FLOW MEASUREMENTS AND CONTROL IN HYDRAULIC TURBINES

Michel Cervantes
Hydropower R&D days
23/03-2023

Research focus

- Flow characterization
 - Velocity, pressure and strain
 - Characterize the turbine operation
 - Validation of numerical simulations
 - Clarify the flow physics
- Flow control
 - Minimize harmful flow conditions
 - Extend the operating range
 - Extend the turbine life

Pressure and strain measurements on a Kaplan prototype; Porjus U9 (A. Soltani, 2018)

FLOW CONTROL

LULEÅ UNIVERSITY OF TECHNOLOGY

Operational condition away from BEP

Speed-no-load

 $Q << Q_{BEP}$

Part load $Q < Q_{BEP}$

Full load $Q > Q_{BEP}$

Existing and tested mitigation technique

- Fluid injection
 - Water
 - Air (most common)
- Geometrical modifications
 - Fins
 - Grooves
 - Extension of the runner cone
 - Guide vanes
 - Newly tested in an EU project (HYDROFLEX) with promising results

Finns installed in a draft tube

HYDROFLEX guide vane concept

Experiment performed at NTNU

- Several operational conditions
 - Part-load 1: DPL (5.4 deg)
 - Part-load 2: PL (6.72 deg)
 - Best efficiency: BEP (9.81 deg)
 - High load: HL (12.44 deg)
- Drat tube guide vane system tested with different angles

Results at PL1 (DT1 och VL1)

Hydraulic efficiency

	DPL		PL		BEP		HL	
Draft tube guide vane angle	η (%)	Δ (%)	η (%)	Δ (%)	η (%)	Δ (%)	η (%)	Δ (%)
No GV	88.36	-	90.47	-	92	-	91.32	-
-35GV	87	-1.54 %	89.41	-1.2 %	92	-	91.11	-0.23 %
-20GV	87.51	-0.96 %	89.79	-0.75 %	92.07	+0.08 %	91.20	-0.13 %
-10GV	87.74	-0.70 %	90	-0.52 %	92.04	+0.04 %	91.16	-0.18 %
0GV	<mark>87.87</mark>	-0.55 %	<mark>90</mark>	-0.52 %	<mark>92.11</mark>	+0.12 %	91.02	-0.33 %
+15GV	88	-0.41 %	90.1	-0.41 %	92.09	+0.1 %	91.01	-0.34 %
+32GV	88.1	-0.29 %	90.32	-0.17 %	92.07	+0.08 %	<mark>91.90</mark>	+0.64 %

Next step

 Develop and test a draft tube guide vane system (DTGV) to improve the flexibility and life of axial hydraulic turbines such as Kaplan and propeller turbines without penalties in hydraulic efficiency

People involved

- Dr Joel Sundström
- Prof. Khalid Atta
- Prof. Mehrdad Raisee
- Dr Shervin Khayamyan

- Alessia Fabbri
- Jelle Kranenbarg
- Mehrdad Kalantar Neyestanaki
- Mohammad Amin
- Nahale Sotoudeh
- Robert Mirut
- Shahab Shiraghaee

FLOW MEASURMENTS

Flow rate measurements in Sweden

- The Winter-Kennedy is widely used:
 - Relative method
 - Could be used for continuous measurements
 - Need of calibration

Pressure time-method

Pressure-time method

- Principle: based on the transformation of momentum into pressure and vis versa
 - Included in the IEC0041
 - Some limitations
- Need to development the method for low head machines and adapt it to operations

$$Q = \frac{A_c}{\rho L} \int_0^{t_f} (\Delta p + \Delta p_f) dt + q$$

- Main limitations fixed
 - U × L> 50 m²/s → fixed (P. Jonsson)
 - Friction modelling → fixed (P. Jonsson,
 J. Sundström)
 - Compressibility → fixed (G. Dunca)
- Main limitations being fixed
 - 1 dimensional → 3 dimensional (M.
 Kalantar work on it, see his poster)
 - Complete shut-down → partial shutdown

Test rig developped at LTU to study the pressure-time method.

- Development of the pressure-time method for partial guide vane closure
 - New formulation of the method
 - Tested experimentally at Vattenfall laboratory
 - Flow rate before, under and after the transient determined

Variation of flow rate as a function of time for the new method and the electromagnetic flow sensor used as a reference

- Many constant to determined
 - Wave speed, roughness
 - Pipe radius, length between the sections
- Development of model free pressure-time method
 - Introduction of a new measurements to determine the remaining constant
 - Work going on

Consequences

- Limited operation
- Increases maintenance and cost
- Machine life expectancy negatively affected

Need of a solution

