

Sensors – key component for safe and efficient use of hydrogen

David Nilebo, Business Manager, Insplorion 2024-12-11 Vätgaskonferensen

Insplorion in short

Based in Gothenburg, Sweden. 13 FTE

Public company listed on Nasdaq First North

Founded as spinoff from Chalmers University in 2010

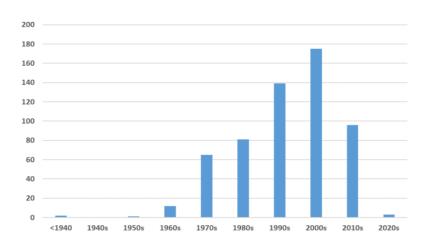
Core is Nano Plasmonic Sensing (NPS) Technology

Research Instruments

- Research instruments for measurements in gas or liquid
- More than 125 research articles published by our users

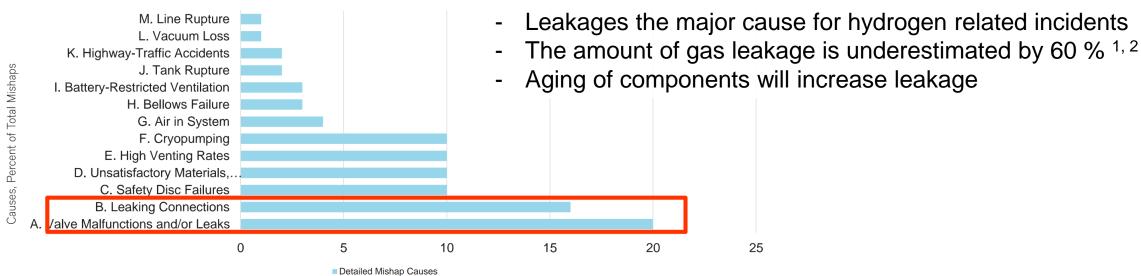
H₂ Sensors

- Fast & specific
- Flexible platform
- Optical readout
- Commercial prototype phase

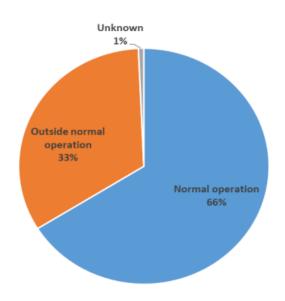

Hydrogen properties: A comparison

	Hydrogen Gas	Natural Gas	Gasoline	
Toxicity	None	Some	High	
Odor	Odorless	Yes (mercaptan)	Yes (benzene)	
Buoyancy Relative to Air	14X Lighter	2X Lighter	Vapor is 3.75X Heavier	
Flammable Range by volume in air	4-75%	5-15%	1.4-7.6%	
Autoignition Temperature (C)	585°	539°	232°	
Minimum Ignition Energy (mJ)	0.017	0.288	0.250-0.300	
Energy by Weight	2.8X > Gasoline	~1.2X > Gasoline	43 MJ/kg	
Energy by Volume	4X < Gasoline	1.5X < Gasoline	120 MJ/Gallon	

