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“Cables” are Integral Part of NPP History 

• Significant literature and reports available
• Polymeric insulation materials extensively studied
• High quality materials were originally chosen
• Qualification for LOCA and NPP operation

• Condition monitoring and lifetime extension
• Extended use – thermal/low dose rate conditions

• Next generation of materials, modified flame retardant and 
different down-select criteria

• Challenges: Availability, established manufacturing, new 
qualification, overall situation of ‘nuclear’ industry
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LOCA performance, Extended use, Condition monitoring, Improved cables

“Cables” as Everything in NPP Applications 
are Within Complex Framework

Different approaches depending on country, also different emphasis on R&D
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Predictive aging studies:

Age cable materials, how to achieve predictive value?

Material characterization needs:

Develop additional diagnostic tools and characterization methods

Radiation-thermal oxidative degradation of cable insulation materials: 

Recognition of ‘combined’ environment complexity

Relationship of ambient and accelerated aging with qualification 

testing and condition monitoring:

Correlation between cable aging and guidance for field performance

Previous Overarching R&D Goals - Cables

Keywords: Cable insulation aging, predictive aging and 

extrapolations, qualification testing, condition monitoring
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Key US Literature – LOCA to CM Methods 
IEEE Std. 323-1974, IEEE Standard for qualifying class IE equipment for nuclear power generating 

stations.

SAND91-1776, Aging, Condition Monitoring, and Loss of Coolant Accident (LOCA) test class 1E cables, 

prepared by Sandia National Laboratories for the US Department of Energy August 1992. (NUREG/CR-

5772 Vol.1-3).

NUREG/CR-6202, Long-Term Aging and Loss-of-Coolant Accident (LOCA) Testing of Electrical Cables, 

U.S./French Cooperative Research Program, Nelson, C. F.; Gauthier, G.; Carlin, F.; Attal, M.; Gaussens, 

G.; Le Tutour, P.; Morin, C.,", IPSN 94-03, SAND 94-0485, 1996.

NUREG/CR-6384, Literature Review of Environmental Qualification of Safety-Related Electric Cables, 

Prepared by Brookhaven National Laboratory, April 1996. 

SAND05-7331, Nuclear Energy Plant Optimization (NEPO): Final Report on Aging and Condition 

Monitoring of Low-Voltage Cable Materials, prepared by Sandia National Laboratories for the U.S. 

Department of Energy, November 2005. 

JNES-report 2009, Japanese Nuclear Energy Safety Organization. Assessment of Cable Aging for 

Nuclear Power Plants, prepared by JNES July 2009.

SAND 2013-2388, Nuclear Power Plant Cable Materials: Review of Qualification and Currently Available 

Aging Data for Margin Assessments in Cable Performance, Celina MC, Gillen KT, Lindgren ER., 2013.

SAND 2014-17779, Summary Report of Cable Aging and Performance Data for Fiscal Year 2014, Celina 

M, Redline E, Bernstein R, Giron N, Quintana A, White II G., 2014.

Material reliability studies and prediction towards low dose rate 

and low temperature aging behavior



Qualification Testing and Long-term Aging

• Does qualification testing offer margins for extended use?

• How does ambient aging contribute to material changes?

IEEE Std. 323-1974

Rapid qualification

LOCA performance

Test conditions:

High temperature

High dose rate

Dose: 150 Mrad

Air, steam

40 year expected performance

Plus lifetime extension?

Ambient plant aging:

Expected dose rates: 0.2-1 Gy/h

Expected dose: 0.1-0.4 MGy

Temperature: 40-50°C

Predicts ?

Standard does not 

clearly specify how 

extrapolation was 

justified 

Could qualification testing easily cover ambient aging processes?

• Dose rate of 0.6 Gy/h = 5.3 kGy/y or 0.26 MGy (26 Mrad) for 50 years 

• If this dose were to be deposited within 2 weeks as part of an  accelerated test, 

an extrapolation factor of 1300 times is implied
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Qualification Testing and Long-term Aging

• Does qualification testing offer margins for extended use?

• How does ambient aging contribute to material changes?

IEEE Std. 323-1974

Rapid qualification

LOCA performance 

Ambient aging processes 

> 40 year expected performance

Plus lifetime extension

Condition monitoring 

Predict material state 

Predicts ?

Validity of qualification?

Properties of aged material?

Material changes?

How valid is IEEE Std 323-1974 qualification testing?

Can condition monitoring overcome some uncertainty? 7



Cable Insulation Materials 

XLPE, XLPO, CPE

crosslinked

semi-crystalline

often flame-retardant 

EPR based

elastomers 

Others

often for jacketing 

materials

Brandrex

Rockbestos

GE Vulkene

Dekoron Polyset

Anaconda Flameguard

Hypalon jackets

Neoprene (RB Firewall III

Silicone (RB Firewall II)

ETFE

Dekoron Elastoset

Anaconda Flameguard

Anaconda Durasheet

Okonite EPR

Semi-crystalline

Morphology

Tie molecules

• Polymer, filler, stabilizer, flame retardant, phys/chem properties

• There are significant differences in the aging behavior of these materials

• Standard qualification does not distinguish between materials (cables) 

Some materials may 

have crystallinity
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Amorphous ‘rubbery’ 

type materials



A Few Material Science Aspects have 

Increased our Understanding of Cable 

Aging Phenomena

• DLO

• Morphology in semi-crystalline materials

• Mechanistic aspects

• Extrapolation to extended low T/low dose 

rate conditions

• Oxidation rate and synergistic behavior
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Discussion of a XLPO Material

• Is there an ideal aging behavior that matches ‘standard testing’?

• Is actual aging behavior more complex and how?

Assumptions for accelerated aging with predictive value (theory):

• Accelerated conditions provide guidance ‘slow aging’ 

• Aging processes do not change with temperature, dose rate

• Identical mechanical property changes for similar ‘chemistry’ 

Issues and complications for real world aging (in NPP application):

• Arrhenius curvature?

• DLO? Dose rate effects? 

• Inverse temperature phenomena?

• Complex correlation of chemistry with mechanical properties?

• Complications due to morphology?

Degradation of Brandrex XLPO has been studied in great detail
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DLO Phenomenon in Rapid Cable Aging

11

 Requalification and accelerated testing of cable assemblies

 Is accelerated testing representative of ambient aging?

 Basis for condition monitoring approaches?

Modeled aging in XLPO cable.
Weak gradient in jacket, DLO through 

jacket and in cable interior 

Brand-Rex Cable 

300 kGy, 340 Gy/hr (2/20/15)

Accelerated testing

DLO phenomena are not considered in rapid qualification testing 

O2 permeation through cable jacket 

11

Celina MC, Gillen KT, Lindgren ER. Nuclear Power Plant Cable Materials: Review of Qualification and Currently Available Aging
Data for Margin Assessments in Cable Performance, Sandia National Laboratories, 2013, SAND 2013-2388, pp 136.
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DLO Affects Accelerated Aging Behavior

12

 Insulation within cable assembly does not experience oxidative aging

 Individual polymer removed from cable/conductor oxidizes

 Fast accelerated aging DOES NOT represent ambient aging processes

Brand-Rex Cable 

300 kGy, 340 Gy/hr 

Accelerated testing
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mechanistic differences

Major DLO for thick cable

Insulation is not oxidized

Individual tested insulation 

is oxidized in the exterior

Celina MC, Gillen KT, Lindgren ER. Nuclear Power Plant Cable Materials: Review of Qualification and Currently Available Aging
Data for Margin Assessments in Cable Performance, Sandia National Laboratories, 2013, SAND 2013-2388, pp 136.



Why does DLO Behavior Matter?

LOCA Test Exposure Conditions

Some variability in LOCA test simulations, but generally high dose 

rate, high dose and often sequential thermal exposure

• LOCA irradiation at a constant rate over a relatively short period of time: 

• In SAND 91-1766 the LOCA irradiation was conducted at ambient temperature 

and a dose rate of 6 kGy/hr to a total dose of 1.1 MGy over an ~8d period. 

• In JNES-SS-093 the LOCA irradiation was conducted at ambient temperature 

and a dose rate of <10 kGy/hr to a total dose of 1.5 MGy over ~ 7d period. 

• In SAND 94-0485 the LOCA irradiation was delivered at 70°C over a 30 day 

period at a dose rate of 0.8 to 0.9 kGy/hr to a total dose of 0.60 MGy.

• Appendix A of IEEE Std. 323-1974 provides guidance on the time dose 

signature of a PWR LOCA. The dose rate during the first hour is 40 kGy/hr and 

for the next eleven hours 15 kGy/hr. After 30 days the total dose delivered is 

0.55 MGy and the rate has dropped to 0.31 kGy/hr. The total dose after 6 

months is 1.1 MGy and the total dose required after one year is 1.5 MGy and 

the final dose rate is 0.09 kGy/hr. Two thirds of the total LOCA dose is 

delivered at 0.12 kGy/hr over an eleven month period. 
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Inverse Temperature Behavior 

Mechanistic Variations with T

• Anomalous aging effect in temperature-radiation environments

• Observed for various crosslinked polyolefin materials (cable insulation) 

• Reflects mechanistic variations in degradation mechanism 
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M. Celina, K. Gillen, J. Wise, R. Clough, Radiat. Phys. Chem., 48 (1996) 613
M. Celina, K. Gillen, R. Clough, Poly. Deg. Stab., 61 (1998) 231

• Radiation + thermal environments 

at similar dose rates

• 30 Mrad is sufficient for significant 

embrittlement at RT (compare with  

LOCA test of 150 Mrad at high T)

What is the reason that lower temperatures show faster aging?

Inverse temperature behavior

Accelerated aging does not predict 

low temp + dose rate behavior
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Scission versus Crosslinking

• Elevated temp aging could not predict low temp degradation

• Competition between scission and crosslinking

• Crosslinking is only active for high T aging

• Faster aging at lower temperature (scission dominated)

annealing

24h at 140°C
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Mechanistic Aspects

Temperature [°C]
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• Correlation of oxidation level with mechanical failure depends on T

• More oxidation chemistry develops in material at lower T

The critical chemistry level for equiv. damage drops with T,  

also less volatiles are being generated

25°C 40°C 60°C 80°C 95°C 110°C

Ox. rate at 38 Gy/h [mols/g/Gy] 1.40E-09 1.10E-09 1.30E-09 1.90E-09 2.90E-09 3.60E-09

Est. ox. rate at 100 Gy/h [mols/g/s] 3.90E-11 3.10E-11 3.60E-11 5.30E-11 8.10E-11 1.00E-10

DED (100% elo.) at 100 Gy/h [Gy] 1.70E+05 2.10E+05 4.70E+05 4.00E+05 2.30E+05 2.00E+05

Time to 100% elongation [h] 1.70E+03 2.10E+03 4.70E+03 4.00E+03 2.30E+03 2.00E+03

Oxidation at surface [weight %] 0.76 0.74 2.00 2.40 2.10 2.30

Low T chemistry  ≠ high T chemistry, impact on mech. properties (morphology!)
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Less volatiles at 

low temperature



Extrapolation to Low Dose Rates?

Dose rate [Gy/h]
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Question: Where is the transition to thermal dominated degradation at 

very low dose rates? How to predict lifetimes?

Dose rate dependence needs to be deconvoluted

and its origin better understood 

?

Apparent dose rate effects in accelerated rad-thermal aging due to: 

Thermal degradation aspects, inverse temperature behavior, DLO, and 

changes in chemistry pathways (hydroperoxide contributions)
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Basic DED and TED Models (Theory)

Tf:  thermal damage component to failure [mol/g]

kT:  thermal oxidation rate [mol/g-s]

Rf:  radiative damage component to failure [mol/g]

kR:  radiative oxidation rate [mol/g-Gy]

tf:  time to failure under combined environments [s]

γ’:  dose rate [Gy/s]

γf:  total dose to failure [Gy]

Cf:  critical oxidation to failure [mol/g or % oxidation]
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(DED - dose to equivalent failure) (TED - time to equivalent failure)

Parallel processes for thermal and radiation induced degradation

This approach allows for theoretical aging trends to be established

• Ideal model disregards DLO, dose rate effects, inv. temperature behavior
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Model for primary degradation chemistry

Gillen KT, Clough RL. Time-temperature-dose rate superposition: a methodology for extrapolating 

accelerated radiation aging data to low dose rate conditions. Polym Degrad Stab 1989;24:137



Basic DED and TED Models 

• Model for Ea=80 kJ/mol for thermal degradation

• Model assumes regular aging behavior with a single thermal Ea 

• Model can be modified with additional parallel processes for dose rate 

effect and changes in critical oxidation level with temperature 

Visualization of transitions between thermal and radiation process

Without thermal process, DED would be independent of dose rate
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XNPP aging?

~ 30Mrad?



• Aging process is expected to be similar at all conditions

• Fast aging trends (accelerated aging) could be used as calibration

• Condition should be established based on partial aging state

Relationship between aging parameter 

(tensile or elasticity) and CM degradation 

variable from accelerated aging

Predict ambient aging processes 

and remaining margin 

CM approaches require consistent relationship between aging state 

and multiple material parameters, independent of aging environment 

CM method: 

OIT, indenter, torsion, surface C=O, 

gel/uptake, dielectric, etc.
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Polymer Degradation Principles also 

Feed into Condition Monitoring



R&D Summary

Meaningful aging studies should be carefully planned and incorporate 

existing knowledge based on polymer degradation principles
21

• Cable insulation (polymer) aging is complex

• Oxidative aging much worse than inert irradiation, 

• O2 penetration dynamics into the jacket/insulation during aging is 

critically important (accelerated versus ambient)

• Material physics as important as degradation chemistry

• Identified issues with many parallel efforts in the community

• Important areas:

• DLO, inert temperature behavior, and deconvolution of combined 

thermal-radiation aging

• Intrinsic limits in the value of predictive aging experiments all the 

way to misguided interpretation of data

• CM approaches should rely on appropriately aged cable 

specimens
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• Consider cable insulation not only as materials but also as 

polymers (much has been learned over the last 50 years)

• Dependent on design needs, qualify new materials also for 

low T/low dose rate conditions (extended exposure)

• Consider temperature and radiation, also moisture as 

convoluted parallel aging environments 

• Embrace feedback from polymer degradation science, fast 

versus slow aging, mechanism etc.

• New materials have been designed, their extended aging is 

less well understood 

• 50 year cable use in NPP also offers a tremendous resource 

to refine our understanding

Recommendations



Backup Slides

Some references used in USA 

R&D efforts on cable ageing
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Publications 1980’s
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Publications 1980’s

Accomplishments:  Recognition of mechanistic pathways 

and aging complexity

25

• What was recognized?

• Definition and importance of environment variables: Oxygen, 

Ozone, Radiation, Thermal

• Importance of O2 in LOCA

• Apparent dose rate effects

• Beginning of kinetic models and evidence for aging heterogeneity

• Modulus profiling
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1991.
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Publications 1990’s
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Accomplishments:  Foundation to describe DLO and 

inverse temperature phenomena for rad-thermal situations

• What was recognized?

• Model development for Diffusion Limited Oxidation (DLO)

• Distinguish inert versus oxidatively driven degradation 

• Description of polymer degradation based on ‘chemistry’ 

within a theoretical mathematical framework

• Aging complexity due to polymer morphology

• High dose rate irradiation is not predictive



Publications 2000’s
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Gillen KT, Celina M, Bernstein R. Review of the ultrasensitive oxygen consumption method for making 

more reliable extrapolated predictions of polymer lifetimes. Ann Tech Conf Soc Plast Eng 2004;62:2289.

Gillen KT, Bernstein R, Clough RL, Celina M. Lifetime predictions for semi-crystalline cable insulation 

materials: I. Mechanical properties and oxygen consumption measurements on EPR materials. Polym

Degrad Stab 2006;91:2146.
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• Better characterization of polymer oxidation reactions

• Better understanding of semi-crystalline material behavior

• Development of principles for successive aging exposure  

Accomplishments:  Mechanistic pathways feeding into 

wear-out aging and condition monitoring (NEPO report)
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Reviews and guidance from polymer aging direction


