

The application of AI for CO2 capture in waste CHP plants

Beibei Dong

Ph.D. candidate

29th May 2024

Contents

- 1. Background
- 2. Prediction of flue gas by using AI
- 3. Dynamic modelling of CO₂ capture by using AI
- 4. Rule-based CO₂ capture operation in waste CHP plants

Background

Swedish climate goal: net-zero GHG emissions by 2045

- Bioenergy with carbon capture and storage (BECCS)¹
- Biomass/waste CHP plants²

A program from Swedish Energy Agency:

Contribute to the energy transition through research, innovation and business development in digitalization

Project title

• Al assisted CO₂ capture in biomass CHP plants

<u>Funding</u>

Swedish Energy Agency

Project leader

• Hailong Li

Objectives

The project aims to develop AI assisted solutions to optimize and control the dynamic operation of CO₂ capture and its integration in CHP plants. Such solutions are expected to increase CO₂ emission reduction and reduce the energy penalty and cost of CO₂ capture.

Collaboration partners

• Industry: Stockholm Exergi, Mälarenergi, Eskilstuna Strängnäs Energi och Miljö

Government Offices of Sweden. Ministry of the Environment, 2020. Sweden's long-term strategy for reducing greenhouse gas emissions. Johnsson F., 2019. Avskiljning, transport och lagring av koldioxid i Sverige Behov av forskning och demonstration. Institutionen för Rymd-, geo-, och miljövetenskap, Avdelningen Energiteknik.

Challenges

- Larger fluctuations of flue gas
 - Versatile biomass/waste
 - Dynamic heat demand
- Slow response of CO₂ capture to fluctuations
- It is important to predict the flue gas flowrates and compositions.

Advantages of AI models

- Transformer: a new AI model, parallelization, larger datasets, multi-head self-attention mechanism
- Long short-term memory network (LSTM): sequence processing over long periods
- Artificial neural network (ANN): a traditional AI model for comparison

Feature selection -- meteorological parameters

Shapley values determine the contribution of input features to the prediction.

Input features

- Meteorological parameters
 - Wind speed
 - Dewpoint temperature
 - Ambient temperature
 Direct horizontal irradiance (DHI)
- Near-infrared (NIR) spectral data

Prediction when NIR is not included as input

When NIR is not included as an input:

- Input: ambient temperature and DHI
- Output: flue gas flowrate and CO₂%
- Time span: 2019.1.1-2021.12.31 (Time resolution: 1 hour)

Evaluation indicators

Mean absolute percentage error (MAPE): $MAPE = \frac{1}{q} \sum_{p=1}^{q} \left| \frac{y_p - \hat{y}_p}{y_p} \right|$ (1)

Prediction performance of different AI models

Performance	Al models	Flue gas CO ₂ %	Flue gas flowrate
MAPE	Transformer	0.0189	0.0318
	LSTM	0.0221	0.0368
	ANN	0.0289	0.0386

Prediction when NIR is included as input

When NIR is included as an input:

- Input: ambient temperature, DHI, and NIR data
- Output: flue gas flowrate and CO₂%
- Time span: 2019.11.1-11.3, 2020.1.16-3.25 (Time resolution: 1 minute)

Influence of NIR spectral data:

Prediction performance of Transformer

MAPE	Flue gas CO ₂ %	Flue gas flowrate
NIR is not included	0.0158	0.0141
NIR is included	0.0157	0.0121

NIR is included

The influence of NIR may be restricted by the amount of available data.

Flowsheet of MEA-based chemical absorption CO₂ capture

Physical dynamic models of CO₂ capture

- Software: Aspen HYSYS Dynamics
- Model development and operation: time-consuming
- Difficulty in online control and optimization

Surrogate models (relate input data to output data)

- Simulation by physical models
- Simplified approximations by AI models

Depending on actual applications, different AI models can be developed with different inputs and outputs.

<u>Application 1</u>: to predict the response of CO_2 capture when facing multiple variations.

- Input: flue gas flowrate, CO₂vol%, solvent flowrate, available heat
- Output: CO₂ capture rate, energy penalty
- AI model: Informer

<u>Application 2</u>: to estimate CO_2 capture amount in CHP based on flue gas and available heat (by optimization).

- Input: flue gas flowrate, available heat
- Output: CO₂ capture amount
- AI model: Back-propagation neural network

<u>Application 3</u>: to control the operation of CO_2 capture in CHP at a given capture rate by adjusting flue gas and available heat from CHP.

.

Optimization: to maximize economic benefit (it is assumed that heat generation is unchanged.)

Objective function = electricity revenue - carbon trading - fuel costs

 $= \max(\sum_{i=1}^{24} (Ele_i \times price_{ele,i} - m_{was,i} \times price_{was}) - m_{traded \ CO_2} \times price_{carbon \ trading})$

Challenge:

- The trading of CO₂ is on a yearly basis.
- The heat demand and electricity prices vary hour by hour.
- It is impossible to do a yearly optimization.

Question: how should we decide when to capture CO₂ to reduce the yearly cost?

