

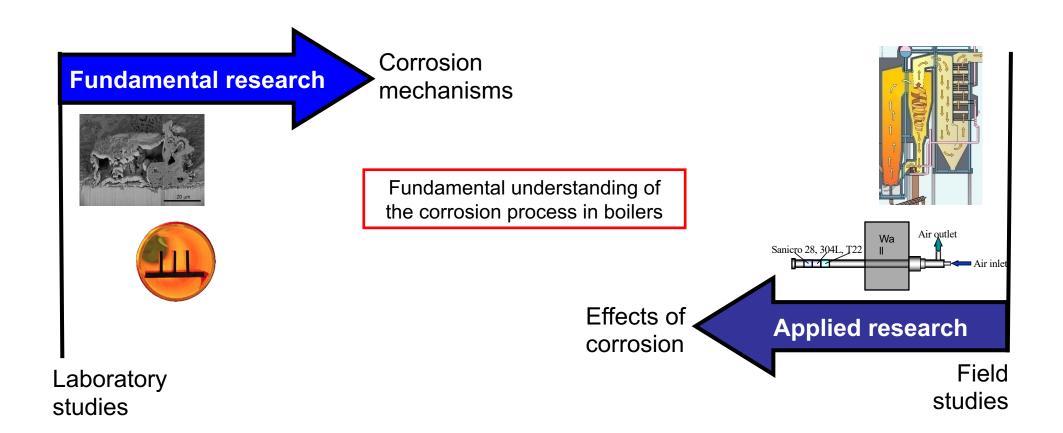
Increased flexibility and power-production from biomass through material development and corrosion prediction

Loli Paz, Johan Eklund, Vincent Ssenteza, Torbjörn Jonsson (CTH) Søren Aakjær Jensen (Ørsted) Rickard Shen, Susanne Selin (Kanthal) Laura Rioja-Monllor (SMT) Hanna Kinnunen (Valmet Technologies Oy) John Hald (DTU) Bertil Wahlund (Energiforsk)

Loli Paz, Vincent Ssenteza, Torbjörn Jonsson (CTH) Søren Aakjær Jensen (Ørsted) Rickard Shen, Susanne Selin (Kanthal) Laura Rioja-Monllor (SMT) Hanna Kinnunen, Johan Eklund (Valmet Technologies Oy) John Hald (DTU) Bertil Wahlund (Energiforsk)

Goal

The overall goal of the project is to increase the efficiency, flexibility and predictability of power generation from biomass.


- Enabling these power generating processes to compete with the corresponding fossil fuel base processes
- Facilitate faster a materials selection process and increase the potential of biomass-fired power boilers.

The scientific goals of the project:

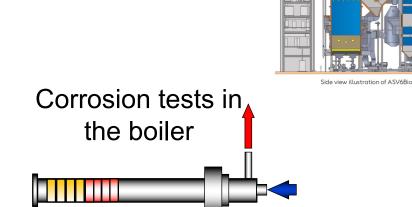
- Determine the *applicability* and *limitations of aluminium* oxide forming materials for improved biomass conversion effect, as well as *their comparison* with *existing materials*.
- Scale up *lab-probe-fixed installation* tests predict impact of e.g. material and temperature on lifetime of key components. Implement *thermodynamic-kinetic modelling* of oxidation in complex environments.

Research strategy – a two pronged approach

Collaboration with HTC1a Teamwork 2

Strategy

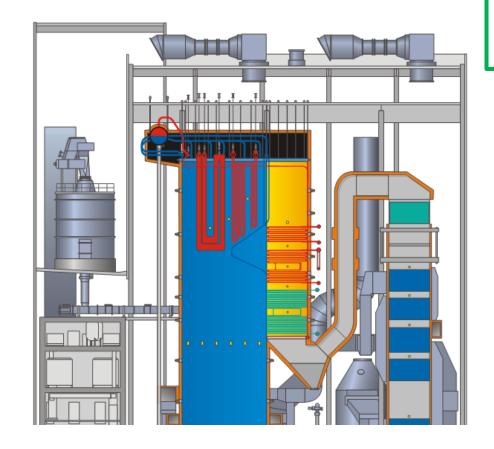
Ranking model alloys



Lab – collaboration with **HTC1a**

Most promising model alloys

- Characterize the deposit at different positions/temperatures
- Expose the most promising model alloys (168h/2000h)
- Compare oxidation resistance with existing materials


