Oförstörande provning i kärnkraftens betongkonstruktioner

LTH-projekt från 1995 - 2022

Peter Ulriksen

Oförstörande provning i kärnkraftens betongkonstruktioner Energiforsk 231121

Avsökningsmetoder

Vid behov av snabb färd framåt T ex på vägar måste man offra Upplösning tvärs färdriktningen

Här världens första GSSI 5 kanalsystem byggt för LTH 5 x 500 MHz antenner

När behovet av maximal upplösning är stort måste man ta till en XY-scanner. Upplösningen i horisontalled är i princip hur liten som helst, till priset av att det tar lång tid att genomföra mätningen.

En lämplig upplösning har visat sig vara 1 cm mellan mätpunkterna.

1997

Automatisk avsökning av betongkonstruktioner med utrustning baserad på mekaniska vågor

Elforsk Rapport 1997:23 - Peter Ulriksen, Ulrika Wiberg

Center point is piezo actuator

8 accelerometers connected in parallell

Three foam concrete blocks

A cylinder with a movable piston

2010

Litteraturstudier och test av oförstörande provningsmetoder (OFP) med möjliga tillämpningar på kärnkraftens betongkonstruktioner Elforsk Rapport 2010:85 - Peter Ulriksen Construction of test object for delamination studies

55 kHz Shear wave

Depth slices

Water Jet Device

Oförstörande provning i kärnkraftens betongkonstruktioner Energiforsk 231121

Water jet experiment

Hydrophone

Vibrator

2011

Impulsresponsmätningars beroende av sprickdjup Elforsk Rapport 2011:11 - Peter Ulriksen

To what depth can a delamination be measured?

Point impedance is defined as

Z(f) = F(f)/v(f)

where f= Frequency (Hz) F= Force (N) v= velocity (m/s)

Mobility is the inverse of impedance

Impedance head I

-Force transducer -Accelerometer

To get impedance acceleration must be integrated to velocity, which introduces Errors.

Membrane resonance

$$f_0 = 0.47 \cdot \sqrt{\frac{E}{\rho \cdot (1 - \nu^2)}} \cdot \frac{h}{d^2}$$

h=membrane thickness d=membrane diameter A thicker sheet of concrete is stiffer thus higher resonance frequency.

It is not a standing wave, which would do the opposite

Possible depth 80-100 mm

Impedance head 2 (LTH)

Velocity is measured directly

Velocity (geophone)

180 mm depth to delamination

Spring constant is best measured in the green part of the curve

Force vs displacement by integrated velocity

Instrumenterad bomknackning Elforsk Rapport 2012:09 - Peter Ulriksen

Tests in Ringhals

Dead blow hammer

Force and velocity recorded at wall sound recorded in air

Vertical profile

Vertical profile

Microphone amplitude

Carpenters hammer and microphone Simple – no cables But no calculations possible Still objective data Vertical profile

Carpenters hammer

Microphone amplitude

Projektorstyrd avsökning och dokumentation Energiforsk Rapport 2015:162 - Peter Ulriksen, Peter Jonsson

4 corners are initially identified

Oförstörande provning i kärnkraftens betongkonstruktioner Energiforsk 231121

Test area 2 x 1 m

Zebra-pattern is probably a consequence of two pixelized data: projection and photograph

First point indicated LL

Oförstörande provning i kärnkraftens betongkonstruktioner Energiforsk 231121

Recorded signal feedback

Oförstörande provning i kärnkraftens betongkonstruktioner Energiforsk 231121 All points measured

Preliminary color map

Interpolated data projected to the object

Documentation image

Oförstörande provning i kärnkraftens betongkonstruktioner Energiforsk 231121 Projection of parallell lines reveals surface topography

"Structured light"

Oförstörande provning i kärnkraftens betongkonstruktioner Energiforsk 231121
<u>Ultraljudsmetod för att detektera korrosion i tätplåt i</u> <u>reaktorinneslutningar</u> Energiforsk Rapport 2016:246 - Peter Ulriksen The ACCEPPT liner mock-up before painting

ACCEPPT studied NPP with an inside, surface mounted liner

The purpose was to measure through the liner to see if what was on the backside could be imaged.

5 MHz Roto Array image trough the visible liner

Roto Array

5 MHz

64 sensors

Concrete side of the liner Simulated defects

Same object surveyed from the concrete side 55 kHz A1220 US.

