

Challenges and opportunities for hydrogen transmission: Important factors for a successful market development

Vätgaskonferensen, 5-6 Dec 2023, Stockholm

LEENA SIVILL & ROBIN FALCONER AFRY MANAGEMENT CONSULTING

Main benefits and challenges of a hydrogen transmission network

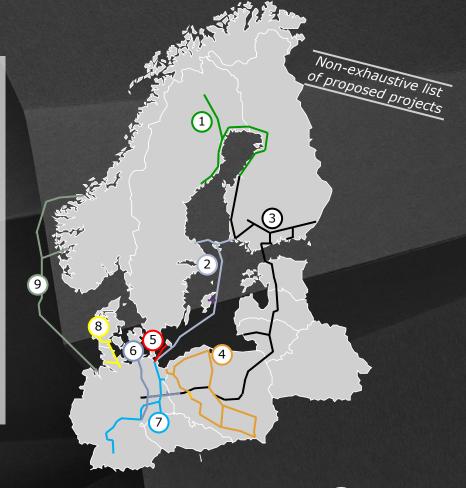
Transmission of hydrogen vs electricity from a systemic cost perspective

Uncertainty of volumes and parties connecting to the H2 pipeline over time

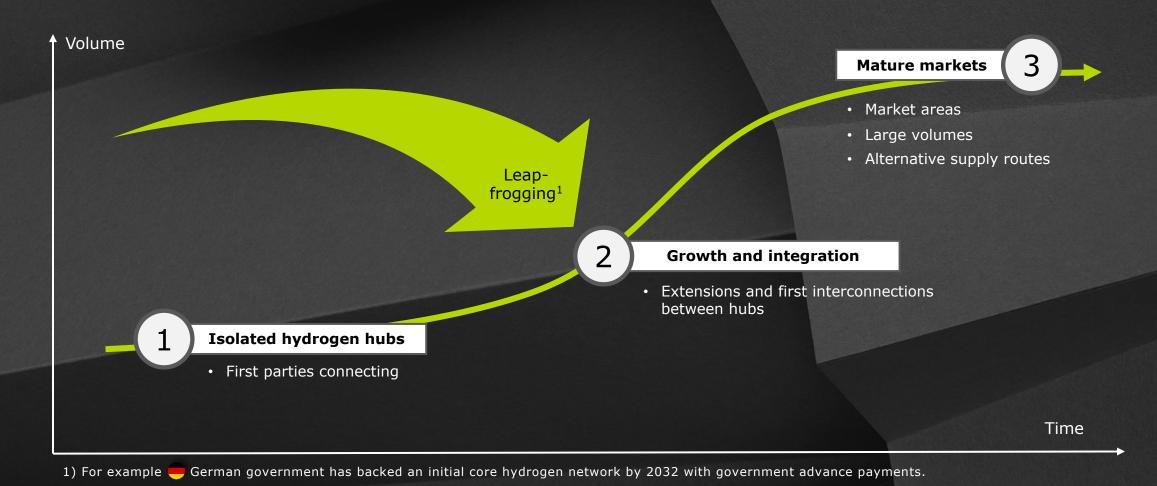
Enabling a hydrogen market with competitive prices and possibility of selecting supplier

Large infrastructure projects require large up-front investments

Linepack and potential storage in the transmission system enable balancing between supply and demand


Risks of under- or oversizing and misplaced or costly routing

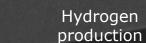
Several proposed hydrogen transmission projects have recently acquired PCI/PMI-status from the European Commission


Project	Countries concerned	Expected Commissioning	PCI-status
Nordic Hydrogen Route	+ +	2028	\checkmark
2 Baltic Sea Hydrogen Collector	+ + •	2030	\checkmark
3 Nordic-Baltic Hydrogen Corridor	+	2030	\checkmark
4 Polish Hydrogen Backbone	• •	2029 (west), 2039 (east)	×
5 Bornholm-Lubmin Interconnector	.	2027	×
6 Doing Hydrogen	•	2029	×
7 FLOW East	•	2025	×
8 Danish Hydrogen Infrastructure	+ •	2028/2030	✓
9 CHE Pipeline	# •	2030	\checkmark

PCI - Project of Common Interest (linking two or more EU member states)
PMI - Project of Mutual Interest (between EU and non-EU countries)

Life-cycle of hydrogen transmission development

Accelerating the change


Entire value chain needs to become operational end-to-end

Electricity transmission

Hydrogen distribution or transmission

Electricity production

WHAT DOES THIS MEAN FOR TRANSMISSION?

1 Initial sizing and routing

2 Prioritisation between projects

Private vs. public roles as needed

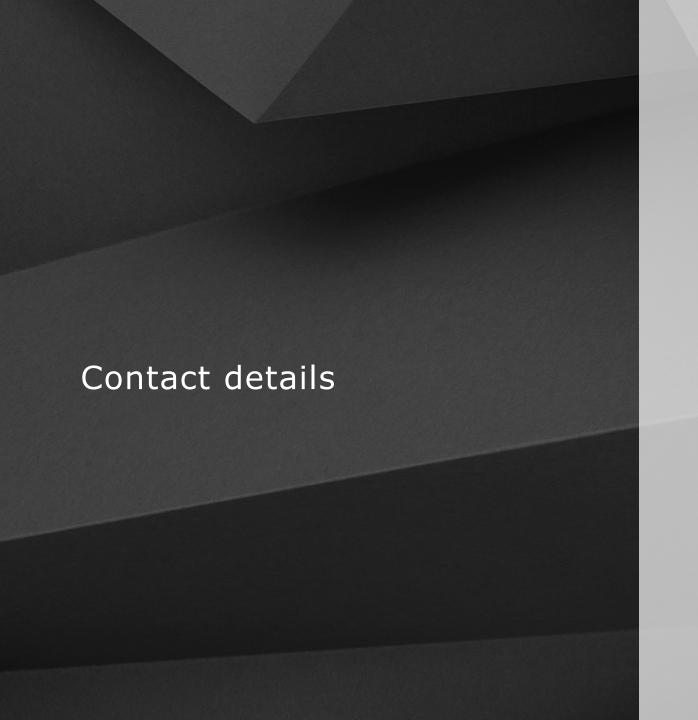
• Supporter, investor, lender, and/or guarantor

Recommendations for successful market development

State should define its own role

- Make clear what the benefits and risks are
- Develop a national strategy for H2 transmission from the societal perspective
- Define incentives if and where necessary

Increase public acceptance/interest


- Public acceptance is important to accelerate permitting
- State hydrogen transmission strategy should be communicated to the public

Cost-benefit analysis

- Initial plans are subject to prioritization and revision over time
- Risks should be identified and accompanied by the appropriate risk mitigation measures

Dr Leena SivillSenior Principal
AFRY Management Consulting, Finland
Leena.Sivill@afry.com

Robin Falconer
Consultant
AFRY Management Consulting, Sweden
Robin.Falconer@afry.com