New boiler - Superheater test tube installations Orsted

- Four test tube materials installed to the tertiary superheater
- Straight tubes, hottest part of the tertiary superheater Material temperature of ~ 540 °C

CHALMERS

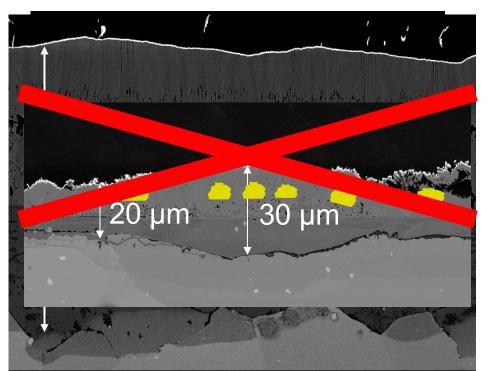
RSITY OF TECHNOLOGY

Material type	Grade	Tube size
347H	X7CrNiNb18-10	38,0 x 6,3 mm
347HFG	X8CrNi19-11	38,0 x 7,1 mm
310HCbN	SA-213 TP310HCbN	38,0 x 4,5 (min) mm
304HCu	KA-SUS304J1HTB	38,0 x 8,0 (min) mm

Removed in July 2022

Estimated exposure time: 22000 hours

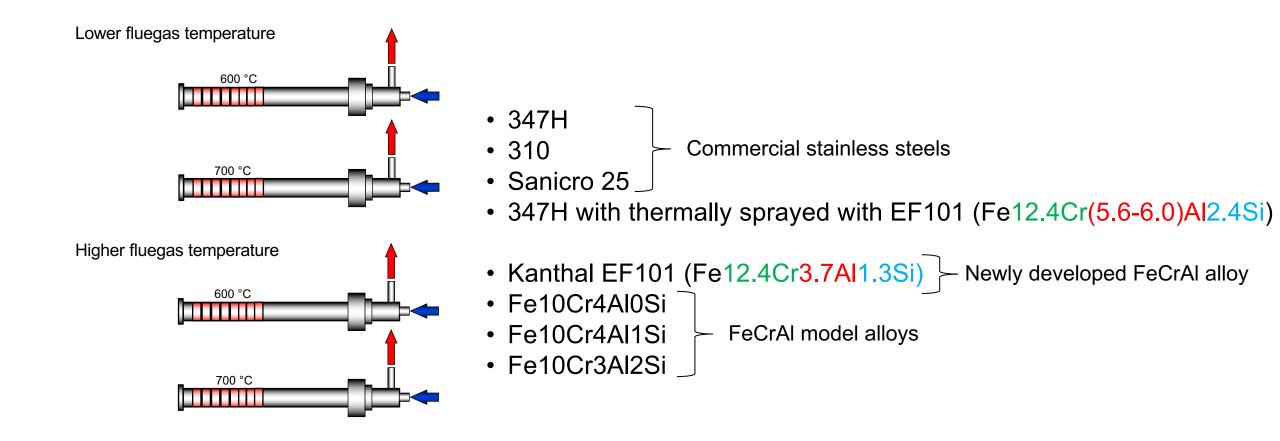
Corrosion regimes


- Primary corrosion regime
 - Cr- and or Al-rich corundum-type (M₂O₃) oxide scales (chromia/alumina) Primary protection of an alloy
 - Slow-growing

Breakaway oxidation \rightarrow Rapid material degradation \rightarrow Not desirable

- Secondary corrosion regime
 - Fe-rich multi-layered oxide scale Secondary protection of an alloy

8 Johan Eklund, The High Temperature Corrosion Centre

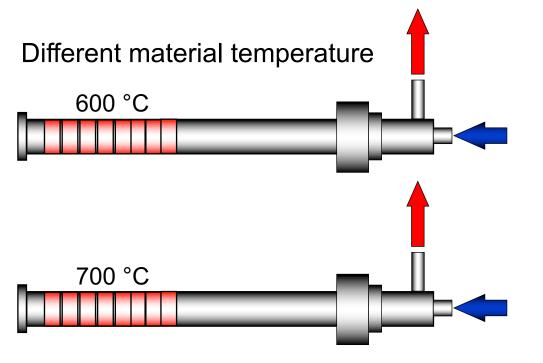


Probe exposures - 168h and 2000h SKV402 and ASV06

Probe exposure - SKV402 (168 hours)