Unfiltered echo Depth slice 47

Echo from the central area (Wettex) Red circle

Highpass filtered echo reveals overtones – may be due to non-linearity

<u>Ultraljudsmetod för att detektera korrosion i tätplåt</u> <u>i reaktorinneslutningar , Etapp 2</u>

No success with accelerated corrosion

Found on scrapyard

1200x800x700 mm

Construction of the main mock-up

Measurements in time domain and in frequency domain

Straight through receiver

Aluminium plates was a misstake

18 May 2018

17:53:28

510.0mV

-2.470 V

∆2.980 V

Tek 1/16 Trig? **n** Т AWG Gate a) $|1\rangle$ [b] ∆420.0mV Waveform $|2\rangle$ and the second second transmitted Straight through 3 Reflected 100µs 2.00 V 10.0MS/s 11 Jul 2018 5.00 V 2 Δ_{i} 2 Δ_{v} **T→**▼446.0000µs 10k points 0.00 V 16:11:19

Test object 2: Three states of corrosion

Not shown are:

Test object 3: Pieces of wood

Test object 4: A leather glove

Test av förekomst av akustiska emissioner vid trycktest i fransk reaktorinneslutning

Existerar akustiska emissioner under trycktest i reaktorinneslutningar?

Inspelningsutrustning 60 h. *Upptryckning*.

En luftburen *akustisk emission* under period med statiskt tryck vid ett trycktest i reaktorinneslutning

Oförstörande provning i kärnkraftens betongkonstruktioner Energiforsk 231121

Localisation of click sounds in LTH reverberant room using a tetrahedron array

Data measured and provided by Peter Ulriksen, Professor at Lund University

K. Haddad

14th of March, 2016

www.bksv.com Copyright © Brüel & Kjær. All rights reserved. Oförstörande provning i kärnkraftens betongkonstruktioner

4-channel tetrahedral acoustic array built by LTH

Localisation of click sounds in LTH reverberant room using a Tetrahedron array

• Setup

Localisation of click sounds in reverberant room using a Tetrahedron array

• Events (Processed only Gain 5)

Localisation of click sounds in reverberant room using a Tetrahedron array

ACOUSTIC EMISSION DETECTION AND SOURCE DIRECTION FINDING IN THE RINGHALS 2 REACTOR CONTAINMENT DURING PRESSURE TEST

RAPPORT BET 178 / KKU52178

PETER ULRIKSEN - TEKNISK GEOLOGI LUNDS TEKNISKA HÖGSKOLA KARIM HADDAD - BRÜEL&KJAER SOUND AND VIBRATION MEASUREMENT A/S JOHANNA SPÅLS - RINGHALS NUCLEAR POWER PLANT

Tetrahederformad mikrofonarray

Förberedande försök i LTH:s efterklangsrum (ekorum)

Instruktion för Ringhals mätgrupp

Placering av mikrofonerna på portalkranen

Placering av mikrofonerna på Portalkranen

Utplacering och aktiviering av mätutrustningen av Ringhals mätgrupp

Johanna Spåls ledde arbetet på Ringhals

Hela mätperioden

20 epoker om 4 h.

De höga amplituderna registreras när trycket stegras respektive släpps ner.

De relevanta emissionerna sker när trycket är högt.

Trycket ökas

Trycket sänks

Inzoomning i händelse 1

-0,1	0.0	0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 1,10 1,20 1,30 1,40 1,50 1,60 1,70 1,80 1,90 2,00 2,10 2,20 2,30 2,40 2,50 2,60 2,70 2,80 2,90 3,00 3,10 3,20 3,30 3,40 3,50 3,60 3,70 3,80 3,	90 4
X Event 1 Tr1 Tyst Sok	• 1,0 • 0,5• • 0,0•	And the providence of the second of the seco	
A Event 1 Tot	-0.5-		
V Event 1 172 Tyst Sok V V Mono, 48000Hz 32-bitars flyttal	0,5-		
•	-0,5·		
X Event 1 Tr3 Tyst Sok Y V Mono, 48000Hz 32-bitars flyttal	• 1,0 • 0,5·	Handler and the second s	
*	-0,5- © -1,0		
K Event 1 Tr4 Tyst Sok V V Aono, 48000Hz 32-bitars flyttal	• 1,0 0,5-	history and the second of the	
	-0,5 © -1,0	fer level, where the day de the day is a second to be a second to be a second to be a second to be a second to	

Antal händelser i varje epok (4h)

RATE OF EVENTS IN EACH RELEVANT EPOCH

Epoch 7: 2020-04-01 13:28:00 44 events Epoch 8: 2020-04-01 17:37 14 events

-

Epoch 11: 2020-04-02 06:02	6 events
Epoch 12: 2020-04-02 10:11	8 events
Epoch 13: 2020-04-02 14:19	2 events
Epoch 14: 2020-04-02 18:28	2 events
-	
Epoch 17: 2020-04-03 06:53	2 events
Epoch 18: 2020-04-03 11:02	6 events

Azimuth: -150 deg Elevation: -60 deg

Verkliga data (59) med hög tillförlitlighet

Verkliga data (11) med lägre tillförlitlighet

Modern radar för betong

Radar 2 GHz GSSI

CBI testar

Testobjekt före pågjutning: delaminering i form av frigolitskiva

Oförstörande provning i kärnkraftens betongkonstruktioner Energiforsk 231121

2 GHz

Oförstörande provning i kärnkraftens betongkonstruktioner Energiforsk 231121

Tack för visat intresse