

IEA PVPS Task 15 Subtask C BIPV Guidebook

Costa Kapsis, Ph.D., M. ASCE, M. ASHRAE

Department of Civil and Environmental Engineering, University of Waterloo, Canada

Technology Collaboration Programme

Subtask C: BIPV Guidebook

Objectives

- Consolidate existing BIPV industry knowledge;
- Support the implementation of best BIPV practices (for new and retrofit buildings);
- Drive the decision-making process that could lead to an effective BIPV design & a robust BIPV installation.

VPS

Deliverables

• Produce a BIPV guidebook with the complete pathway from BIPV design to installation, operation, maintenance & safety.

• Building professionals: architects, engineers, consultants and PV installers

TABLE OF CONTENTS

Foreword

SdNc

- Chapter 1: Introduction
- Chapter 2: BIPV performance requirements
- Chapter 3: BIPV products
- Chapter 4: A decision-making process for BIPV design
- Chapter 5: Design of BIPV envelope & <u>case studies</u>
- Chapter 6: Operation & maintenance of BIPV systems

Expected Publication Date: June 2024

Edited by Nuria Martín Chivelet Costa Kapsis Francesco Frontini

Building-Integrated Photovoltaics

A Technical Guidebook

Authors

Name	Affiliation	Country			
Nuria Martín Chivelet*	CIEMAT	Spain			
Costa Kapsis*	University of Waterloo	Canada			
Francesco Frontini*	SUPSI	Switzerland			
Pierluigi Bonomo	SUPSI	Switzerland			
Tjerk Reijenga	BEAR-ID	China			
Reidar Stølen	RISE	Norway			
Helen Rose Wilson	Fraunhofer ISE	Germany			
Alexander Astigarraga	Eurac Research	Italy			
Simon Boddaert	CSTB	France			
Maximilian Lugmair	FhS Salzburg	Austria			
Gabriele Eder	OFI	Austria			
Rebecca Yang	RMIT University	Australia			
Ana Marcos Castro	CIEMAT	Spain			
Astrid Schneider	Solar Architecture	Germany			
Hisashi Ishi	LIXIL	Japan			
Pabasara Wijeratne	RMIT University	Australia			
Nilmini Weerasinghe	RMIT University	Australia			

T15 BIPV Guidebook

BIPV APPLICATION CATEGORIES

- Rainscreens
- Curtain Walls
- Roofs
- Skylights
- Solar Shading
- Canopies & Shelters

DESIGN ASPECTS ADDRESSED

- General Considerations
- Structural
- Hygrothermal Performance
- Fire Safety
- Electrical
- Architectural
- Sustainability & Circularity

BIPV Rainscreens

Load bearing backing wall

- 2 Water/air barrier, adhered membrane or spray applied
- 3 Wall bracket, thermally-broken
- 4 Thermal insulation, mineral wool
- 5 Vertical substructure rail
- 6 Horizontal substructure girt
- 🕜 Cable management tray
- B Drainage/air flow cavity, 80 mm or more
- BIPV module, frameless
- 0 Pressure plate
- 🛈 Pressure cap
- 12 BIPV module junction box and DC cables

General: A BIPV rainscreen can be a cost-effective envelope solution for both new-build and retrofit projects. Its design considerations on with those of conventional rainscreen systems, supplemented by electrical and fire safety requirements [8].

Structural Design: The BIPV rainscreen must be engineered to endure and transfer both dynamic and static loads to the load bearing backing wall ①, in compliance with the local building codes. These primarily include the dead load resulting from the weight of the BIPV modules and sub-frame members, as well as dynamic wind loads. The connections between the brackets ③ and the vertical rails ⑤ are typically made with self-drilling screws or bolts and nuts, using fixed or sliding points. The sliding points are used to allow thermal expansion of the rails. The BIPV modules ② can be mounted on the horizontal rails ⑥ using visible compression fittings ⑩ or concealed anchors adhered to the rear side of the BIPV modules. BIPV rainscreens tend to be drained and ventilated with open joints between modules to increase rear air flow while also allowing thermal expansion of the modules. When using a steel structure (galvanized or stainless) with framed BIPV modules, it is important to avoid electrical contact between metals and prevent galvanic corrosion of the anolized aluminium frame. This is not of concern with frameless BIPV modules.

Hygrothermal Performance: The BIPV cladding plays the role of the primary water barrier, deflecting most of the direct rain. A rainscreen cavity (3) allows any penetrating moisture to drain or evaporate and vent to the outside. The rainscreen cavity should be on average 100 mm or more to ensure adequate natural air flow for the BIPV modules and avoid overheating. Parapet and drain flashing should permit air flow while the installation of a permeable insect screen at the top and bottom course of rainscreen is recommended. An additional water/air barrier (2) is applied (e.g., adhered membrane or spray applied) on the exterior face of the backing wall to eliminate any further water ingress and ensure an airtight construction. If required, electrical conduit penetrations should be used to bring the DC wiring from the rainscreen to the electrical room, using a flexible silicone grommet that offers an airtight and watertight seal, while also allowing the conduit to move without compromising the seal. The choice of thermal insulation (4) material and thickness depends on local building codes, fire safety regulations, and sustainability needs. Thermally broken brackets (3) should be used to reduce thermal bridging.

Fire Safety: The use of non-combustible insulation (e.g., mineral wool) is advised to reduce or prevent fire propagation through the rainscreen cavity. The use of fire barriers with an intumescent strip installed across the cavity can be an additional fire and smoke control practice.

Electrical Considerations: Effective cable management and labelling ensure BIPV rainscreen longevity. The use of cable trays ⑦, clips, and ties can help secure the wiring, prevent mechanical stress, and avoid abrasion from sharp corners and movement due to wind or other vibrations that could damage wiring or connectors. The connectors should have a minimum rating of IP 65 while the DC cables should be installed to avoid induction loops that can generate significant magnetic fields. When possible, the modules should be connected in a leapfrog fashion (vs daisy chain wiring). Façade shading should be accounted for during the string design. When applicable, low-profile pressure caps în are recommended to avoid casting shadows to the BIPV modules under high solar incidence angles.

Architectural Considerations: The use of coloured BIPV enables architects and designers to seamlessly integrate solar panels into the building's design, as the BIPV rainscreen can be customized to match or complement the building's colour scheme and architectural style, creating visually appealing and innovative structures that stand out while still being sustainable. When the BIPV rainscreen is susceptible to impacts or damage, protection can be ensured by taking precautions like installing the modules at least 0.8 m above the ground or above the wall skirting.

Sustainability: The BIPV rainscreen should be engineered to last for at least 35 years with future reuse in mind. Designing an adaptable sub-frame that accommodates different types of modules, enables the building envelope to adapt to changing technologies or aesthetic preferences. The system design should also consider ease of maintenance. Components that require periodic maintenance or replacement should be easily accessible without disrupting building operations.

BIPV Rainscreens

Manitou a bi Bii daziigae

PROJECT DESCRIPTION

LOCATION	Winnipeg, Manitoba (49° 53'4" N)
USE	Academic
PV PRODUCER	SolarLab
	Diamond Schmitt Architects and
AKCHITECT	Number TEN Architectural Group
	SolarLab, SMS Engineering, Crosier
ENGINEER	Kilgour
INSTALLER	Flynn

PROJECT CHARACTERISTICS	
ANNUAL HORIZONTAL SOLAR IRRADIATION	1.37 MWh/m2
KÖPPEN CLIMATE CLASSIFICATION	Humid continental - Dfb
BIPV APPLICATION	Rainscreen
TYPE OF CONSTRUCTION	New
	Opaque coloured mono-Si
PVTECHNOLOGY	(BIPV), Bifacial mono-Si (rooftop)
BIPV ARRAY NOMINAL POWER	94 kW (BIPV), 54 kW (rooftop)
ANNUAL ELECTRICITY GENERATION PER BIPV MODULE AREA	112 kW/m2
	80 MWh (BIPV) + 89 MWh
ANNUAL ELECTRICITY GENERATION	(rooftop)