Main fuel: Wood chips

CHALMERS



CHALMERS UNIVERSITY OF TECHNOLOGY

Probe exposure - ASV06 (2000 hours)

Main fuel: Wood chips

Reduced the number of sample probes (two probes)

Use the same alloy matrix:

- 347H
- 310
- Sanicro 25
- 347H with thermally sprayed with EF101 (enhanced)
- EF101 Fe12.4Cr3.7Al1.3Si
- Fe10Cr4Al0Si
- Fe10Cr4Al1Si
- Fe10Cr3Al2Si

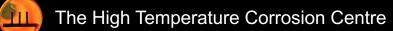
CHALMERS UNIVERSITY OF TECHNOLOGY

Summary of results

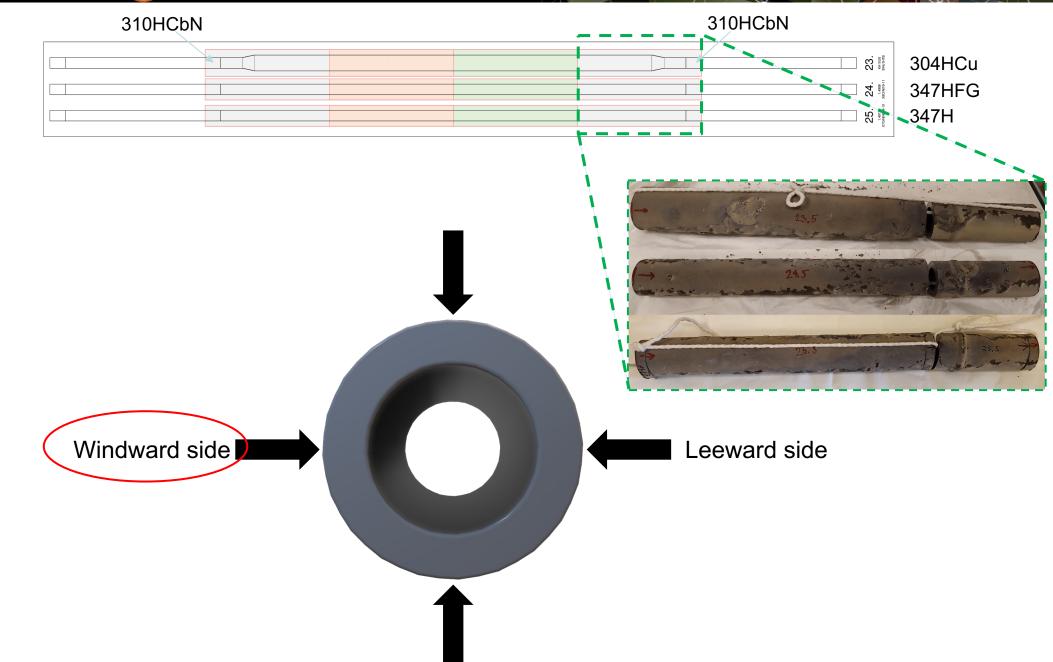
- Thickness measurements performed before/after exposure
 - Material loss negligible
- Material temperature
 - 600 °C
 - 700 °C
- Flue gas temperature
 - Lower
 - Higher
- Alloy composition
 - Stainless steels
 - FeCrAl alloys
 - Coating

