

Ageing tests closer to real service conditions using hypersensitive microcalorimetry, a case study on EPDM rubber

Ageing tests closer to real service conditions using hyper-sensitive microcalorimetry, a case study on EPDM rubber

Presented by

Mohit Pushp

Ageing tests closer to real service conditions using hyper-sensitive microcalorimetry, a case study on EPDM rubber - ScienceDirect

Rationale for using MC

Effect of different activation energy on the time required to simulate a service life of 40 years at 40 °C

Challenge

Sensitive technique is required

RI. SE

Introduction to Microcalorimetry (MC)

DSC ~ 1 $\mu W/10$ mg and MC ~ 1 $\mu W/1000$ - 10 000 mg

Specific sensitivity ~ 1000 times higher than DSC

Limitation of MC for polymeric materials

Heat flow is a lumped parameter

To understand different mechanisms post analysis may be helpful, for example using SEM-EDX, GC-MS, FTIR etc.

Normalised heat flow for EPDM at 45, 50, 60, 70, 80 and 90 °C using Microcalorimeter for about 2 weeks. Temperature steps are shown by a blue dotted line.

5

Different components of EPDM rubber

Contents	EPDM rubber, phr	
EPDM with 55% ethylene, 40%	100	
propylene, 5% Ethylidene		
norbornene (ENB)		
Zinc oxide	5	
Carbon black (N550)	55	
TAC-70 peroxide coagent (70% active, 30% is a silica carrier)	0.8	
Luperox F40 – peroxide	3.5	
Naugard 445 – antioxidant (4-4'-bis	0.8	
(phenylisopropyl) diphenylamine		

6

MC test using Antioxidant

7

MC tests using EPDM (a) 50-90 °C and (b) 100-140 °C

Baseline stability (drift) of calorimeter for about 3 weeks

8

RI. SE

Arrhenius plot of the heat flow data, and linear fit, for two different degrees of conversion, 0.2 (black) and 2 J/g

Activation energy for different degrees of conversion at 80-100-125 °C (filled circles) and at 60-70-80 °C (unfilled squares)

Light in darkness

https://videohive.net/item/door-opens-and-a-bright-light-flooding-a-dark-room/31549638

RI SE

Shiny flakes on EPDM surface

Post analysis using SEM-EDX, GC-MS and FTIR

RI. SE

SEM-EDX images on the surface of an EPDM sample after the quasiisothermal test. Absence of peroxide system and antioxidant at higher temperature

FTIR spectra of unaged EPDM in black and EPDM after MC test at 70, 140 °C (1 week) and quasiisothermal ended at 90 °C. The arrow is indicating the peaks for antioxidant. Heat flow of the base polymer during the step-wise MC test between 70 and 120 °C

Conclusions

- Ageing of polymer materials can be performed (using MC) closer the service life in nuclear power plants and in significantly shorter duration than Accelerated Thermal Ageing.
- Post analysis of the polymeric materials using different techniques for example SEM-EDX, FTIR, GC-MS, GC-TCD may be used to understand the thermal degradation/mechanisms.

MC test on polymeric materials obtained from NPP

An isothermal MC test at 90 °C using grade 1 (EPDM) and Tremco sealing.

FTIR analysis of tremco sealing from inside and on surface

Messages

- DLO.
- Ageing tests for tremco sealing should be carefully designed.

16

RI. SE

Activation energies for different grades using MC and ATA

Material	Activation energy KJ/mol	Temperature range	remarks
Grade 1, MC	81	80, 100 and 125 °C	
Grade 1, ATA	100	90, 120 and 140 °C	Using stress relaxation
Grade 2, MC	115±5	120 and 140 °C	
Grade 2, ATA	≈100 and ≈138	90, 120 and 140 °C	Using compression set and stress relaxation
Grade 3, MC	96±1	50, 60 and 70 °C	Temperature range is not same. Activation energy was obtained using stress relaxation
Grade 3, ATA stress relaxation	98	80, 90 and 100 °C	

MC for NPP, some thoughts

For the used materials in NPP, activation energies (Ea) over a wide range of temperatures can be obtained and compared with ATA

 MC provides a rate of degradation of the material; this can possibly be used to measure the stability of the material.

Acknowledgement

- Finnish Ministry of Economic Affairs and Employment (Finnish Research Program on Nuclear Power Plant Safety (2019–2022))
- Energiforsk
- Strålsäkerhets mydigheten (Swedish Radiation Safety Authority, SSM) and
- Colleagues at Fibre and Polymer Technology KTH and RISE.

Future work

Lot more can be done using Microcalorimetry

I appreciate your patience