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Federated Learning
A collaboration on anti-money laundering



Agenda

• The anti-money laundering (AML) problem

• Our holistic pipeline to attacking the AML problem

• Synthetic data

• Federated Learning
• Requirements 

• Challenges

• Opportunities 

• Preliminary results



The Money Laundering Problem

UN estimates €1.87 trillion laundered annually

Significant resources are spent on AML

High false-positive rate, estimated at ~98%

In 2019, 58 cases of AML penalties 
total fines: $8.14 billion.

Want to identify these!
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A typical AML pipeline17

17 F. Johannesen and M. Jullum., ”Finding Money Launderers Using Heterogeneous Graph Neural Networks",  arXiv:2307.13499, 2023
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The Global Transactional Network

Banks are blind to what happens outside the local transaction network!



We ask ourselves:

Can federated learning be used to collaborate between banks to detect money laundering?

How can we collaborate without sharing sensitive data?

How to federate the learning in practice?

How to create realistic synthetic transaction data?

What impact does unreliable data have?

Does performance improve by exploiting the inherent graph-structure in the data?

Can we use explainable AI to leverage deep learning?



Explainability

Central/Federated/Isolated 
Model Training

Feature engineering

Visualization

Introduce noise 
in the data

Create synthetic data

Automatic optimization of 
hyperparameters

A Holistic Pipeline

https://github.com/aidotse/flib



Synthetic Data



Synthetic Data: Engine18

18 M. Weber, et al., “Scalable Graph Learning for Anti-Money Laundering: A First Look”, arXiv1812:00076, 2018
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Synthetic data



AMLsim
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Synthetic Data: Boosting Fidelity



Federated Learning



Local training

• dataset may be small

• dataset remain confidential

server

Data

Data

Data

Data

Data

local training

central trainingmetric

training rounds

Central training

• Larger pool of data

• Data privacy violated

server Data

Data

Data
Data

Data

Federated training

• Larger pool of data

• dataset remain confidential

Federated Learning



step 1: agree on architecture

step 2: local training

step 3: collect and aggregate local models step 4: broadcast the aggregated model to banks and repeat

local model

Federated Learning



Federated Learning
in practice



Requirements 

• Infrastructure
• Central server

• Clients with computational power 

Flower

• Alignment on data structure

• People 
• Domain knowledge

• Machine learning



Challenges

• Heterogenous data 
distributions 

• Privacy concerns

• Exposing the model to more data 

• Better performance 

• Better generalization

Opportunities



Results



Preliminary experiments

Centralized

Federated

Isolation



Thank you!
Edvin Callisen

Research Engineer, AI Sweden 

edvin.callisen@ai.se
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