• The marginal cost of CO₂ capture (MC) is proposed, and it is estimated as the economic loss due to the operation of CO₂ capture.

 $MC = \frac{dC_{cc}}{dm_{CO2,cap}} \qquad C_{cc} \text{ is the total cost of } CO_2 \text{ capture; } m_{CO2,cap} \text{ is the amount of captured } CO_2.$

- The cost due to reduced electricity generation and increased fuel consumption is included;
- It varies dynamically with the heat demand and electricity price.
- The principle for formulating rules is CO_2 capture system operates at a lower MC.
 - > When MC is lower than MC threshold, CO_2 capture system operates.
 - > When MC is higher than MC threshold, CO_2 capture system doesn't operate.
- There are two ways to determine the MC.
 - ➢ Hourly MC
 - Monthly average MC

EU Emissions Trading System (EU ETS)

- <u>The trading of CO₂ is on a yearly basis</u> -- Annual compliance cycle.
 - Receive free allowances
 - Submit an annual emissions report
 - Surrender an amount of allowances corresponding to the emissions before the deadline, otherwise, a heavy fine
 - If CO₂ emissions < free allowances, excess allowances can be sold;
 - If CO₂ emissions > free allowances, additional allowances must be purchased.
- <u>CO₂ trading for waste-CHP plants</u>
 - > It only includes fossil CO_2 (CO_2 captured from the fossil fuel), and negative emission hasn't been included in EU ETS.
 - Waste-CHP generate both fossil and biogenic emissions.
 - If generated fossil CO₂ captured CO₂ > free allowances,

allowance purchase = generated fossil CO_2 – captured CO_2 – free allowances;

If 0 < generated fossil CO₂ - captured CO₂ < free allowances,

allowance sell = free allowances + captured CO₂ - generated fossil CO₂;

- If generated fossil CO₂ captured CO₂ < 0, *allowance sell = free allowances*;
- If generated fossil CO_2 captured CO_2 = 0, *MC* threshold = *MC* (generated fossil CO_2 = captured CO_2). For a case study of a waste-CHP plant,
- the fossil share of waste fuel is assumed as 45%.
- the free allowances received is 71.40 ktonCO₂ in 2022.

Rule 1: based on hourly marginal cost

- 1. Calculate marginal cost and plot its duration curve;
- 2. Plot the accumulated captured CO₂;
- 3. Determine the break-even point that all fossil CO_2 is captured (MC_{fos}), which is the threshold of marginal cost;
- 4. Rules: if real-time marginal cost is below MC_{fos} , CO_2 is captured; otherwise, not.

Rule 2: based on monthly average marginal cost

- 1. Calculate average marginal cost for each month;
- 2. Calculate the accumulated captured CO₂ amount for each month;
- 3. Find those months with lower *MC*, in which accumulated captured CO₂ is equal to all fossil CO₂;
- 4. Rules: CO₂ capture system only operates in the identified months.

Al models are to estimate CO₂ capture amount (output) in CHP based on flue gas and available heat (input).

Rule 1

Using the average marginal cost of 2019-2022

MC_{fos, average} = 29.43 €/ton CO₂

Capture limit: Fossil CO₂ emission (average): 214 kton/year

Advantage: Always capture CO₂ at low marginal cost Challenges: Could result in intermittent operation

MC: marginal cost of CO₂ capture.

Rule 2

Determining months based on 2019-2022

Capture limit: Fossil CO₂ emission (average): 214 kton/year Operation: Apr - Nov

Advantage: continuous operation for months Challenges: Could capture CO₂ at high marginal cost

Breakdown of total revenue

Revenue of trading is calculated based on real price: Carbon trading price (2019): 25.05 €/ton Carbon trading price (2020): 24.06 €/ton Carbon trading price (2021): 52.70 €/ton Carbon trading price (2022): 81.41 €/ton

Breakdown of capture cost streams

Captured CO₂ and CO₂ capture ratio

Comparison of CO2 trading

Mass balance approach to estimate the fossil CO₂ emission

- The waste fuel comprises an average of 45% fossil carbon by mass. So, for each unit CO₂ emission, 55% is biogenic CO₂ and 45% is fossil CO₂.
- To improve accuracy, a more detailed analysis of fossil carbon content may be required.

An efficient and flexible CO₂ capture integrated in biomass/waste CHP plants contributes to the Swedish climate goals and the development of renewable energy system.

Current applications of AI

- By employing ambient temperature, direct horizontal irradiance, and NIR data as inputs, it was found that the MAPE of Transformer is 1.57% and 1.21% for the prediction of flue gas CO₂% and flue gas flowrates.
- For dynamic CO₂ capture, depending on actual applications, different surrogate models can be developed with different inputs and outputs (such as prediction and control) by using AI.
- The marginal cost of CO₂ capture is used to find the optimal operation of CO₂ capture in CHP based on AI models.

Potential applications of Al

- Prediction of carbon price
- Model predictive control of CO₂ capture
- Non-linear modelling of CHP

Thank you!

Hailong Li hailong.li@mdu.se Eva Thorin eva.thorin@mdu.se Beibei Dong beibei.dong@mdu.se