

Hydrogen Electric Aircraft Vätgaskonferensen 2024

AL HEGENRIS

The information in this presentation is proprietary and confidential and shall not be disclosed to or used by a third party unless specifically authorised by the relevant GKN Aerospace group company.

Jurisdiction	Export Classification	Date	
UK	PL9009.c	12/12/2024	
Sweden	NSR	12/12/2024	
Netherlands	NSR	12/12/2024	

GKN Aerospace More than a manufacturing organisation

- Global Tier 1 partner for integrated Aerostructures development
- Recognised world leading Electrical Systems capability
- > Former OEM experience (Fokker)

- Trusted partner to all major OEMs, RRSPs with design authority
- > OEM of the RM12 engine
- Former OEM experience (Volvo Aero)

Hydrogen Systems

- > Newly formed organisation
- Leading the development of a sustainable aviation supply chain
- Thinking like an OEM, acting as a Partner

Positioning to be the most trusted and sustainable partner in the sky

Hydrogen Systems The Journey So Far

Hydrogen Electric Propulsion (H2EP) Recap on Powertrain efficiencies

Cryogenic electrical systems can enable higher efficiency (≈95%) and lower total system mass

GKN AEROSPA

System Overview 1 Conventional Hydrogen Electric Propulsion (H2EP)

Conventional hydrogen electric systems are **not scalable** and will excessively consume LH2

Conventional Cryogenic aka Hyperconducting

Proprietary and confidential restrictions on title slide apply throughout this presentation

^ Newly developed GKNA Hyperconductors

Hyperconductors are:

- Normally conducting, metals or metaloids with high chemical purity, which have a much lower specific resistivity for cryogenic temperatures (< 100K), exhibiting a non-linear characteristic
 - In contrast to the poor thermal conductivity of superconductors, hyperconductive materials also hold significantly enhanced thermal conductivity

Opportunities for electrical technology enhancement Current View

Hyperconducting offers low system mass and heat generation at acceptable risk

System Overview 2 Centralized cryogenic H2EP architecture

Hyperconducting enables benefits through a centralized system

H2GEAR Demonstrator Builds

Test ↓	Sub → System	Fuel Cell Power Generation System	Electrical Network System	Motor & Drive	Cryogenic System	Integrated Control
Demo Electrical Ma	chine – Q2 2024			Sub-scale cryo proof of concept	Motor cooling proof of concept	
Build 1 – 2024 (TRL4 Motor & Drive)				Full scale segment Cryo inverter (iso)	Full scale cooling LN cooled inverter	
Build 2A – 2024 (Cryogenic Conduit)			Cryo conduit proof of concept			
Build 2B – 2024 (Cryogenic He/H2 su	b-system)				H2/He HEX & H2 heating	
Build 2C – 2024 (Energy Storage Com	iponents)		Energy buffer component demo			Power Condition Control
Build 3 – 2023 (LC Fuel Cell Power S	System)	Sub-System				FCPGS Control
Build 4 – 2024 (Power Conditioning	Sub-System)		DC/DC Converter component demo			Electrical Network Control
Build 5 – 2025 (LC+ Fuel Cell Power	System)	Sub-System Increased Tech				FCPGS Control
Build 6 – 2025 (TRL5 Integrated Mot	or & Drive)			Full scale multi segt. Integrated inverter	Full scale cooling He cooled inverter	Integrated Motor Control
Build 7 – 2026 (Integrated Ground S	ystem Test)	Integrated Sub-System	Integrated Sub-System	Integrated Sub-System	Integrated Sub-System	Full System Control

Power Generation Fuel Cell System Testing

Status

GKN AEROSPA

- Collaborated with IAAPS (University of Bath) to develop fuel cell power system test facilities
- Delivered the first GKNA-Integrated fuel cell power generation system
- Operated the system at all required power settings for a nominal aircraft application
- The system met all GKNA expectations
- Transitioning from ~220 kW to ~380 kW

Vibration Test Setup:

GKN AEROSPA

Test conditions based on existing aircraft test standards

GKN AEROSPA

Cryogenic Drive System Initial Demonstrator Motor Build

Proprietary and confidential restrictions on title slide apply throughout this presentation

The first hyperconducting machine is now on test

New Capability GKN Aerospace opens a 'Cryolab' at the UK GTC

Dedicated cryogenics team

- > Assembled from across sectors
- > Cryogenic design & test expertise

Capability

- > Two large test cryostats and one calibration cryostat
- > Thermal cycling tests
- > Helium permeability testing
- > Cryogenic electrical testing
- > Cooling capacity down to 10 K

Driving essential skills development in cryogenics for the future of aerospace

OF D

Proprietary and

tial restrictions

side apply throughout this presentation

GKN AEROSPACE

1000

GKNA96 Concept

Notional aircraft derived performance specification:

- > 96 passengers, single class,
 3+3 seating arrangement
- High wing, fan-on-wing configuration – low noise and improved CG management
- Installed power ~8 MW driving two low pressure ratio fans of 2.6 m diameter
- > Range: 3000 km
- > Mach 0.65 @ 35,000 ft
- > CS25 compliant

Proprietary and confidential restrictions on title slide apply throughout this presentation

111111111

The potential of hyperconducting H2EP A speculative view on potential new future platforms...

Significant improvements in performance enabling new platforms by 2035

GKNA160 Concept

Notional aircraft derived performance specification:

- > 160 passengers, single class,
 2-4-2 seating arrangement
- High wing, fan-on-wing configuration – low noise and improved CG management
- Installed power ~16 MW driving four low pressure ratio fans of 2.6m diameter
- > Range: 4000 km
- > Mach 0.7 @ 35,000 ft
- > CS25 compliant

Proprietary and confidential restrictions on title slide apply throughout this presentation

Power to Deliver Together...

Hydrogen Electric Propulsion is:

> Attractive and more so when using synergetic cryogenics,

> Scalable

Success of the product further enabled by:

- > Synergetic Heat Dissipation
- > Fuel Cell Performance
- Flying technology demonstration!

Non-product Enablers require collaboration

- > Politics: Aircraft can be zero emission!
- > Economics: Fuel and Operation
- > Infrastructure: Capacity & availability
- > Public opinion: <u>Safe</u> demonstrations...

simon.taylor@gknaerospace.com GKN Technical Fellow, Director New Air Vehicle Concepts, Chief Engineer Flight Demo. (a.i.)

