc)

Sensitivity and Pareto front



Next step 2 fluids TPMS

Present solutions



Increasing h – playing with 
turbulence

Relaminarization is often a problem

 

Heat-transfer is driven by turbulence 
and in particular by large scale 
structures

 

We look at the flow with high-fidelity 
simulations
 

K. Rönnberg and C. Duwig International Journal of Heat and 
Mass Transfer 173 (2021) 121197



Increasing h – playing with turbulence

High Nu is correlated with outward travelling vortices

 

 

 

 

 

 

 

 

 
 

K. Rönnberg and C. Duwig International Journal of Heat and Mass Transfer 173 (2021) 121197



Increasing h - Reactive fluids
Reversible equilibrium reactions

 

 

Reaction is endothermic – it takes energy to break the large molecule

Reaction is pushed right by higher temperatures and left by higher 
pressures

It is gas phase all the time

 

Example

 N2O4 = 2 NO2 = 2 NO + O2

 NOCl = NO + ½ Cl2

 



Reactive fluids

Temperature profiles in an HTX

 



Effect of dissociation reactions on heat-transfer

Boosts 
Heat-
transfer
by +500%



Impact on the thermodynamic cycle

Cycle efficiency N
2
O

4

- h= 0.09 @Thot = 363K
- h= 0.12 @Thot = 393K

Rapid response to transient

Potentially very compact HTX

A2→2A

2A→A2

Q1

W
Thot

Q2 Tcold



Electronic cooling

IN

OUT



Applications to the built environment

Project in the frame of the IEA Annex 37  
- Smart Design and Control of Energy 
Storage Systems

Project in the frame of the IEA Annex 78 
- Supplementing Ventilation with Gas-
phase Air Cleaning, Implementation and 
Energy Implications

Re-using cleaned indoor air to reduce 
losses



Energiforsk Värmeklustret
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 Happy to hear your areas of interest  

 Calls of interests
 Swedish Energy Agency Termo
 Swedish Energy Agency E2B2 (energy efficient buildings)
 Vinnova (Eurostars, ….)
 …..

 Track for collaboration
 Heat-Exchanger technology (additive manufacturing)
 Heat-Harvesting from electric/ electronic systems/ low temp. sources
 Decarbonize processes
 PCM – heat storage (flexible buildings)

Contact: 
duwig@kth.se



www.energiantologi.se



Thank you and see you next time 
at the KTH Climate Action House
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