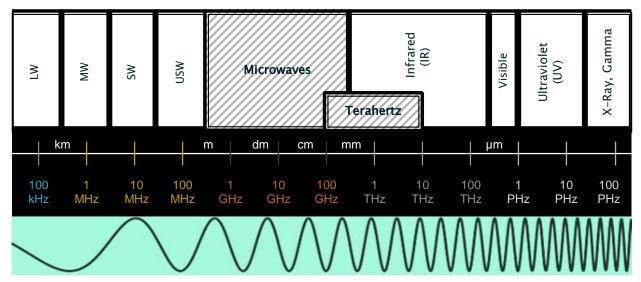


European Tools and Methodologies for an efficient ageing management of nuclear power plant Cables

Using Non-destructive THz-waves to characterise aged polymers

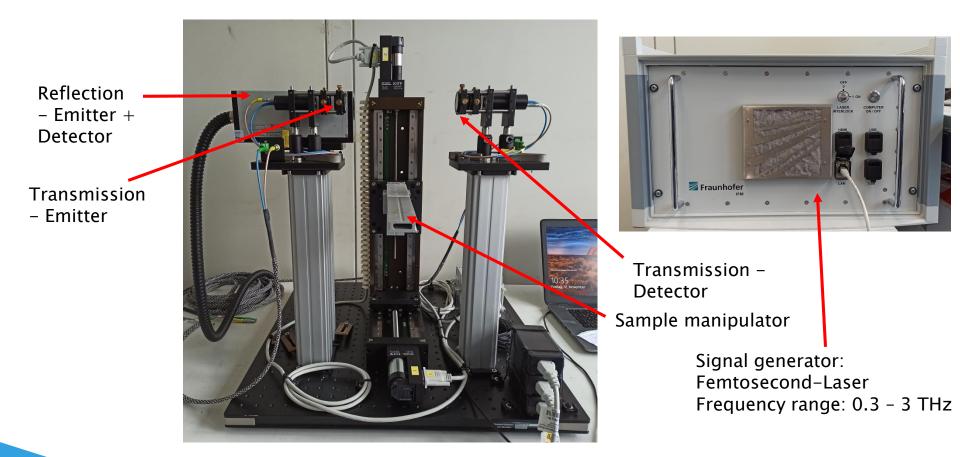
Polymers in Nuclear application, 17th march 2023, Ringhals/online

Speaker: Andreas Keller, M. Sc. Fraunhofer Institute for Nondestructive Testing (IZFP), Saarbrücken, Germany

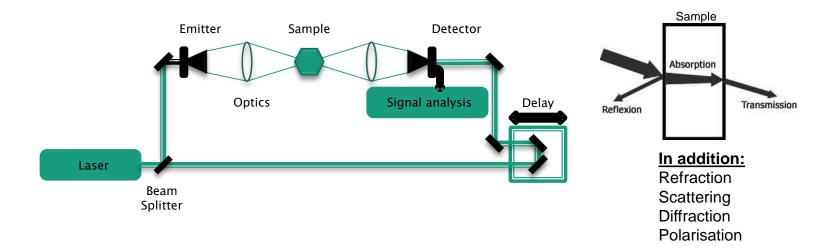


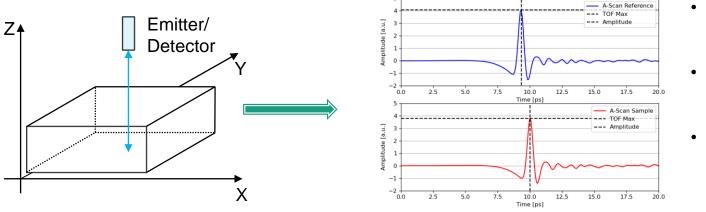
Basics: Electromagnetic spectrum

- Non-ionising (low energy)
- Penetrates many nonpolar dielectric and organic materials

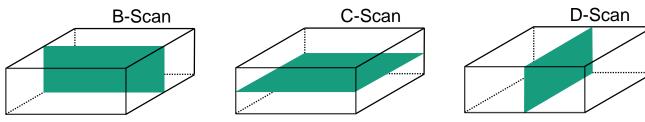

→ Materials can be distinguished in THzfrequency range:

