

Vad vet vi om service och underhåll för bränslecellsfordon? Hans Pohl Lindholmen Science Park AB

Outline

- About the project
- Experiences of fuel cell vehicles interviews
- Maintenance cost assessments
- Maintenance cost comparison
- Tentative conclusions

About the project

Title: Underhåll och reparation av bränslecellsdriven transport – en kunskapsöversikt

Goal: Document existing know-how regarding maintenance and repair of fuel cell drivelines for heavy duty vehicles

Budget: MSEK 1.4 whereof:

- MSEK 1.0 from the Swedish Energy Agency
- sincere thanks to sponsors and other sincere thanks to spons to the project is a sponsor of the project is a spons MSEK 0.4 from partners: Renova, H2X, Volvo Technology AB, Volvo Construction Equipment AB and Region Stockholm

Project leader: RISE Research Institutes of Sweden

Interviews and cost analyses: Lindholmen Science Park AB

Duration: January – December 2023

Outline

MAIN

- About the project
- Experiences of fuel cell vehicles interviews
- Maintenance cost assessments
- Maintenance cost comparison
- Tentative conclusions

Experiences of fuel cell vehicles - interviews

Experience	es of fuel cell	l vehicles - i	interviews	
Actor	Person(s)	Country	Type of operation	
Renova	Janne Hukkamäki	Sweden	Two pre-series fuel cell refuse	
	and Kenneth Johansson		collection trucks from Scania	
2X	Magnus Olsson	Sweden	Approximately 2,000 pre-series	
	and Peter Westh		and series pick-ups and trucks with	
			2 or 3 axles operated in China	
KATECH	Sunho Yoon	Korea	24 Hyundai Nexo cars being	
			operated as taxis during up to 4	
			years	
Auto Gewerbe	Jörg Merz	Switzerland	48 Hyundai trucks, 47 pre-series, 1	
Verband Schweiz			series	
First Aberdeen	Marcus	United Kingdom	15 fuel cell city buses from	
Ltd	Montgomery		Wrightbus (2 generations)	
AC Transit	Cecil Blandon and	USA	Transit buses with fuel cells from	
	Jose Vega		Van Hool and New Flyer	

Interviews made in the period May - November 2023

Renova

- Delayed start due to lack of hydrogen
- Long waiting period not good for the vehicles
- Hydrogen-adapted workshop in construction

Hyundai Nexo 24 taxis project

- High milage was the goal
- Some cars reached more than 250,000 km within the project
- Regular service many workshops available
- Service requiring empty hydrogen tanks only few workshops available
- Few problems, even for cars with high milage

MAIN

48 Hyundai Xcient trucks in Switzerland

Xcient Fuel Cell

Typ 4 Tanks with 31 kg at 350 bar

2 Fuel Cell System with 90kW power each

72 kWh Battery

7,700,000 km accumulated (September 2023)

Electric engine with 350 kW

Range 4x2 full payload, cooled with trailer: ca. 400 km (Im Hyundai Xcient mit einer Tankfüllung von Lausanne nach St. Gallen)

48 Hyundai Xcient trucks in Switzerland

- No more breakdowns than with a diesel truck
- Plan to exchange fuel cell stacks at 400,000 km
- Approximately 9 days training for workshop personnel to handle high voltage and hydrogen

Challenges

- Refuelling of green hydrogen; availability, cost
- Workshop personnel, general shortage plus "Many see this new technology as a threat to their jobs"

15 FC buses in Aberdeen, Scotland

- Wrightbus, developed within EU project JIVE
- 27 kg hydrogen @350 bar
- 48 kWh batteries
- Range 320 km

15 FC buses in Aberdeen, Scotland

Hydrogen safe workshop, cost GBP 500,000 (MSEK 6,5).

If major accident, bus must be sent to another workshop and then hydrogen must be removed.