oxidizer

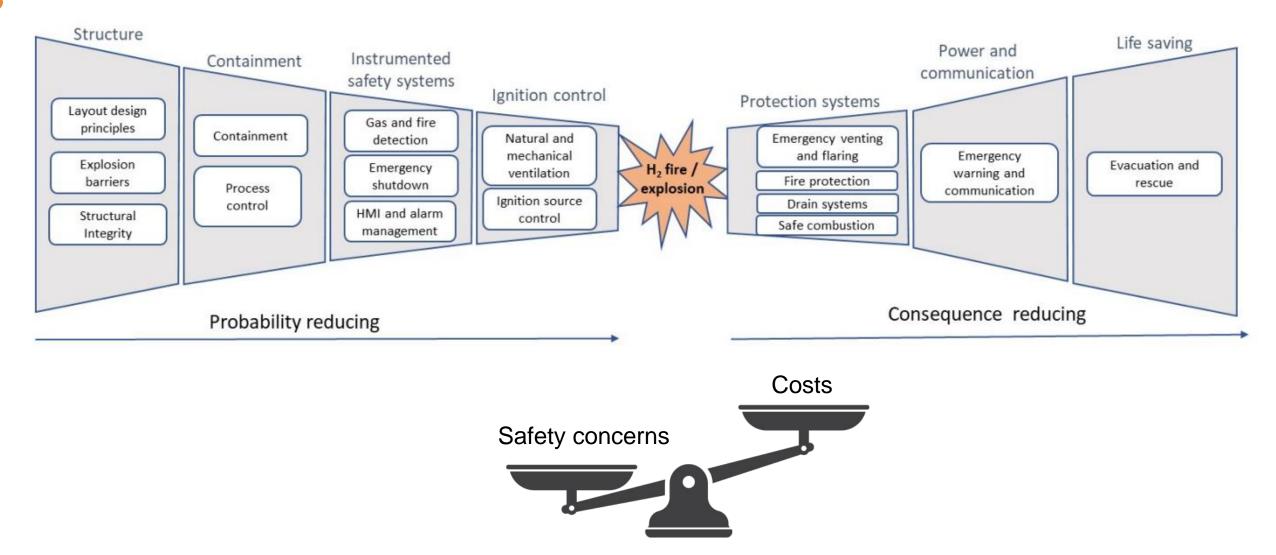

https://eec.ky.gov/Energy/Documents/Slides-Nick%20Barilo.pdf

Hydrogen incidents



Lessons learned from previous incidents

•



Source: Center of Hydrogen Safety 2019 Conference, NASA, WSTF | Data source: Factory Mutual

Statistics, lessons learnt and recommendations from the analysis of HIAD 2.0 database (2022) Alvarez, Ramón A., et al. "Assessment of methane emissions from the US oil and gas supply chain." Science 361.6398 (2018): 186-188. Lauvaux, Thomas, et al. "Global assessment of oil and gas methane ultra-emitters." Science 375.6580 (2022): 557-561.

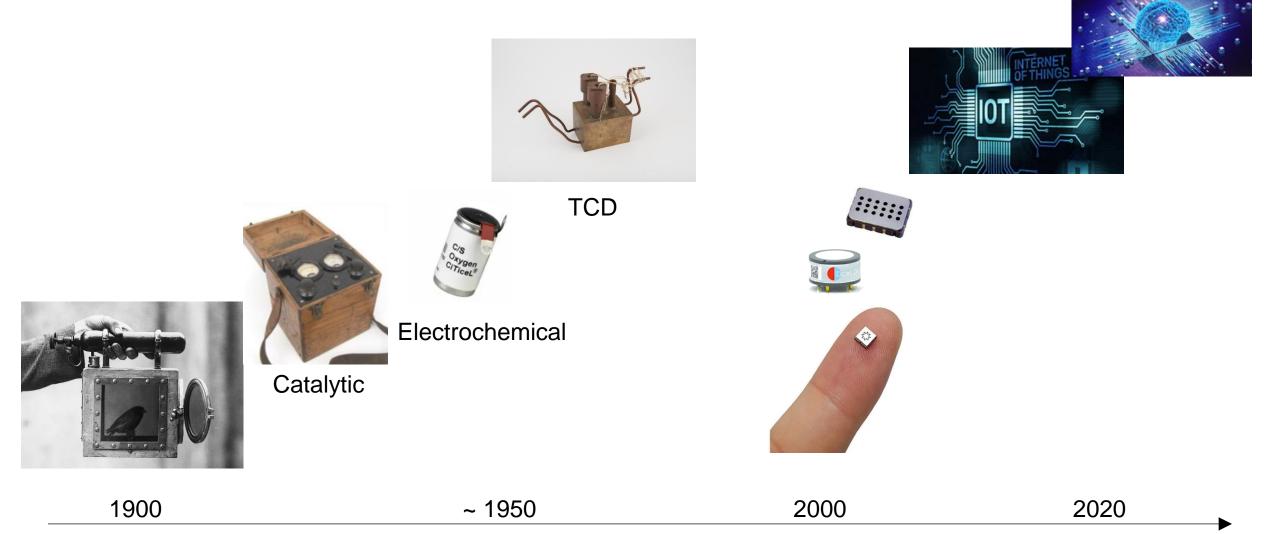
Hydrogen specific requirements to safety barriers

INSPLORION[©] Copyright 2024. All Rights Reserved.

•

Ref: Samdal, U. N., et al. "Hydrogen Safety Strategies and Risk Management in Equinor." (2021).

Safety


Accidents mean physical damage, to property and potentially human lives, financial damage, and setbacks in public perception.

Efficiency

Downtime and yield has direct effect on profitability.

INSPLORION[©] Copyright 2024. All Rights Reserved

Detection solutions

Leak detection tapes (passive)

Flame detectors

NSPLORION[©] Copyright 2024. All Rights Reserved.