(

BIPV Rainscreens

Ċ

Fanshawe College Innovation Village

PROJECT DESCRIP	TION
LOCATION	London, Ontario (42° 59′ 1″ N)
USE	Research Facility
PV PRODUCER	SolarLab
ARCHITECT	Diamond Schmitt Architects
	SolarLab, German Solar & Smith
ENGINEER	+Andersen
INSTALLER	German Solar

PROJECT CHARACTERISTICS				
ANNUAL HORIZONTAL SOLAR IRRADIATION	1.5 MWh/m ²			
KÖPPEN CLIMATE CLASSIFICATION	Humid continental- Dfb			
BIPV APPLICATION	Rainscreen			
TYPE OF CONSTRUCTION	New			
PV TECHNOLOGY	Opaque coloured mono-Si			
BIPV ARRAY NOMINAL POWER	174.9 kW			
	263 kWh/m ² (for active cell area			
ANNUAL ELECTRICITY GENERATION PER BIPV MODULE AREA	only)			
ANNUAL ELECTRICITY GENERATION	123 MWh (façade only)			

BIPV Curtain Walls

NCC Headquarters

PROJECT DESCRIP	PROJECT CH	
LOCATION	Solna, Sweden (59° 22′ 0″ N)	ANNUAL HO
USE	Office	KÖPPEN CLII
PV PRODUCER	NCC	BIPV APPLIC
ARCHITECT	Cenit Vision by ISSOL	TYPE OF CO
ENGINEER	White Arkitekter	PV TECHNOL
INSTALLER	NCC	BIPV ARRAY

PROJECT CHARACTERISTICS	
ANNUAL HORIZONTAL SOLAR IRRADIATION	0.9 MWh/m ²
KÖPPEN CLIMATE CLASSIFICATION	Humid temperate - Cfb
BIPV APPLICATION	Curtain wall
TYPE OF CONSTRUCTION	New
PV TECHNOLOGY	Opaque coloured mono-Si
BIPV ARRAY NOMINAL POWER	36.0 kW
ANNUAL ELECTRICITY GENERATION PER BIPV MODULE AREA	60 kWh/m ²
ANNUAL ELECTRICITY GENERATION	22.0 MWh

BIPV Curtain Walls

Palazzo Lombardia

PROJECT DESCRIP	PTION
LOCATION	Milan, Italy (45° 29' 12" N)
USE	Government & Retail
PV PRODUCER	EnergyGlass
ARCHITECT	Sistema Duemila Architettura e Ingegneria
ENGINEER	PEI Cobb Freed & Partners, Caputo Partnership Consortium
INSTALLER	ISA S.p.A.

PROJECT CHARACTERISTICS	
ANNUAL HORIZONTAL SOLAR IRRADIATION	1.1 MWh/m ²
KÖPPEN CLIMATE CLASSIFICATION	Humid temperate - Cfb
BIPV APPLICATION	Curtain Wall
TYPE OF CONSTRUCTION	New
PV TECHNOLOGY	Semi-transparent mono-Si
BIPV ARRAY NOMINAL POWER	170.4 kW
ANNUAL ELECTRICITY GENERATION PER BIPV MODULE AREA	73.5 kWh/m ²
ANNUAL ELECTRICITY GENERATION	104.4 MWh

BIPV Roofs

Glasberga Residential District

PROJECT DESCRIPTION		PROJECT CHARACTERISTICS						
LOCATION	Södertälje, Sweden (59° 11' 44" N)	ANNUAL HORIZONTAL SOLAR IRRADIATION	900 kWh/m ²					
USE	Residential	KÖPPEN CLIMATE CLASSIFICATION	Humid continental - Dfb					
PV PRODUCER	Advanced Solar Power	BIPV APPLICATION	Roof					
ARCHITECT	The Paradoumo Group	TYPE OF CONSTRUCTION	New					
ENGINEER	Soltech Energy Sweden	PV TECHNOLOGY	CdTe solar shingles					
INSTALLER	Soltech Energy Sweden	BIPV ARRAY NOMINAL POWER	75.8 kW					
		ANNUAL ELECTRICITY GENERATION PER BIPV MODULE AREA	73.5 kWh/m ²					
		ANNUAL ELECTRICITY GENERATION	104.4 MWh					

BIPV Roofs

Andreas Bjorns Gade 1

F.G.							Ī	Ī	
			1						

PROJECT DESCRIPTION

LOCATION	Copenhagen, Denmark (55° 40' 31" N)
USE	Residential, Multi-Family
PV PRODUCER	Owners Association
ARCHITECT	Luxor (mounting system by Renusol)
ENGINEER	Krydsrum Arkitekter
INSTALLER	Ekolab

PROJECT CHARACTERISTICS	
ANNUAL HORIZONTAL SOLAR IRRADIATION	1 MWh/m ²
KÖPPEN CLIMATE CLASSIFICATION	Marine West Coast - Csb
BIPV APPLICATION	Roof
TYPE OF CONSTRUCTION	Retrofit
PV TECHNOLOGY	Opaque mono-Si
BIPV ARRAY NOMINAL POWER	20.3 kW
ANNUAL ELECTRICITY GENERATION PER BIPV MODULE AREA	121.4 kWh/m ²
ANNUAL ELECTRICITY GENERATION	17 MWh

BIPV Skylights

Stazione AV Tornio Porta Susa

PROJECT DESCRIPTION PROJECT CHARACTERISTICS			
LOCATION	Turin, Italy (45° 4′ 22″ N)	ANNUAL HORIZONTAL SOLAR IRRADIATION	1.1 MWh/m ²
USE	Train station	KÖPPEN CLIMATE CLASSIFICATION	Humid subtropical - Cfa
PV PRODUCER	EnergyGlass, GruppoSTG	BIPV APPLICATION	Skylight
	AREP, Silvio d'Ascia Architecture,	TYPE OF CONSTRUCTION	New
ARCHITECT	Agostino Magnaghi	PV TECHNOLOGY	Semi-transparent mono-Si
ENGINEER	AREP	BIPV ARRAY NOMINAL POWER	765 kW
INSTALLER	GruppoSTG	ANNUAL ELECTRICITY GENERATION PER BIPV MODULE AREA	75 kWh/m ²
		ANNUAL ELECTRICITY GENERATION	680 MWh

BIPV Skylights

Edmonton Convention Centre

PROJECT DESCRIPTION PROJECT CHARACT		PROJECT CHARACTERISTICS	TERISTICS	
LOCATION	Edmonton, Canada (53° 32' 31" N)	ANNUAL HORIZONTAL SOLAR IRRADIATION	1.3 MWh/m ²	
USE	Institutional	KÖPPEN CLIMATE CLASSIFICATION	Humid continental- Dfb	
PV PRODUCER	Onyx Solar	BIPV APPLICATION	Skylight	
ARCHITECT	DIALOG	TYPE OF CONSTRUCTION	Retrofit	
ENGINEER	Howell-Mayhew Engineering	PV TECHNOLOGY	Semi-transparent amorphous Si	
INSTALLER	Kuby Energy	BIPV ARRAY NOMINAL POWER	169 kW	
		ANNUAL ELECTRICITY GENERATION PER BIPV MODULE AREA	128 kWh/m ²	
		ANNUAL ELECTRICITY GENERATION	200 MWh	

BIPV Solar Shading

Gothenburg Garage

PROJECT DESCRIP	TION	PROJECT CHARACTERISTICS	
LOCATION	Gothenburg, Sweden (57° 39′ 41″ N)	ANNUAL HORIZONTAL SOLAR IRRADIATION	790 kWh/m ²
USE	Garage	KÖPPEN CLIMATE CLASSIFICATION	Humid temperate - Cfb
PV PRODUCER	Advanced Solar Power	BIPV APPLICATION	Solar shading
ARCHITECT	Liljewall arkitekter	TYPE OF CONSTRUCTION	New
	Fasadsystem (Soltech Energy Sweden	PV TECHNOLOGY	Semi-transparent coloured CdTe
ENGINEER	subsidiary)	BIPV ARRAY NOMINAL POWER	60 kW
INSTALLER	Fasadsystem	ANNUAL ELECTRICITY GENERATION PER BIPV MODULE AREA	21 kWh/m ²
	- doudbystern	ANNUAL ELECTRICITY GENERATION	16.9 MWh

BIPV Solar Shading

Franklin University

PROJECT DESCRIP	TION	PROJECT CHARACTERISTICS	
LOCATION	Sorengo, Switzerland (45° 59' 52" N)	ANNUAL HORIZONTAL SOLAR IRRADIATION	1.3 MWh/m ²
USE	Residence	KÖPPEN CLIMATE CLASSIFICATION	Continental subarctic - Dfc
PV PRODUCER	SUNAGE	BIPV APPLICATION	Solar shading
ARCHITECT	Flaviano Capriotti Architetti	TYPE OF CONSTRUCTION	New
ENGINEER	Aziende Industriali di Lugano (AIL)	PV TECHNOLOGY	Coloured opaque multi-Si
	Kummler + Matter, Poretti Gaggini	BIPV ARRAY NOMINAL POWER	18 kW
INSTALLER	Consortium	ANNUAL ELECTRICITY GENERATION PER BIPV MODULE AREA	102 kWh/m ²
		ANNUAL ELECTRICITY GENERATION	18.7 MWh

BIPV Canopies & Shelters

Arrival Centre in Schönbrunn

PROJECT DESCRIP	PROJECT CHARACTERIS	
LOCATION	Vienna, Austria (48° 11′ 10″ N)	ANNUAL HORIZONTAL S
USE	Carport	KÖPPEN CLIMATE CLASS
PV PRODUCER	Ertex Solar	BIPV APPLICATION
ARCHITECT	FCP Fritsch, Chiari & Partner ZT GmbH	TYPE OF CONSTRUCTIO
ENGINEER	HESS Stahlbau & Montage GmbH	PV TECHNOLOGY
INSTALLER	Ertex Solar	BIPV ARRAY NOMINAL P
		ANNUAL FLECTRICITY G

PROJECT CHARACTERISTICS	
ANNUAL HORIZONTAL SOLAR IRRADIATION	1.3 MWh/m ²
KÖPPEN CLIMATE CLASSIFICATION	Continental subarctic - Dfc
BIPV APPLICATION	Solar shading
TYPE OF CONSTRUCTION	New
PV TECHNOLOGY	Coloured opaque multi-Si
BIPV ARRAY NOMINAL POWER	18 kW
ANNUAL ELECTRICITY GENERATION PER BIPV MODULE AREA	102 kWh/m ²
ANNUAL ELECTRICITY GENERATION	18.7 MWh

A Decision-Making Process for BIPV Design

STEP 0 - WHY BIPV?

- Energy Generation & Savings
- Regulatory Compliance
- Enhanced Aesthetics
- Increased Property Value
- Corporate Green Status (if applicable)
- Renewable Energy Credits & Incentives (if applicable)

STEP 1 - ASSESS BUILDING SITE

- Orientation & Tilt Angle
- Utility Requirements
- Zoning Bylaws
- Is it a Heritage Designation?

STEP 2 - PERFORM A SOLAR ACCESS STUDY

• Solar Availability

PVPS

• Solar Access Simulation Study

STEP 3 - DETERMINE ANNUAL BIPV ENERGY GENERATION TARGET

- Partial Energy Offset Target
- Self-Consumption Target
- Net-Zero Energy Target
- Carbon Neutral Target

STEP 4 - ESTIMATE BIPV INSTALLED CAPACITY AND ENERGY YIELD

- Shading
- Soiling, Snow & Ice

STEP 5 - DEVELOP THE BIPV DESIGN

- Modules
- Mounting System
- Strings and Arrays
- Balance of System
- Inverters
- Apply for Utility Interconnection

STEP 6 - ASSESS SUSTAINABILITY, CIRCULARITY AND LIFE CYCLE COST

- Modules
- Non-Renewable Energy Payback Time
- Environmental Footprint
- Circularity
- Life Cycle Cost Analysis

STEP 7 - BUSINESS MODELS

- Feed-in Tariff
- Net-Metering
- Power Purchase Agreement

Questions? Feel free to reach out

Costa Kapsis, costa.kapsis@uwaterloo.com