Challenges

- Capacity and availability of refuelling station
- Availability of engineer from Wrightbus
- Diagnosis system and dashboard often miss the root cause of the problem
- Availability approximately 70% (improving)

Van Hool

- Fuel cell dominant
- 40 kg H2@350 bar

MAIN

- Range 320 km
- Since 2011

New Flyer

- Battery dominant
- 38 kg H2@350 bar
- Range 480 km
- Since 2020

Liquid (grey) hydrogen trucked in, gasified and fuelled at bus terminals Total ZEB milage > 8,000,000 km

30 FC transit buses in Oakland, California, USA

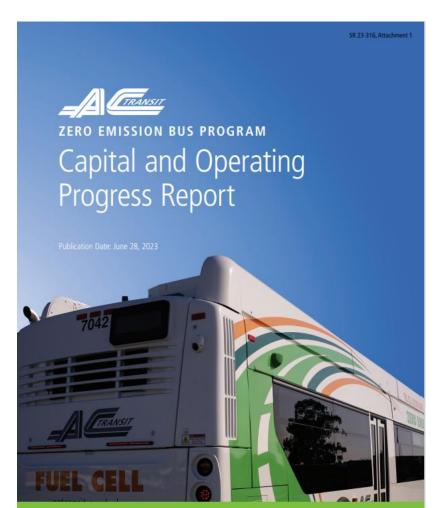
Adaptation of first workshop to become hydrogen safe 1 MUSD (10.5 MSEK). Second workshop, changed regulations, 0.3 MUSD (3.2 MSEK)

Challenges

- Spare parts
- Lack of trained technicians
- Diagnosing
- Cost

SR 22-570, Attachment 1

Recommended literature

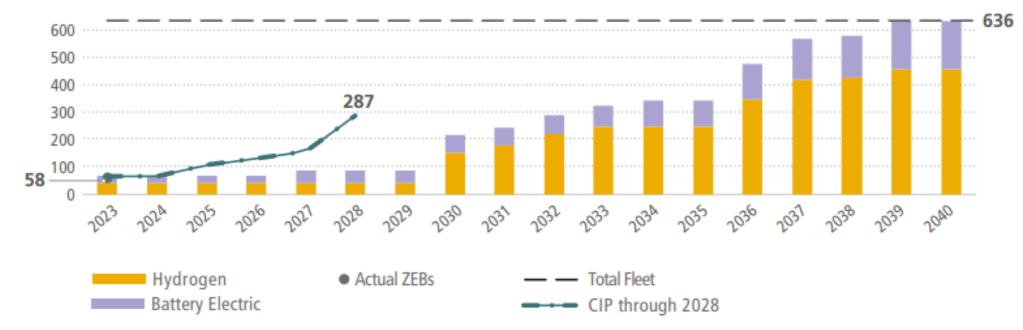


Zero Emission Transit Bus Technology Analysis

Volume 4 REPORT PERIOD : JANUARY 2022 – JUNE 2022 Published December 14, 2022

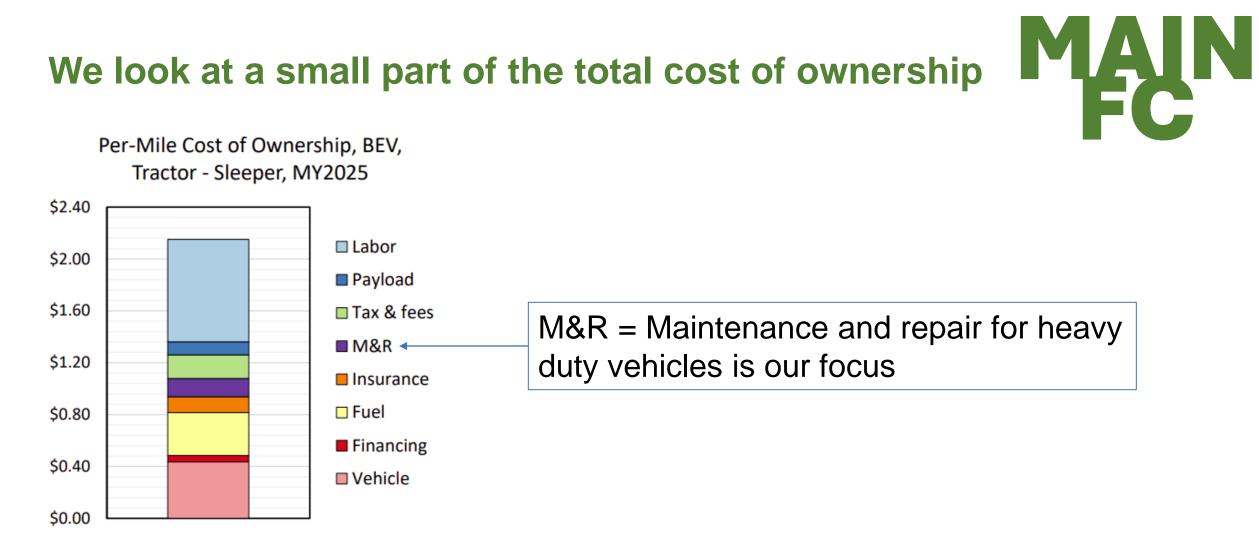
Leading the way to a ZERO EMISSION FUTURE.