- Metals: total reflectors
- Water: total absorbants
- Polymers: more or less transparent


Basics: THz time-domain spectrometer

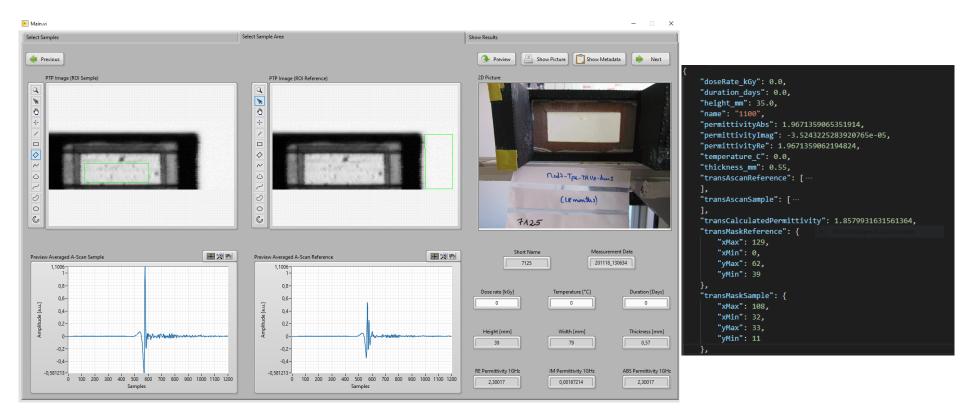


Basics: Measurement process



Basics: Measurement process

- Time resolution: 0.0833 ps
- Lateral resolution: 1 mm
- 1201 points of depth
 - information per measurement point

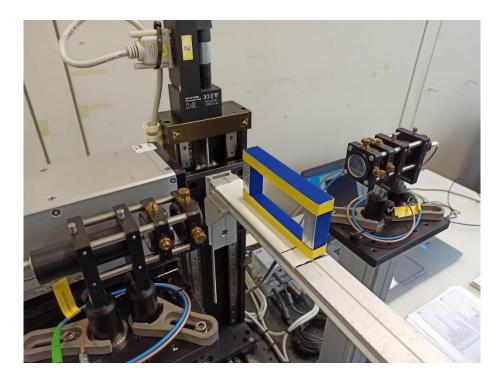


Basics: Example for a measurement

Project: Measurements

- Measurements done for 576 specimens
- Specimens devided into several groups:
 - 7 material modifications regarding additives
 - 4 geometric forms (tapes, sheets, twisted-pair, coaxial cables)
 - 7 ageing types (radiation, thermal, combined, low, high)
 - 6 ageing steps (unaged and 5 withdrawals)

About 60 gigabytes of measurement data



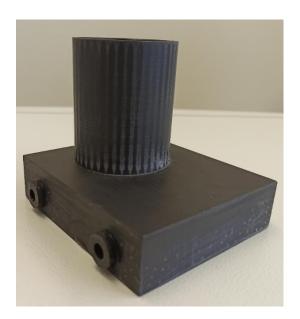
Project: Measurements in transmission mode – Tapes/Sheets

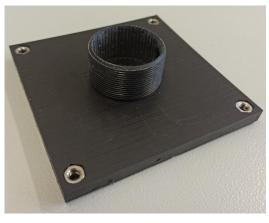
- For measurements in transmission mode, the samples (tapes and sheets) need to be accessible from both sides
- Due to reflection on metal parts of the cables, they cannot be measured in transmission
- But: best way to gather all information for modelling in preparation for reflection mode measurements


Project: Measurements on tapes/sheets

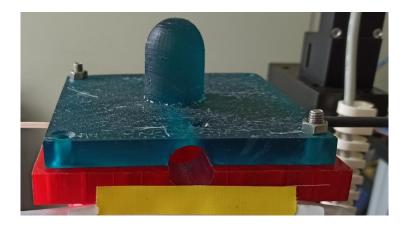


Project: Measurements on cables


- Each sample needs a good reference, e.g. a metal plate
- Distance of the probe to the specimen needs to stay constant during measurement
- Insulation on cables needs to be removed, so materials in TP and coax-cables can be analysed