New gas detection needs in the H2 industry

New industries are demanding:

- Increased safety concern
- Maximization operation efficiency
- Low weight
- Limited space
- Minimize impact on operating costs

New sensing needs

- Actual real-time data
- Limit any false responses
- Detection in **confined spaces**
- Operation in complex gas environments
- Autonomous operation, minimize calibration

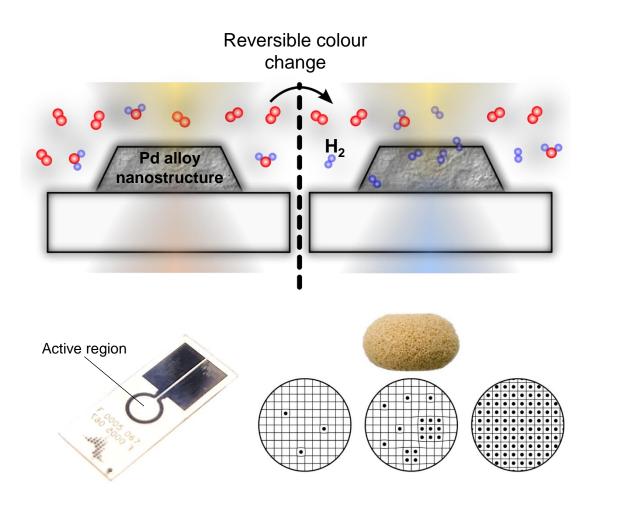
INSPLORION[®] Copyright 2024. All Rights Reserved.

State of the art H2 sensors

	Traditional sensors			
Sensor technologies Technical performance	Electro- chemical	Catalytic	тср	
Response time, t ₉₀	20 s	10-30 s	5 s	
O ₂ requirements	> 10 vol%	> 10 vol%	None	
H ₂ limit range	2 vol%	5 vol%	100 vol%	
Specificity H2	Low	Low	Low	
Recalibration routines	6-12 months	6-12 months	12-24 months	
Lifetime	1-3 years	2-5 years	2-5 years	

State of the art H2 sensors

	Traditional sensors			Emerging solutions		
Sensor technologies Technical performance	Electro- chemical	Catalytic	TCD	MPS	Pd thin film	
Response time, t ₉₀	20 s	10-30 s	5 s	20 s	30 s	
O ₂ requirements	> 10 vol%	> 10 vol%	None	> 15 vol%	None	
H ₂ limit range	2 vol%	5 vol%	100 vol%	4 vol%	100 vol%	
Specificity H2	Low	Low	Low	Low	High	
Recalibration routines	6-12 months	6-12 months	12-24 months	None	None	
Lifetime	1-3 years	2-5 years	2-5 years	> 5 years	> 5 years	



State of the art H2 sensors

	Traditional sensors			Emerging solutions		
Sensor technologies Technical performance	Electro- chemical	Catalytic	TCD	MPS	Pd thin film	Insplorion NPS
Response time, t ₉₀	20 s	10-30 s	5 s	20 s	30 s	1 s
O ₂ requirements	> 10 vol%	> 10 vol%	None	> 15 vol%	None	None
H ₂ limit range	2 vol%	5 vol%	100 vol%	4 vol%	100 vol%	100 vol%
Specificity H2	Low	Low	Low	Low	High	High
Recalibration routines	6-12 months	6-12 months	12-24 months	None	None	None (target)
Lifetime	1-3 years	2-5 years	2-5 years	> 5 years	> 5 years	10 years (target)