Leading the way to a ZERO EMISSION FUTURE



From the reports – cost of operation per mile

COST/MILE	DIESEL	HYBRID	FCEB	BEB	LEGACY FC
Maintenance	\$1.28	\$2.37	\$1.33	\$1.15	\$2.46
Energy (Fuel)	\$1.01	\$0.74	\$1.19	\$0.46	\$1.69
Total	\$2.29	\$3.11	\$2.52	\$1.61	\$4.15


Plans have recently changed from:

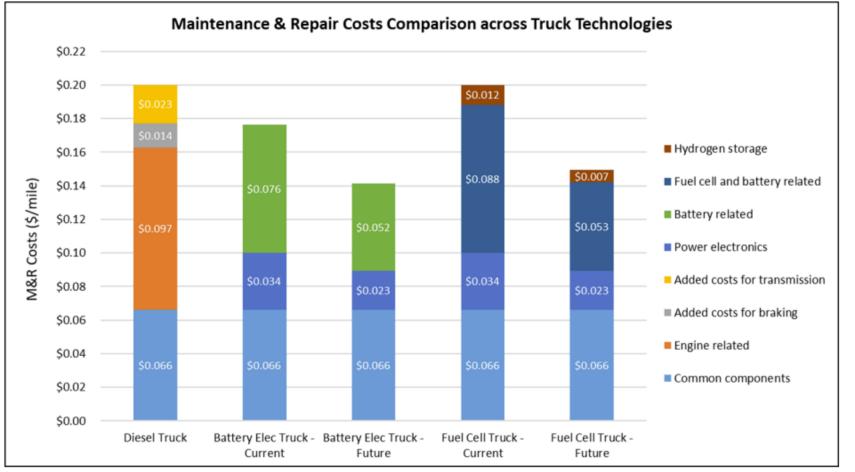
- 30% hydrogen and 70% battery electric to
- 70% hydrogen and 30% battery electric

Outline

- About the project
- Experiences of fuel cell vehicles interviews
- Maintenance cost assessments
- Maintenance cost comparison
- Tentative conclusions

Andrew Burnham, David Gohlke, Luke Rush, Thomas Stephens, Yan Zhou, Mark A. Delucchi, Alicia Birky, Chad Hunter, Zhenhong Lin, Shiqi Ou, Fei Xie, Camron Proctor, Steven Wiryadinata, Nawei Liu, and Madhur Boloor (2021) Comprehensive Total Cost of Ownership Quantification for Vehicles with Different Size Classes and Powertrains

US EPA argues like this


2.5.3.2 Maintenance and Repair

Like BEVs, data on real-world maintenance and repair costs for heavy-duty FCEVs is limited. We expect the overall maintenance costs to be lower for a heavy-duty FCEV than a comparable diesel- fueled ICE vehicle for several reasons. First, a FCEV powertrain has fewer moving parts that accrue wear or need regular adjustments. Second, FCEVs do not require regular replacement of certain fluids such as engine oil, nor do they require exhaust filters to reduce particulate matter and other pollutants. Third, the per-mile rate of brake wear is expected to be lower for FCEVs due to regenerative braking systems.