Project: Measurements on cables

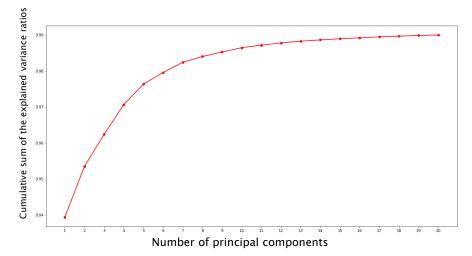


Project: Measurements in reflection mode - Cables

Data: Feature extraction

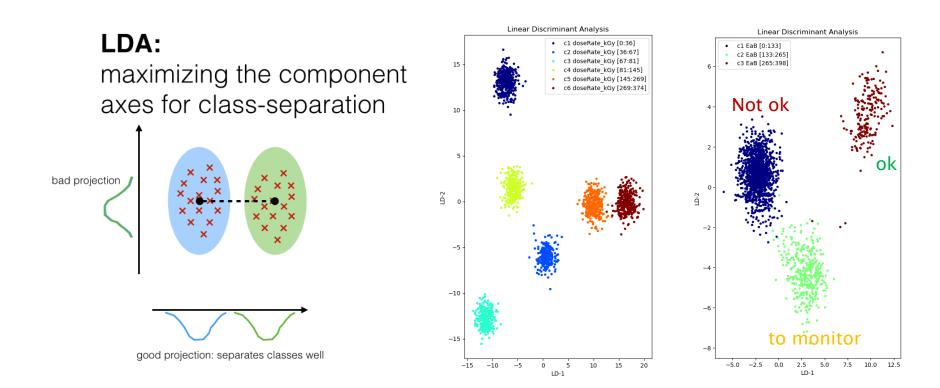
Each of the1201 measurements per scanned measurement point is made a "feature"

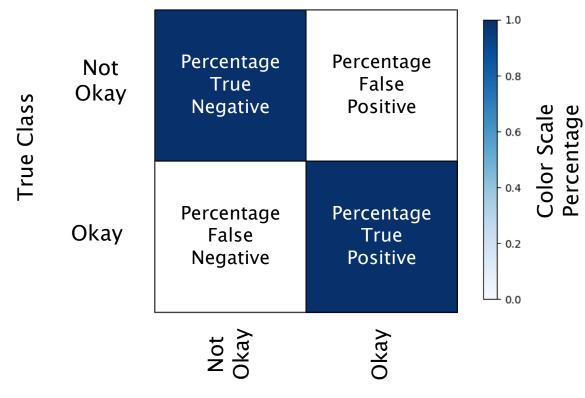
	name	number	material	form	ageing	withdrawal	longName	width_mm	height_mm	thickness_mm	as	can_1194	ascan_1195	ascan_1196	ascan_1197	ascan_1198	ascan_1199	ascan_1200	phenol	thioether	ath
0	1100						Mod1-Tpe-UnA-0-NoAS-THz-IZF	80.0	35.0	0.550		0.272735	0.271507	0.270706	0.271027	0.272201	0.273536	0.274568	False	False F	False
1	1100						Mod1-Tpe-UnA-0-NoAS-THz-IZF	80.0	35.0	0.550		0.272806	0.271489	0.271062	0.271578	0.272379	0.273874	0.274959	False	False f	False
2	1100						Mod1-Tpe-UnA-0-NoAS-THz-IZF	80.0	35.0	0.550		0.273002	0.271596	0.271205	0.271472	0.272717	0.274550	0.275066	False	False F	False
3	1100						Mod1-Tpe-UnA-0-NoAS-THz-IZF	80.0	35.0	0.550		0.273002	0.271596	0.271205	0.271472	0.272717	0.274550	0.275066	False	False F	False
4	1100						Mod1-Tpe-UnA-0-NoAS-THz-IZF	80.0	35.0	0.550		0.272717	0.271685	0.271134	0.271881	0.273073	0.274585	0.274781	False	False F	False
659149	6155	5 1360					Mod6-Tpe-RA(RT)5-0-NoAS-THz-IZF	80.5	39.0	0.525		0.316357	0.311983	0.312578	0.315657	0.313698	0.316042	0.317092	False	False	True
659150	6155	5 1361					Mod6-Tpe-RA(RT)5-0-NoAS-THz-IZF	80.5	39.0	0.525		0.314433	0.312333	0.312438	0.312158	0.315902	0.312928	0.316777	False	False	True
659151	6155	5 1362					Mod6-Tpe-RA(RT)5-0-NoAS-THz-IZF	80.5	39.0	0.525		0.317232	0.313698	0.314363	0.314853	0.312543	0.316182	0.315552	False	False	True
659152	6155	5 1363					Mod6-Tpe-RA(RT)5-0-NoAS-THz-IZF	80.5	39.0	0.525		0.315342	0.315587	0.314118	0.316252	0.315063	0.314258	0.318282	False	False	True
659153	6155	5 1364					Mod6-Tpe-RA(RT)5-0-NoAS-THz-IZF	80.5	39.0	0.525		0.312018	0.313103	0.312858	0.314328	0.312403	0.313663	0.311143	False	False	True



Data: Feature selection / reduction

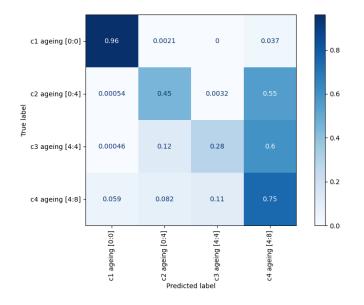
 PCA needs 20 components of 1201 features to explain 99% of the variation


- But PCA cannot separate all kinds of influences
 Thus PCA can only be used as dimension reduction
- Thus PCA can only be used as dimension reduction technique

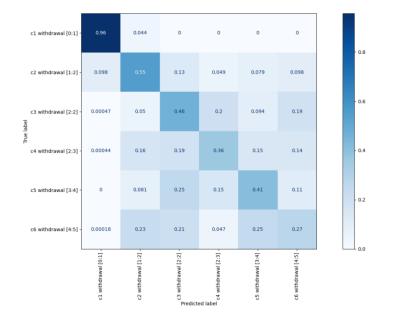

Data: Classification

 $Image\ Source:\ https://sebastianraschka.com/images/blog/2014/linear-discriminant-analysis/lda_1.png$

Data: Confusion Matrix



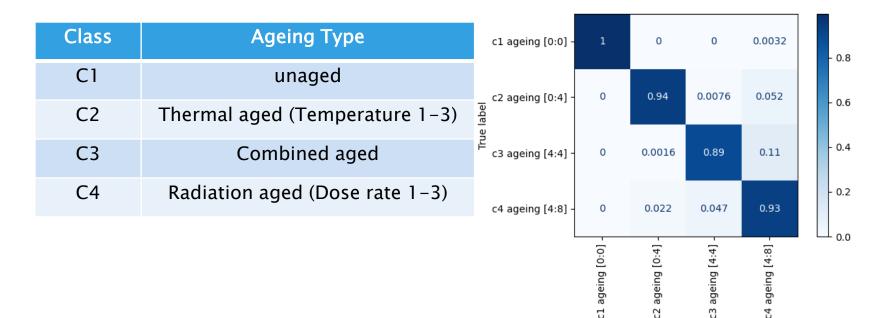
Predicted Class



Data: Results of tapes and sheets

LDA of all tapes and sheets

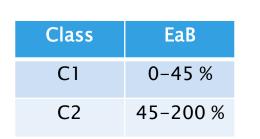
Target: Ageing, Score: 60.5 %

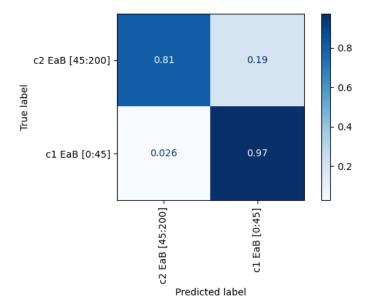


Target: Withdrawal, Score: 46.5 %

Data: Results of tapes and sheets

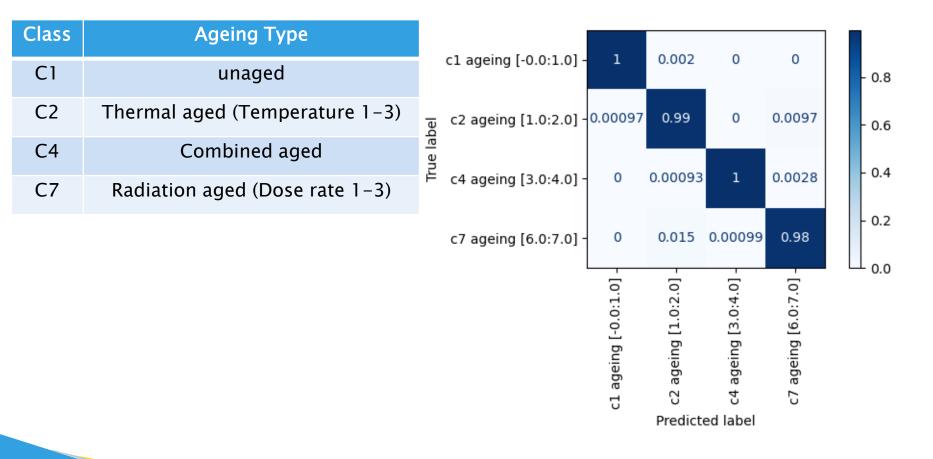
LDA regarding ageing method (Material 7)


Target: Ageing method, Score: 93.1 %


Predicted label

Data: Results of tapes and sheets

LDA regarding Elongation at Break (Material 7, Tape)



Target: EaB, Score: 93.8 %

Data: Results Coax - Ageing Type

Data: Results TP - Ageing Type

Class	Ageing Type						
C1	unaged	c1 ageing [-0.0:1.4] -	0.83	0.054	0.034	0.087	
C2	Thermal aged (Temperature 1–3)	ੁ c2 ageing [1.4:2.8] -	0.027	0.69	0.16	0.12	