Insplorion NPS sensor technology

Highly specific to H_2 detects H_2 in presence of other gases

Fast response enables quick action

Low oxygen environments

Able to measure in reduced oxygen environments

Optical readout - sensor can be separated from electronics

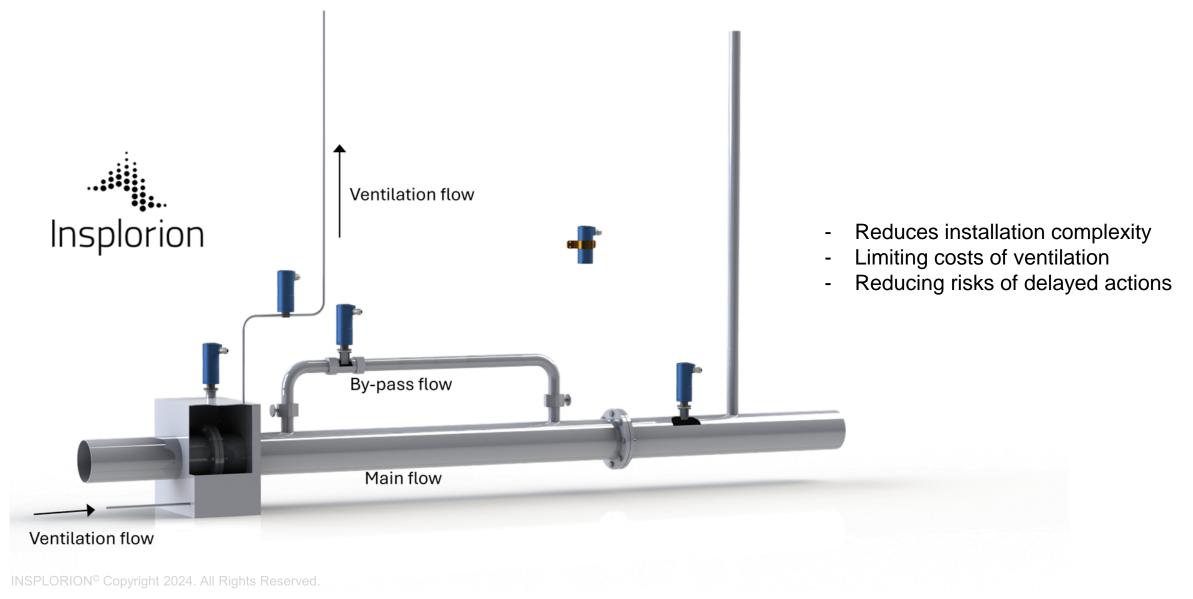
•

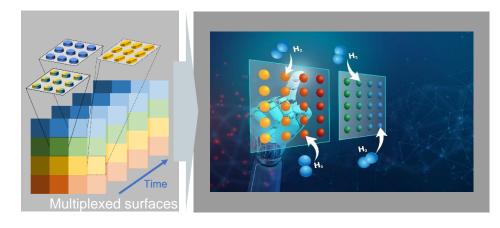
Insplorion NPS-P2 hydrogen detector

Primary applications:

- Confined spaces
- Inerted systems
- Ambient air

Offering:


- Fixed detection by diffusion/in-line sampling
- Ultrafast detection of leakages
- Small form factor


Enable safe and efficient usage of hydrogen

Research in NPS based H2 sensing

- "Worlds fastest H2 sensor" (2019)
- H2 detection over 7 order of magnitudes in pressure (2021)
- Sub ppm H2 detection limit (2022)
- 3D printed plastic H2 sensor (2023)
- Accelerated H2 sensing by 40 times (2024)
- Al to enable operation in complex gas environments (2024)

Nugroho, Ferry AA, et al. "Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection." *Nature materials* 18.5 (2019): 489-495 Bannenberg, Lars, Herman Schreuders, and Bernard Dam. "Tantalum-palladium: hysteresis-free optical hydrogen sensor over 7 orders of magnitude in pressure with sub-second response." *Advanced Functional Materials* 31.16 (2021): 2010483 Nugroho, Ferry Anggoro Ardy, et al. "Inverse designed plasmonic metasurface with parts per billion optical hydrogen detection." *Nature Communications* 13.1 (2022): 5737 Darmadi, Iwan, et al. "Bulk-processed plasmonic plastic nanocomposite materials for optical hydrogen detection." *Accounts of chemical research* 56.13 (2023): 1850-1861. Martvall, Viktor, et al. "Accelerating Plasmonic Hydrogen Sensors for Inert Gas Environments by Transformer-Based Deep Learning." *arXiv preprint arXiv:2312.15372* (2023). Tomeček, David, et al. "Neural network enabled nanoplasmonic hydrogen sensors with 100 ppm limit of detection in humid air." *Nature Communications* 15.1 (2024): 1208.

H2 detection for processes

- In-line detection

H2 detection of aircrafts

- Remote and multiple detection
- Minimizing weight
- Integration in confined areas

Insplorion strategy – commercial roll-out

Provides prototype detectors for system design, validation and pilot projects

- Leak detection/safety
- Process monitoring

Launch ATEX certified leak detector (NPS-P2) in 2025

Partnerships for

- Commercial rollout of NPS-P2
- Co-development for specific segments/applications

Thank you for your attention

www.insplorion.com

info@insplorion.com

+46 (0)31 380 26 95