Leads to a scaling factor of 0.75 for fuel cell and 0.71 for battery-electric compared to the M&R cost for diesel trucks

Greenhouse Gas Emissions Standards for Heavy-Duty Vehicles: Phase 3 Draft Regulatory Impact Analysis, EPA-420-D-23-004, April 2023 (page 194)

The main US EPA reference provides further details

It should be noted that there are other researchers arguing for lower or higher M&R costs

MAIN

Figure 5. Heavy duty truck M&R cost breakdown and comparison across truck technologies

Guihua Wang, Marshall Miller, Lewis Fulton (2022) Estimating Maintenance and Repair Costs for Battery Electric and Fuel Cell Heavy Duty Trucks

Outline

- About the project
- Experiences of fuel cell vehicles interviews
- Maintenance cost assessments
- Maintenance cost comparison
- Tentative conclusions

Regular maintenance cars - comparison

Based on data from Toyota, three similar cars with different powertrains were compared:

How often are components exchanged?

How often are components exchanged?					
Maintenance every 15,000 km					
Kilometres between replacements (*1,000)					
	Camry	BZ4X	Mirai		
Motorolja 0W20 1Liter (pris baserat på 5liter)	15				
Oljefilter	15				
Luftfilter	60		45		
Kupéfilter	30	30	15		
Oljepluggspackning	15				
Broms/kopplingsvätska 1 liter	30	30	30		
HV filter	15				
Tändstift	150				
Packning		60	60		
FILTER, EV BATTERY INTAKE			30		
ELEMENT, FC COOLING WATER ION EXCHANGER			60		
BREATHER, FC AIR COMPRESSOR			90		

ГАЛ How much does regular maintenance cost? Cost comparison regular maintenance 150,000 km Mirai BZ4X Camry

0.00

0.50

1.00

1.50

2.00

SEK/10 km

Material Labour

2.50

3.00

3.50

4.00

Main cost drivers?

Camry Engine oil (2/3 of material cost)

BZ4X

Labour (more than 80% of total cost)

Mirai

Labour (~3/4 of total cost). The "ELEMENT, FC COOLING WATER ION EXCHANGER" represents 37% of material cost

Tentative conclusions

- It takes time to establish a complete ecosystem for hydrogen fuel cell vehicles
- Even though the vehicles in some cases are as reliable as internal combustion engine vehicles, additional costs still apply due to:
 - Limited availability of workshops, spare parts and skilled engineers
 - Problems with the hydrogen refuelling infrastructure
 - Lack of scale and time to optimize all details in the whole value chain
- Maintenance and repair of fuel cell vehicles today costs similarly, more, or much more than diesel vehicles
- Researchers argue that in the *long term*, costs for maintenance and repair should be lower than for diesel vehicles

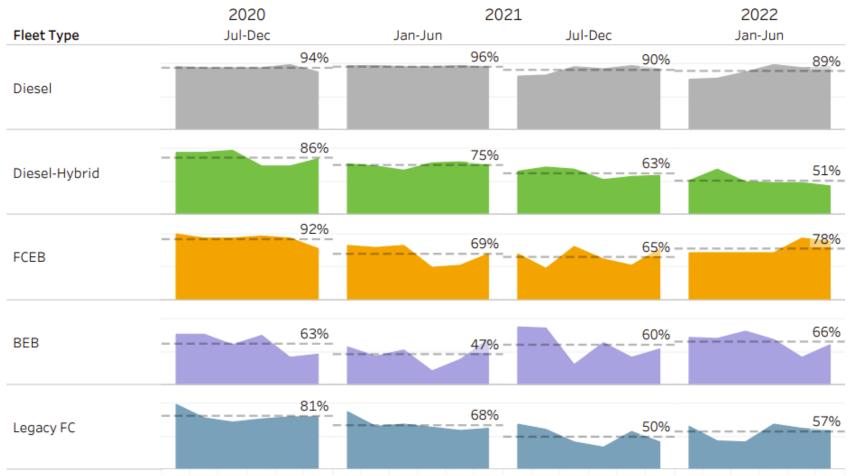
Det vet vi om service och underhåll för bränslecellsfordon

Hans Pohl hans.pohl@lindholmen.se

0708402740

Lindholmen Science Park AB

VOLVO



MAIN

From the reports – availability per month

Fleet Availability [FIG 15]

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun