
Hydrogen aviation (Vätgasflyg)

contributing to decarbonisation of the aviation segment

Hydrogen production Hydrogen logistics Infrastructure Hydrogen storage Weight Combustion process (Turbine) Heat rejection (Fuel Cell)

Hamburg Airport goes for hydrogen

Source:

https://airportinfo.com/hamburg-airport-goes-for-hydrogen/

Hydrogen aviation (Vätgasflyg) contributing to decarbonisation of the aviation segment Fueling the Future: Key Catalysts for Expanding Hydrogen Fuel Cell Deployment Fuel Cell Andreas Bodén, PowerCell Group **Fuel Cell** Advancing Hydrogen Electric Propulsion: Insights from the H2GEAR Project LH₂ Simon Taylor, GKN Aerospace Hydrogen aircraft of the future: Technology, potential and performance H₂-turbine **Thomas Grönstedt**, Chalmers University of Technology Fossil-free airplanes with liquid hydrogen - experiences from Umeå Airport LH₂-infra Anders Lundblad, RISE, John Nilsson, Swedavia

Can hydrogen power all aviation in Sweden?

Yes.

SWEDISH PERSPECTIVE

SUSTAINABLE AVIATION FOR SWEDEN -TECHNOLOGY & CAPABILITY ASSESSMENT TARGETING 2045 1

Christopher Jouannet, Ingo Staack, Tomas Grönstedt, Xin Zhao, Petter Krus, Anders Lundbladh, Björn Nagel

Out from the daily demand, 25 flight routes represent 70% of the total flight demand. Those 25 routes are based on 10 cities, Stockholm, Malmö, Gothenborg, Umeš, Luieš, Romeby, Ängelholm, Växjö, Åre and Skellefeks, illustrated in Figure 2: It should be noted that the point-to-point demand below eight daily passengers represent ca. 12% (1.166 out of 9.545 passenger) of the total daily passenger demand.

SWEDISH PERSPEC1 SUSTAINABLE AVIATION FOR SWEDEN -T

Christopher Jouannet, Ingo Staack, Tomas Grönstedt, Xi

Swedish demand is particular many low passeng 9 and 19 pax aircraft would represent a large nun flights

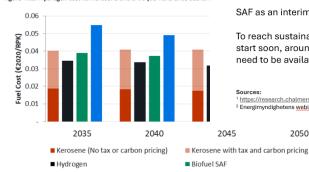
No single technology will realise the demand

SAF as an interim solution and longer distances

² Energimyndighetens webinarium Fossilfrittflyg 2045, 2023-01-13, presentation

need to be available now or really soon ...

1 https://research.chalmers.se/en/publication/533677


2050

To reach sustainable aviation by 2045 a fleet replacement must

start soon, around 2030. Means that many of the technologies

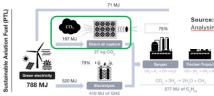
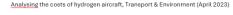

DIFFERENT TECHNO Hydrogen has a good potential (direct combustio COMPARASION OF NEW TECHNOLOGIES Hydrogen creation and distribution are key challe technical challenges

Figure 4.13: Hydrogen cost vs. kerosene and SAFs (EU Reference Scenari

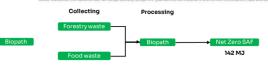
Source: IATA, Ricardo, TUHH, Doig + Smith, Steer analysis

eFuel SAF

79%

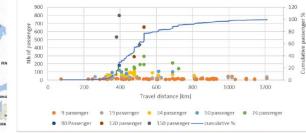

33 MJ

DIFFERENT TECHN(


COMPARASION OF HYDROGEN AND SA

#

218 MJ



Sources: 1 https://research.chalmers.se/en/publication/533677

Passenger/km and aircraft type no network

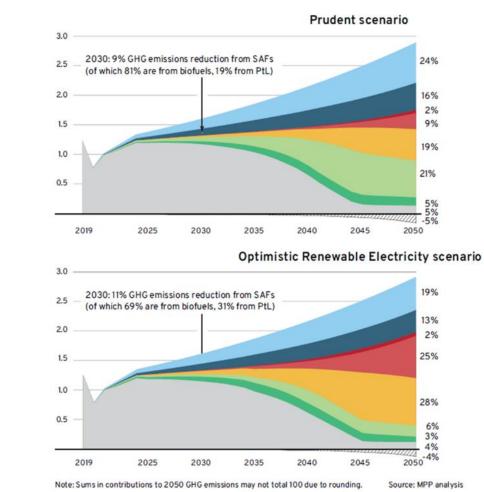
Figure 1: Passenger kilometre and hypothetical associated aircraft type based on point-to-point service

PowerCell Group | Hydrogen electric solutions

9	4						
10				44	48	A/C Capacity	Total
19			18	6	24	9	48
34			30	8	38	19	18
50		8			8	34	14
76			78		78	50	10
90		2			2	76	2
120		2			2	90	10
150		0			0	120	16
Total	4	12	126	58	200	150	33

up | F Q

PowerCell Group | Hydrogen electric solutions



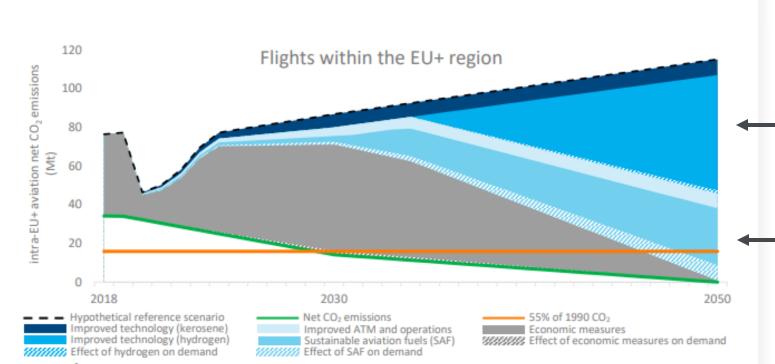
Sources

Hydrogen forecasted to be fuel for 33 - 40% of global aircraft fleet in 2050 ¹

Hydrogen could by 2050 depending on scenario enable 9-25 % of total GHG emissions reduction in aviation ²

Share of fleet estimated to be replaced by fuel cells by 8 % @ 2035 & 16 % 2040 ³

Continued historical fuel efficiency improvements	Additional fuel efficiency improvements	Hydrogen Battery- electric	Power- to-Liquids	Other biofuels	HEFA	Unabated	Carbon dioxide removal (CDR)
---	---	-------------------------------	----------------------	-------------------	------	----------	---------------------------------------

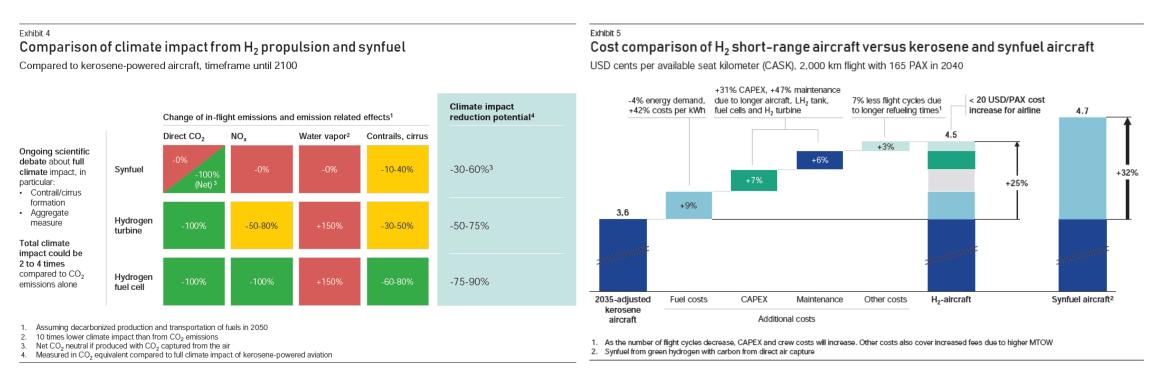

Sources:

1: Decarbonizing the aviation sector: Making net zero aviation possible (McKinsey & Co, 2022)

2: Making net-zero aviation possible. An industry-backed, 1.5°C-aligned transition strategy (2022)

3: Hydrogen Powered Aviation, 2020 - a fact-based study prepared by McKinsey & Company for the Clean Sky 2 JU and Fuel Cells and Hydrogen 2 JU

Intra-EU² only. Modelled for 2030 and 2050, the impacts are linearly interpolated. The base year for this study is 2018.


Non-drop-in fuels such as **Hydrogen**. Burning drop-in fuels results in low or net-zero CO₂ emissions whilst burning zero-carbon hydrogen results in CO₂-free emissions.

Sustainable Aviation Fuels (SAF) are categorised into net carbonneutral drop-in fuels such as synthetic or bio-fuels

Hydrogen used in turbine or electric flight using fuel cells,

have lower climate impact and lower cost compared to synthetic aviation fuels.


H₂URDLES

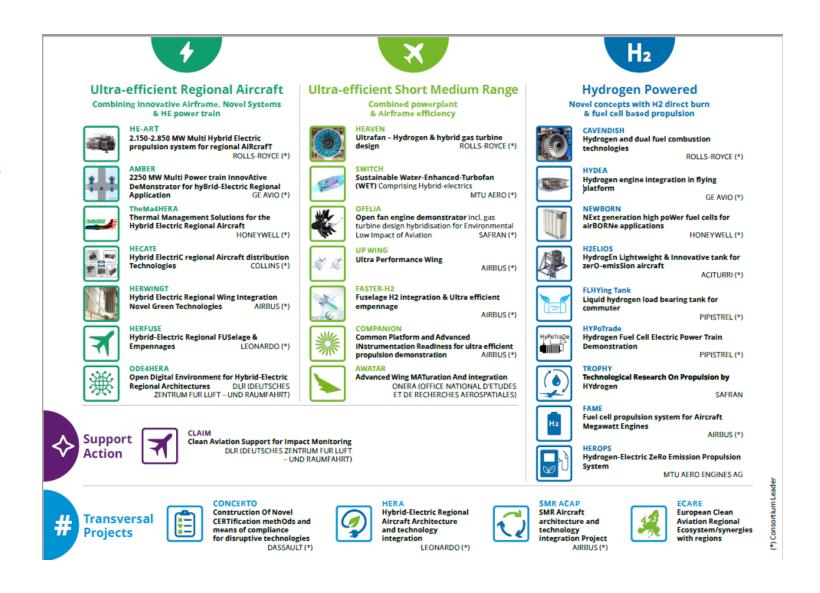
Hydrogen electric aviation with Fuel Cell is a good fit for commuter and regional aircraft

Hydrogen used in turbine is good for regional and short range aircrafts

Hydrogen storage, Weight, Combustion process (turbine), Heat rejection (Fuel Cell)

Target is Enter Into Service (EIS) by 2035

Clean Aviation Joint Undertaking phase 1


11/23 projects related to:

Hydrogen storage

Hydrogen turbine

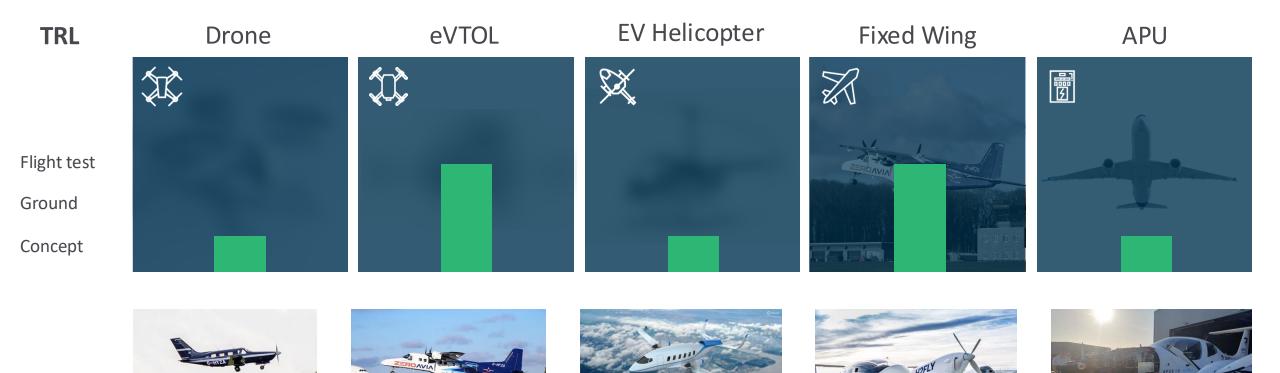
Fuel Cell

US, Japan, UK, etc.

NEWBORN

Fuel cell stack development and delivery

- Lower weight per kW (2-4 units of 300kW stack block)
- Reduced cooling need (higher operating temperature)


Efficiency	~49-60%			
Operating temperature	105 °C			
Fuel cell technology	PEM			
Power / Stack	Modular (range: 300 kW – 1 MW)			
Power density	>5 kW/kg			

Aviation Applications

EWBERN

CLEAN AVIATION

PowerCell Group