Robustness indicators for power systems

Emil Hillberg Tommie Lindquist RISE – Research Institutes of Sweden

GINO annual seminar 2024 12 November 2024

- We are a **state-owned** company with nearly 3,300 employees who contribute to transforming knowledge from research into new products and services.
- Our mission is to work with our customers and partners to develop **competitive solutions** that drive **sustainable development** forward.
- With our **unique breadth** and collective expertise, we can take a systemic perspective on complex sustainability issues.
- In our more than 130 test beds, products and processes of the future can be tested and scaled up.

SEK million, net sales Operating results: 22 SEK million Operating margin: 0,6%

Agenda

- 1. Project background
- 2. Reliability, Resilience, and Robustness
- 3. Robustness indicator types
- 4. Robustness indicator: frequency extremes
- 5. Robustness indicator: inertia correlation
- 6. Robustness indicator: transfer corridor unavailability and utilization rate
- 7. Main conclusions
- 8. Proposals for future studies

Please observe! Blue text are instructions that should be removed as the template is filled in. Write a short and concise till that in a direct manner communicates the reports content. If the tilt is is too long there is space for a subtile inside the report. Energiforsk reserve the right to change the till if found to be necessary to facilitate communication and distribution of the results.

REPORT [Click and type]

Project background

Has the ROBUSTNESS of the Nordic power system decreased?

- The Nordic power system is undergoing significant transformation, driven by
 - global energy transition
 - electrification
 - European market integration
 - → Escalated strain = decreased Robustness?
- Robustness indicators can provide information of how grid properties develop over time
- Challenge to find indicator to quantify general robustness

Project background

Has the ROBUSTNESS of the Nordic power system decreased?

- Project focus
 - What is Robustness?
 - How can robustness indicators be developed?
 - Can open data be used to quantify robustness?

What is Robustness?

Reliability, Resilience, and Robustness

concepts which describe functionalities of the power system

How can robustness indicators be developed?

8

Robustness indicator types

Robustness indicator: frequency extremes

addressing risk of extreme frequencies

- Locality: Global
- Lag: based on historical data
- Lead: utilising forecasts
- Existing method: based on inertia

Robustness indicator: inertia correlations

to understand the impact on different variables in various time resolutions

- Time frame: >years
- Locality: global and regional
- Lag: based on historical data
- Complexity:
 multifaceted assessment

Correlation parameters:

- production per generation type
- actual load
- cross-border flow
- transmission unavailability
- generation unavailability
- day ahead spot price

	Transmission unavailability: Data before 2022														
-	0.236	0.425	-0.033	0.315	0.097	0.244	0.361	0.080							
-	0.289	0.531	-0.040	0.408	0.122	0.329	0.461	0.079							
-	-0.024	-0.034	-0.003	-0.067	0.019	-0.074	-0.045	0.056							
-	-0.011	-0.017	0.000	-0.016	-0.012	-0.016	-0.012	-0.019							
-	0.037	0.031	-0.002	0.023	-0.007	0.006	0.010	0.030							
	SE1-SE2	SE2-SE3	SE3-SE4	SE1-NO4	SE1-FI	SE2-NO3	SE3-NO1	SE3-FI							

Robustness indicator: transfer corridor unavailability and utilisation rate

addressing grid adequacy and use

- Locality: regional
- Lag: based on historical data
- Super positioning in two dimensions

Robustness indicator: transfer corridor unavailability and utilisation rate Dimension 1: Transfer corridor Unavailability

- 100%: *NTC* = 0 MW all the time
- 0%: NTC = NTC_{max} all the time

RISE - Research Institutes of Sweden

13

Robustness indicator: transfer corridor unavailability and utilisation rate Dimension 2: Transfer corridor Utilisation Rate

- 100%: all of the NTC is needed, all the time
- 0%: no power transfer is needed during that time period

Robustness indicator: transfer corridor unavailability and utilisation rate Combined robustness indicator

- More than 90% of the transfer corridors in the Nordic Power System (weighted by their respecitve NTC_{max}) are showing signs of decreasing robustness
- No transfer corridor is showing any sign of an increasing robustness
- In summary, the proposed Robustness Indicator clearly shows that the Nordic Power System has on average, become less robust during the studied time period of 2015 – 2023

Main Conclusions

Global and regional robustness indicators using open data, focusing on :

- Frequency
- Inertia
- Transfer corridors

• Frequency extremes

By analysing the relationship between kinetic energy and frequency deviations potential risks may be identified. Frequency robustness is a relevant indicator for anticipating system responses to disturbances, especially in low-inertia situations.

• Inertia correlation

The study of inertia correlations with variables such as power generation, load, cross-border flow, production and transmission unavailability, and electricity spot prices, highlights how system inertia fluctuates over time. This correlation-based approach provides an overview of the factors affecting stability and resilience.

• **Transfer corridor unavailability and utilisation rate** Analysing the combined impact of unavailability and utilization rates, a trend toward decreased robustness within the Nordic power system have been identified.

• Maintenance and cancelled outages

The rising trend of cancelled planned outages may signal a maintenance backlog, potentially affecting long-term system reliability. While public data limitations prevent definitive conclusions on this issue, the potential of detrimental impact by delayed maintenance on system robustness could be severe.

Proposals for future studies

Expansion

- Address local robustness
 indicators
- Requires some proprietary data
- Correlate site-specific statistics with global and local measurements

Further improvement

• Enhanced Correlation Analysis

Time-segmented analyses of time-series data could identify extreme values in correlation factors, which could reveal rapid fluctuations and periods of unavailability

• Broader Scope of Analysis

Expand the analysis to include hydro power generation impact in Norway and assess how mitigation strategies and control unit limitations affect frequency extremes

- Assessment of Maintenance Backlog
 Investigating the possibility of a rising maintenance back-log
 that could affect future grid reliability, by probabilistic methods
- **Refinement of Composite Robustness Indicators** Tracing the robustness indicators over time would provide valuable insights. Investigating the uncertainty within these indicators would enhance the reliability of conclusions drawn from robustness assessments

×	×	×	×	×	×	×	×	×	×	×	×	×	×	× ×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	× ×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	× ×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	× ×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	RI	SE	×	t	68	am	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	× ×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	× Em :	il.	Hi	114	ber	ġ	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	Tomm	ie	Ľi	nd	qu	ist	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	× × E	ril	k [×] W	lei	hs	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	× ×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	Gust	aţ	₿e	eng	ts	sor	ר _×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	× ×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	× ×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

RISE Research Institutes of Sweden Electric Power Systems