lon chromatograhy

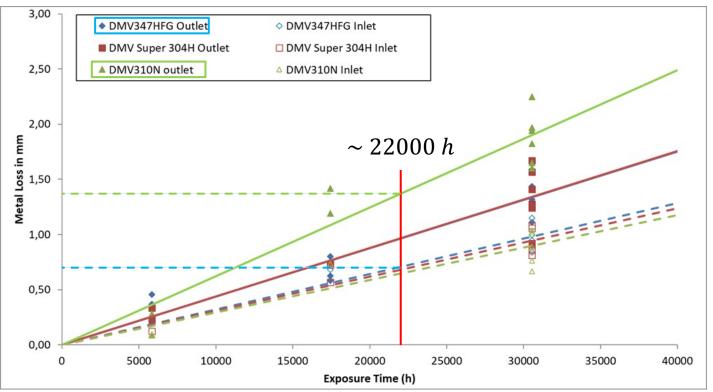
- In general, the FeCrAl alloys behaved better than the stainless steel
 - Better at withstanding presence of CI
- Indication of improved corrosion behavior upon Si-addition
- EF101 coating showed great corrosion resistance
- \rightarrow Very mild environment


SEM/EDX analysis

- Indicates higher amount of CI in the deposit at lower material temperature (SKV402)
 - Slightly higher corrosion attack at 600°C compared to 700 °C


SV06

168h				2000h			
Alloy	Low fluegas temperature		High fluegas temperature		Alloy	600C	700C
	600C	700C	600C	700C	347H		50/50
347H	Secondary	Majority Primary	Majority Secondary	Majority Primary		Primary	
310	Majority Secondary	Majority Primary	50/50	Majority Secondary	310	Primary	Majority Primary
Sanicro 25	Secondary	Majority Secondary	Secondary	50/50	Sanicro 25	Majority Primary	Majority Primary
EF101	50/50	Majority Primary	Majority Primary	Primary	EF101	Primary	Primary
Fe10Cr4Al0Si	50/50	Primary	Primary	Primary	Fe10Cr4Al0Si	Primary	Primary
Fe10Cr4Al1Si	Primary	Primary	Majority Primary	Primary	Fe10Cr4Al1Si	Primary	Primary
Fe10Cr3Al2Si	Majority Primary	Primary	Primary	Primary		5	
347H with EF101	Primary	Primary	Primary	Primary	Fe10Cr3Al2Si	Primary	Primary
					347H with EF101	Primary	Primary



CHALMERS

Material	Inner corrosion layer	Internal corrosion	Precipitation zone	Metal loss
304HCu	5-20 μm	5-15 μm	15-20 μm	10-35 μm
347HFG	5-15 μm	3-6 μm	3-6 µm	8-21 μm
347H	5-15 μm	15-20 μm	15-25 μm	20-35 μm
310HCbN	3-10 μm	10-20 μm	10-15 μm	13-30 μm

Metal loss in exposure tests at the suspension fired straw/wood pellet boiler Amager 1

Potential of increasing steam parameters

From: Final report, ForskEL - 2015-1-12289, *Corrosion management in biomass firing*, September 2019. Available on request from jhald@dtu.dk

Predicting the corrosion rate

- Performed for both primary and secondary regimes
 - Primary: Chromia (600 °C and 700 °C) and alumina (900 °C)
 - Secondary: Iron oxide (540 °C, 600 °C and 700 °C)
- Beicomy apy opectication
 - Concorride:
 - Othisk needs tinick means of griftic agetly potor 2000 hours
 - Aluthing:predicted
 - Thickfiess in Adimonselew Pathgenup to 2000 hours
 - 600 °C: Half of predicted
 - 700 °C: 15 times lower than predicted

Atheeesewithisbservetions

Goal

The overall goal of the project is to increase the efficiency and flexibility/predictability of power generation from biomass.

The scientific goals of the project:

- Determine the applicability and *limitations of aluminium* oxide forming materials for improved biomass conversion effect, as well as *their comparison* with *existing materials*.
- Scale up *lab-probe-fixed installation* tests predict impact of e.g. material and temperature on lifetime of key components. Implement *thermodynamic-kinetic modelling* of oxidation in complex environments.

Goal

The overall goal of the project is to increase the efficiency and flexibility/predictability of power generation from biomass.

The scientific goals of the project:

- Determine the applicability and *limitations of aluminium* oxide forming materials for improved biomass conversion effect, as well as *their comparison* with *existing materials*.
- Scale up *lab-probe-fixed installation* tests predict impact of e.g. material and temperature on lifetime of key components. Implement *thermodynamic-kinetic modelling* of oxidation in complex environments.

Acknowledgement

Orsted KANTHAL Alleima Valmet