C3	Combined aged	C2 ageing [1.4:2.8] -					
C5	Radiation aged (Dose rate 1-3)	È c3 ageing [2.8:4.2] -	0.017	0.16	0.75	0.071	
		c5 ageing [5.6:7.0] -	0.019	0.11	0.077	0.79	
			- [4]		2]-	- [0	
			0.0:1.	[1.4:2.8]	ageing [2.8:4.2]	[5.6:7.0]	
			ageing [-0.0:1	ageing [eing [ageing [
			c1 age	c2 ag	c3 ag	c5 ag	
			-	Predict	ed label		

Data: Results EaB < 50%

Coaxial cable	Twisted Pair cable					
8400	9400					
8423	9423					
8425	9425					
8443	9443					
8445	9445					
8473	9475					
8475	9475					

Green column:

mechanical testing data available

 \rightarrow Careful: not a lot of data for machine learning

Cable type	Averaged prediction score					
All	90.04 %					
Coaxial	99.8 %					
Twisted pair	96.58 %					

Conclusion

- Terahertz measurements produce a lot of data
- This amount of data is hard to model with classical methods
- Thus machine learning / multivariate statistic methods were used
- Possibility to differentiate various influences in terahertz data regarding
 - Macroscale data
 - Material modifications
 - Forms
 - Ageing methods
 - Dose rates
 - Temperatures
 - Microscale data
 - Elongation at break
 - Maybe others?

Thank you!

Andreas Keller, M.Sc. Fraunhofer Institute for Nondestructive Testing IZFP <u>Andreas.keller@izfp.fraunhofer.de</u> | www.izfp.fraunhofer.de

